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Abstract

Kalman Filtering is a computational tool with
widespread applications in robotics, financial and
weather forecasting, environmental engineering
and defense. Given observation and state transi-
tion models, the Kalman Filter (KF) recursively
estimates the state variables of a dynamic system.
However, the KF requires a cubic time matrix inver-
sion operation at every timestep which prevents its
application in domains with large numbers of state
variables. We propose Relational Gaussian Models
to represent and model dynamic systems with large
numbers of variables efficiently. Furthermore, we
devise an exact lifted Kalman Filtering algorithm
which takes only linear time in the number of ran-
dom variables at every timestep. We prove that our
algorithm takes linear time in the number of state
variables even when individual observations apply
to each variable. To our knowledge, this is the first
lifted (linear time) algorithm for filtering with con-
tinuous dynamic relational models.

1 Introduction

Many real-world systems can be modeled by continuous vari-
ables and relationships (or dependences) among them. The
Kalman Filter (KF) [Kalman, 1960] accurately estimates the
state of a dynamic system given a sequence of control-inputs
and observations. It has been applied in a broad range of
domains which include weather forecasting [Burgers et al.,
1998], localization and tracking in robotics [Limketkai et al.,
2005], economic forecasting in finance [Bahmani-Oskooee
and Brown, 2004] and many others. Given a sequence of
observations and Gaussian dependences between variables,
the filtering problem is to calculate the conditional probabil-
ity density of the state variables at each timestep. Unfortu-
nately, the KF computations are cubic in the number of ran-
dom variables which limits current exact methods to domains
with limited number of random variables. This has led to the
combination of approximation and sampling (e.g. the Ensem-
ble Kalman Filter [Evensen, 1994]).

This paper leverages the ability of relational languages
[Friedman et al., 1999; Poole, 2003; Richardson and Domin-
gos, 2006] to specify models with size of representation

independent of the size of populations involved. Vari-
ous lifted inference algorithms for relational models have
been proposed [Poole, 2003; de Salvo Braz et al., 2005;
Milch and Russell, 2006; Richardson and Domingos, 2006;
Wang and Domingos, 2008; Choi et al., 2010]. These seek to
carry computations in time independent of the size of the pop-
ulations involved. However, the key challenge in relational
filtering (of dynamic systems) is ensuring that the represen-
tation does not degenerate to the ground case when multiple
observation are made. As more observations are received, an
increasing number of objects become distinguished. This pre-
cludes the application of previously known algorithms unless
approximately equivalent objects are grouped with expensive
clustering algorithms.

We propose Relational Gaussian Models (RGMs) to model
dynamic systems of large number of variables in a relational
fashion. RGMs have as their main building block the pair-
wise linear Gaussian potential as detailed in Section 2. Fur-
ther, we propose a new lifted filtering algorithm that is able
to marginalize out random variables of the previous timestep
efficiently (in time linear in the number of random variables)
while maintaining the relational (RGM) representation. This
prevents the model from being increasingly grounded even
when individual observations are made for all random vari-
ables. Moreover, updating the relational representation takes
only quadratic time in the number of relational atoms (sets
of random variables). One key insight is that, given identi-
cal observation models, even when the means of the random
variables are dispersed their variances remain identical. This
is sufficient to maintain a relational representation.

This paper is organized as follows. Section 2 introduces
definitions and the relational filtering problem. Section 3
presents our main technical results, i.e., the recursive esti-
mation of the states of random variables in a lifted fashion.
Section 4 presents our algorithm in detail together with com-
plexity results. Section 5 shows experimental results with a
housing market model. Section 6 presents a real-world ap-
plication to Social Networks. Section 7 discusses previous
work. We conclude in Section 8.

2 Model and Problem Definitions

In this section, we define Relational Gaussian Models
(RGMs) and introduce the filtering problem for dynamic re-
lational models.
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2.1 Relational Continuous Models

Dependencies between variables are represented using Par-
factor models1, i.e. parameterized factor models. Each par-
factor g = (L,C,X, φ) is composed of a set of logical vari-
ables (or objects) (L), constraints on L (C), a list of relational
atoms (X), and a potential function on X (φ).

Relational atoms represent the set of random variables
corresponding to all ground substitutions of its logical vari-
ables. Formally, applying a substitution θ to a parfactor
g yields a new parfactor gθ = (L′,Cθ,Xθ, φ), where L′
is obtained by renaming the variables in L according to
θ. If θ is a ground substitution, gθ is a factor. A fac-
tor f = (x, φ) is a pair where x is a list of ground ran-
dom variables (x1, . . . , x|x|) and φ is a potential on x, a func-
tion from range(x) = ×|x|i=1range(xi) to R+. A factor f de-
fines a weighting function on a valuation v = (v1, . . . , v|X|):
wf (v) = φ(v1, . . . , v|x|). The weighting function for a par-
factor g is the product of the weighting functions of all of its
ground substitutions (factors), wg(v) =

∏
f∈g wf (v). Hence, a

set of parfactors G defines2 a probability density proportional
to,

wG(v) =
∏
g∈G

∏
f∈g

wf (v). (1)

2.2 Relational Gaussian Models (RGMs)

Relational Gaussian Models (RGMs) are a subset of Rela-
tional Continuous Models (RCMs) where potentials are re-
stricted to be Gaussian distributions. RGMs are composed
of three types of parfactor models: (1) Relational Transition
Models (RTMs); (2) Relational Pairwise Models (RPMs);
and (3) Relational Observation Models (ROMs). Suppose
that we have n relational atoms: X1

t (L), . . ., Xn
t (L) where L

is a list of logical variables. In a relational linear dynamic
model, relational atoms are linearly influenced by control-
inputs U1

t (L), . . ., Un
t (L). Similarly, a linear observation

model specifies the relationship between observation vari-
ables O1

t (L), . . ., On
t (L) and other relational atoms. Control

inputs and observations are associated with relational atoms
in two ways: (1) direct association; and (2) indirect associa-
tion. We provide further details in Section 2.4.

Relational Transition Models (RTMs) model the depen-
dence of relational atoms at the next timestep, Xj

t+1(a′), on
relational atoms at the current timestep, Xi

t(a), and (when
available) control-input information. They take the following
form,

Xj
t+1(a′) = Bi, j

X · Xi
t(a) + Bi, j

U ·Ui
t(a) + Gi, j

RTM, (2)

where Gi, j
RTM ∼ N(0, σi, j

RTM) and N(m, σ2) is the normal dis-

tribution with mean m and variance σ2. Bi, j
X and Bi, j

U are the
transition models, matrices or a constants, corresponding to
two relational atoms.

1Our representation is based on previous work [Poole, 2003; de
Salvo Braz et al., 2005; Milch and Russell, 2006; Choi et al., 2010].

2The condition is that at least a random variable has a prior dis-
tribution as outlined in [Choi et al., 2010].

Sales price of house h1: HPOt(h1) = $500K. 
Observed housing market index: HMOt = +8%.
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Figure 1: Example of a housing market model. We are inter-
ested in estimating the hidden value of houses given observa-
tions of house sales prices (e.g. HPOt(1) = $500K). Both,
the hidden value of a house and the observed sales prices are
affected by several factors, e.g., house values increase by a
certain rate every year and are also influenced by a housing
market index (HMt).

For univariate state variables, we can represent the transi-
tion model with a linear Gaussian,

φRTM(Xj
t+1(a′)|Xi

t(a),Ui
t(a))

∝ exp

⎛⎜⎜⎜⎜⎜⎜⎝−
(Xj

t+1(a′) − Bij
X · Xi

t(a) − Bij
U ·Ui

t(a))2

2 · σi j
RTM

2

⎞⎟⎟⎟⎟⎟⎟⎠ . (3)

The most common transition is the transition from the cur-
rent state Xi

t(a) to the next Xi
t+1(a). It is represented as fol-

lows,
Xi

t+1(a) = Bi
X · Xi

t(a) + Bi
U ·Ui

t(a) + Gi
RTM. (4)

Relational Observation Models (ROMs) represent the re-
lationships between the hidden (state) variables, Xi

t(a), and
the observations made at the corresponding timestep, Oi

t(a),

Oi
t(a) = Hi

t · Xi
t(a) + Gi

ROM, (5)

where Gi
ROM ∼ N(0, σi

ROM). Hi
t is the observation model, a

matrix or a constant, between the hidden variables and the
observations.

In the linear Gaussian representation, they take the follow-
ing form,

φROM(Oi
t(a)|Xi

t(a)) ∝ exp

⎛⎜⎜⎜⎜⎜⎝− (Oi
t(a) −Hi

t · Xi
t(a))2

2 · σi
ROM

2

⎞⎟⎟⎟⎟⎟⎠ . (6)

Relational Pairwise Models (RPMs) represent Gaussian
dependences between pairs of relational atoms within the
same timestep as follows,

Xi
t(a) = Ri, j

t · Xj
t(a
′) + Gi, j

RPM, (7)

where Gi, j
RPM ∼ N(0, σi, j

RPM). Ri, j
t is the pairwise coefficient, a

matrix or a constant, between the two relational atoms.
Note that RTMs and ROMs are directed models while

RPMs are undirected. The directed models represent the na-
ture of dynamic systems (e.g. the state at the next timestep
depends on the current timestep). The product of RPMs is
an efficient way to represent a multivariate Gaussian density
over all the state variables. 3

3Note that a multivariate Gaussian density (of state variables) is
a quadratic exponential form. The quadratic exponential form can
always be decomposed into terms involving only single variables
and pairs of variables. We provide additional details in Section 7.
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Figure 2: This model has three relational atoms, Xi, which may represent any number of random variables. The relational
representation dramatically eliminates the need for redundant potentials. Hence, representation and filtering become much
more efficient than in the propositional case. Note that the conventional KF representation is not suited for efficient (i.e. lifted)
inference.

2.3 A Relational Filtering Problem

Given a prior (or current belief) over the state variables, the
filtering problem is to compute the posterior after a sequence
of timesteps. The input to the problem is: (1) Relational
Gaussian Model (RTMs, RPMs and ROMs); (2) current be-
lief over the relational atoms (Xi

0) represented by a product of
relational Gaussian potentials; (3) sequence of control-inputs
(Ui

1, . . . ,U
i
T); and (4) sequence of observations (Oi

1, . . . ,O
i
T).

The output is the relational Gaussian posterior distribution
over the relational atoms (Xi

T) at timestep T.

2.4 Input and Observation Association

At every timestep the control-inputs and observations must be
associated with the random variables they affect. The ideas in
this section apply to control-inputs and observations but we
illustrate them for observations.

We distinguish two types of observations: direct and indi-
rect. Direct observations are those made for a specific random
variable. For instance, if we make an observation for each
random variable in a subset Ai

t ⊆ Xi
t of the ground substitu-

tions of relational atom Xi
t, we are looking at the following

model, ∏
aj∈Ai

t

φROM

(
oi

t(aj)|Xi
t(aj)
)
. (8)

In the example of Figure 1, observing the selling price of a
house would dramatically reduce the variance of the hidden
variable that represents the true value of that house.

Similarly, multiple direct observations, Oi
t =

oi,1
t , o

i,2
t , . . . , o

i,|Oi
t |

t , could be made for each variable in
some set of random variables,∏

aj∈Ai
t

∏
oi,k

t ∈Oi
t

φROMk

(
oi,k

t (aj)|Xi
t(aj)
)
. (9)

Given some notion of neighborhood (e.g. a residential
neighborhood or a block of houses), indirect observation al-
lows the possibility that observations made for a random vari-
able, oi

t(a
′), would influence nearby random variables, Xi

t(aj),
a′ � aj, ∏

aj∈Ai
t

φROM

(
oi

t(a
′)|Xi

t(aj)
)
. (10)

For example, this allows the possibility that the observation
of the selling price of a house would reduce the variance of
the true values of neighboring houses.

Current (exact) lifted inference algorithms (e.g. [Kersting
et al., 2006; Choi et al., 2010]) handle observations by par-
titioning the relational atoms into groupings of groundings
for which identical observations and observation models ap-
ply. In contrast, our approach partitions a relational atom into
sets according to the number of different types of observa-
tions associated with each random variable. For instance, if
an individual observation of the same ROM type is made for
each random variable then no partitioning at all is necessary.
The intuition for this is that the filtering process will assign
the same variance to any two hidden variables for which the
same number of observations is made at the current timestep.

Here, the partition will determine new RPMs, the pairwise
parfactors which maintain the variances and covariances. In
particular, the number of new RPMs is quadratic in the size of
the partition. Since individual observations cause the means
of the random variables to differ we store the mean infor-
mation in the prior and posterior (P and Pnew in Section 3).
Hence, the number of priors and posteriors is linear in the
number of random variables. However, this will not affect the
computational complexity of inference as long as the RPMs
do not degenerate. Further details are given in Sections 3.3
and 4.

Formally, given a partition Πi = (Mi
1,M

i
2, . . . ,M

i
|Πi |) of a

relational atom, Xi, the observation model takes the form,∏
Mi

l∈Πi

∏
aj∈Mi

l

∏
oi,k∈Oi

l

φROMk

(
oi,k(aj)|Xi(aj)

)
, (11)

where we omit the time subscript and where Oi
l is the set of

observations relevant to part l.

3 Lifted Relational Kalman Filter

The Lifted Relational Kalman Filter (LRKF), just like the
conventional Kalman Filter, carries two recursive computa-
tions: prediction step and update/correction step.

3.1 Lifted Prediction
In the prediction step, our current belief over the states of the
relational atoms together with the RTMs, RPMs and control-
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inputs are used to make a best estimate of state without ob-
servation information. First, the product of potentials in the
RTMs and RPMs is built. Second, the variables from the pre-
vious timestep are marginalized resulting in new RPMs and
estimates of the relational atoms in the current timestep. We
call this estimates the intermediate posterior, the input to the
update step.
∫

X1
t ,...,X

n
t

∏
1≤i< j≤n

∏
a∈Ai ,a′∈Aj

φ
i, j
RTM

(
Xj

t+1(a′)|Xi
t(a),Ui

t(a)
)
· Pi
(
Xi

t(a)
)
· φi, j

RPM

(
Xi

t(a),Xj
t (a
′)
)

=

∫

X1
t ,...,X

n
t

∏
1≤i< j≤n

∏
a∈Ai ,a′∈Aj

exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝−
(
Xj

t+1(a′) − Bi, j
X Xi

t(a) − Bi, j
U Ui

t(a)
)2

σi
RTM

2

⎞⎟⎟⎟⎟⎟⎟⎟⎠

· exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝−
(
Xi

t(a) − μi
P(a)
)2

σi
P

2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ · exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝−
(
Xi

t(a) − Ri, j
t Xj

t (a
′)
)2

σ
i, j
RPM

2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (12)

=
∏

1≤i< j≤n

∏
a∈Ai ,a′∈Aj

exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝−
(
Xi

t+1(a) − R′i, jt+1Xj
t+1(a′)

)2
σ′ i, jRPM

2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ · exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝−
(
Xi

t+1(a) − μi
P′ (a)
)2

σi
P′

2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=
∏

1≤i< j≤n

∏
a∈Ai ,a′∈Aj

φ′ i, jRPM

(
Xi

t+1(a),Xj
t+1(a′)

)
·
∏

1≤i≤n

∏
a∈Ai

P′ i
(
Xi

t+1(a)
)
. (13)

Here, φ′i, jRPM, Pi and P′i are respectively the updated RPMs,
the priors and the intermediate posteriors. More details of the
integration are given in Appendix A.

3.2 Lifted Update

In the update step, the intermediate posterior P′i and ROMs
are used to correct our estimate of the relational atoms.

When a single observation, oi
t+1, is associated with all vari-

ables in a relational atom, we calculate the posterior for one
random variable Xi

t+1(a) and use the result for the rest of the
groundings of the same relational atom,

P′i(Xi
t+1(a)) · φROM

(
oi

t+1 |Xi
t+1(a)

)

= exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝−
(
Xi

t+1(a) − μi
P′ (a)
)2

σi
P′

2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ · exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝−
(
Xi

t+1(a) − oi
t+1

)2
σi

ROM
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠

= exp

⎛⎜⎜⎜⎜⎜⎜⎝
−Xi

t+1(a)2 + 2μi
P′ (a)Xi

t+1(a) − μi
P′ (a)2

σi
P′

2 +
−Xi

t+1(a)2 + 2oi
t+1Xi

t+1(a) − oi
t+1

2

σi
ROM

2

⎞⎟⎟⎟⎟⎟⎟⎠

= c′ · exp

⎛⎜⎜⎜⎜⎜⎜⎝−
(Xi

t+1(a) − μi
Pnew

)2

σi
Pnew

2

⎞⎟⎟⎟⎟⎟⎟⎠ = Pi
new(Xi

t+1(a)). (14)

In the case of multiple observations Oi
t+1 = oi,1

t+1, o
i,2
t+1, . . . ,

oi,|Oi
t |

t+1 we may also do the computation of the posterior for a
single random variable Xi

t+1(a) and use the resulting posterior
for all other groundings of the relational atom (to which the
same set of observations applies). The calculation is simi-
lar to the above, except that multiple observations need to be
considered,

P′i
(
Xi

t+1(a)
)
·
∏

o∈Oi
t+1

φROM

(
o|Xi

t+1(a)
)

= exp

⎛⎜⎜⎜⎜⎜⎜⎝−
(Xi

t+1(a) − μi
P′ (a))2

σi
P′

2

⎞⎟⎟⎟⎟⎟⎟⎠ · exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝−
∑

o∈Oi
t+1

(Xi
t+1(a) − o)2

σi
ROM

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= c′′ · exp

⎛⎜⎜⎜⎜⎝− (Xi
t+1(a) − μi

Pnew
(a))2

σi
new

2

⎞⎟⎟⎟⎟⎠ = Pi
new

(
Xi

t+1(a)
)
. (15)

3.3 Lifted Inference with Individual Observations

One of the key challenges in lifted inference is handling in-
dividual observations. Current methods ground a relational
atom when different observations are made for its random
variables. It is usually the case that models shatter combi-
natorially fast and thus forfeit the benefits of a relational rep-
resentation and the applicability of lifted inference.

We solve this problem in the LRKF by noting that the vari-
ances and covariances in the model are not affected by in-
dividual observations. We are thus able to represent the vari-
ances and covariances in a relational way while allowing vari-
ables to carry individual means. Further, the lifted prediction
operation applies unmodified to this representation.
Lemma 1 The variances of two random variables X(a), X(b)
in an RGM are equal after a filtering step (Lifted Prediction
and Lifted Update) if the following conditions hold before the
filtering step: (1) both random variables are in the same re-
lational atom; (2) the variance of both variables is the same;
(3) observations are made for both variables or none of them.
Proof Given conditions (1) and (2), we first prove that the
variance of both random variables is the same after the Lifted
Prediction step. Note that condition (3) is not relevant to this
step.

WLOG we assume Xt(a) and Xt(b) have different means,
μt(a) and μt(b). Moreover, it is easy to see that the variance
of Xi

t+1(a) and Xi
t+1(b) is the same after marginalizing all ran-

dom variables of timestep t due to the following two reasons:
(i) X(a) and X(b) are in the same relational atom and thus
share the same relationships with other random variables; (ii)
the means are not involved in the marginalizations (see Sec-
tion 3.1). It follows that we can represent the potentials rele-
vant to the marginalization of Xt(a) and Xt(b) as follows:

exp

⎛⎜⎜⎜⎜⎜⎝− (Xt(a) − μt(a))2

σ2
Xt (a)

⎞⎟⎟⎟⎟⎟⎠ · φRTM (Xt+1(a)|Xt(a),Ut(a)) · φRPM (Xt(a),Xt(b))

· exp

⎛⎜⎜⎜⎜⎜⎝− (X(b)t − μt(b))2

σ2
Xt (b)

⎞⎟⎟⎟⎟⎟⎠ · φRTM (Xt+1(b)|Xt(b),Ut(b)) · φRPM (X(a)t+1,X(b)t+1)

= exp
(
cXt (a)2 Xt(a)2 + cXt (a)Xt(a)

)
exp

⎛⎜⎜⎜⎜⎝ 2Bi
X

σ2
RTM

Xt(a)Xt+1(a)

⎞⎟⎟⎟⎟⎠ exp

⎛⎜⎜⎜⎜⎝Xt(a)Xt(b)
σ2

RPM

⎞⎟⎟⎟⎟⎠
exp
(
cXt (b)2 Xt(b)2 + cXt (b)Xt(b)

)
exp

⎛⎜⎜⎜⎜⎝ 2Bi
X

σ2
RTM

Xt(b)Xt+1(b)

⎞⎟⎟⎟⎟⎠
· φother (Xt+1(a),Xt+1(b)) ,

where cX refers to the coefficient of the term X.4
After Xt(a) and Xt(b) are marginalized we get a potential

on Xt+1(a) and Xt+1(b). The variances of the random vari-
ables are the inverses of the coefficients of their squares in
the resulting potential. Thus, all we need to show is that the
coefficients of the square of the random variables, Xt+1(a)2

and Xt+1(b)2, are the same after marginalization. The two
coefficients can be represented as follows,

cXt+1(a)2 =
−cXt(b)2

(
Bi

X
σ2

RTM

)2
(

1
σ2

RTM

)2
− cXt(a) cXt(b)

, cXt+1(b)2 =
−cXt(a)2

(
Bi

X
σ2

RTM

)2
(

1
σ2

RTM

)2
− cX(a)t cXt(b)

4For the sake of exposition the RTMs here represent dependences
from state variables at time t to the same state variable at time t +
1 (e.g. from Xt(a) to Xt+1(a)). However, the general RTMs (e.g
dependences from Xt(a) to Xt+1(b)) produce similar forms.
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where, cXt(·)2 = −
(

1
σ2

Xt (·)
+ 1
σ2

RTM
+ 1
σ2

RPMt

)
.

Condition (2) (σ2
Xt(a)=σ

2
Xt(b)) implies cXt(a)2 = cXt(b)2 which

in turn implies cXt+1(a)2 = cXt+1(b)2 . This is enough to prove
that the variance of two random variables X(a) and X(b) with
different means is the same after the Lifted Prediction step.

We now prove the result for the Lifted Update step. Re-
garding condition (3) there are two cases: (a) observations
were made for both variables; or (b) no observations were
made for either variable. In the case of (b) the proof is com-
plete. In the case of (a), the update step for X(a) can be rep-
resented by,

exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝−
(Xt+1(a) − μXt+1 (a))2

σ2
Xt+1(a)i

− (Xt+1(a) − oat )2

σXROM
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = exp

⎛⎜⎜⎜⎜⎜⎝−
(Xt+1(a) − μ+Xt+1

(a))2

σ+Xt+1 (a)2

⎞⎟⎟⎟⎟⎟⎠

where,

σ+2
Xt+1(a) =

σ2
Xt+1(a)σ

2
XROM

σ2
Xt+1(a)i + σ

2
XROM

, μ+Xt+1(a) =
σ2

XROM
μXt+1(a) + σ2

Xt+1(a)oat

σ2
XROM

+ σ2
Xt+1(a)

Likewise, after the update step the variance of X(b) is,

σ+2
Xt+1(b) =

σ2
Xt+1(b)iσ

2
XROM

σ2
Xt+1(b)i + σ

2
XROM

By condition (2) and the proof for the prediction step,
σXt+1(a)i = σXt+1(b)i . Thus, σ+Xt+1(a) = σ+Xt+1(b). �

Lemma 2 The covariances of two pairs of variables (X(a),
X(b)) and (X(a), X(c)) in an RGM are equal after a filter-
ing step (Lifted Prediction and Lifted Update) if the following
conditions hold before the filtering step: (1) the three random
variables are in the same relational atom; (2) the covariance
of both pairs of variables is the same; (3) observations are
made for the three variables or none of them.

Proof The method used in the proof of Lemma 1 can be em-
ployed in this proof: The terms involving the individual ob-
servations do not affect terms which determine the covariance
of two random variables. �

4 Algorithms and Computational Complexity

Let X (|X|) be the set (number) of all random variables in the
model and X = (X1, . . . ,X|X|) be the set of relational atoms
(also, a partition of X). In this section we speak of the rela-
tional atoms as sets of random variables.

Figure 3 presents our Lifted Kalman Filtering algorithm.
The inputs to the algorithm are: relational atoms, X; the
RGM, RTMs MX, RPMs MP and ROMs MO; the prior over
the relational atoms, P0; and the control-inputs, U[1,...,T], and
observations, O[1,...,T], for each timestep.

The algorithm computes the posterior recursively. Split
partitions the domains of each relational atom Xi as induced
by the control-inputs Ut. Lifted Predict calculates new
RPMs, MP

5, and intermediate posterior, Pint, based on the
transition models, MX, and the control-inputs, Ut. Then,

5In our representation the number of relational atoms determines
the number of RPMs which is equal to E(|X|, 2) (the number of 2-
combinations of |X| with repetition).

Split Obs partitions the domains of each relational atom Xi

as induced by the observations, Oi
t. Lifted Update calculates

the new posterior, Pcur, based on the intermediate posterior,
Pint, the observation models, MO, and the observations, Oi

t.
Given the control-inputs, Split partitions relational atoms

as done in previous work: e.g. Split [Poole, 2003] and SHAT-
TER [de Salvo Braz et al., 2005]. If the control-inputs are
allowed to differ for the variables in a relational atom, the
model will be propositionalized. Hence, there is little advance
in how we handle individual control-inputs with respect to
previous algorithms [Choi et al., 2010].6

Algorithm Split Obs partitions a relational atom Xi based
on the observations. However, Split Obs will only partition
a relational atom in case the conditions of Lemmas 1 and 2
do not hold, i.e., when different number of observations are
made for the relational variables. If the conditions of Lemmas
1 and 2 hold, the efficiency of the relational representation
will be preserved even if multiple observations are made for
all variables in some or all of the relational atoms.

PROCEDURE LRKF(X,MX,MP,MO, P0, U[1,...,T], O[1,...,T])
Atoms, X= (X1, . . . ,X|X|); RTM, MX, RPM, MP, and ROM MO;

prior, P0; control-inputs, U[1,...,T]; observations, O[1,...,T].
1. Pcur ← P0, Xcur ← X
2. For t = 1 to T

(a) [Xcur,MX,MP,MO]← Split(Xcur, Ut, MX, MP, MO)
(b) [Pint,Mp] ← Lifted Predict(Xcur, Pcur, MX, MP, Ut)

(§3.1)
(c) [Xcur,MO]← Split Obs(Xcur, Ot, MO) (§3.3)
(d) [Pcur]← Lifted Update(Xcur, MO, Pint, Ot) (§3.2)

3. Return Xcur, Pcur

Figure 3: Algorithm Lifted Relational Kalman Filter for Re-
lational Gaussian Models.

Lemma 3 The complexity of Lifted Predict is O(|X|·|Xt+ |2).
Where Xt+ is the set of relational atoms output by Split.

Proof This step corresponds to the marginalization (Equa-
tion (13) and Appendix A) of the variables in X. For every
variable that is integrated the parameters of all, E(|Xt+ |, 2),
pairwise interactions between relational atoms must be up-
dated. �

Lemma 4 The complexity of Lifted Update is O(|Xt+o | ·
|Omax|). Where Xt+o is the set of relational atoms output by
Split Obs and Omax is the largest set of observations associ-
ated with a relational atom.

Proof For each relational atom in Xt+o the computation in
Equation (15) iterates over all relevant observations. �

Our main result follows,
Theorem 5 The computational complexity of LRKF is O(T ·
(|X|·|X∗t+ |2+|X∗t+o |·|O∗max|)) where T is the number of timesteps,
X, X∗t+ , X∗t+o and O∗max are as above with the ∗ indicating the
largest set across all timesteps.

6However, we conjecture that techniques similar to the ones we
used for ROMs can be applied to RTMs. Any two random variables
in the same atom will have the same variance after the Lifted Predict
step if they receive the same types of control inputs. That is, RTMs
of the same type will increase the variances of the random variables
by the same amount.
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Figure 4: Average filtering time with increasing number of
houses. Note the cubic increase in filtering time for the
Ground Kalman Filter and the linear increase for our Lifted
Relational Kalman Filter (LRKF). The y-axis is shown in log-
arithmic scale. To show that LRKF performs linearly, we
added markers at the measurements on the LRKF curve.

5 Experimental Results

We compare the average filtering time of LRKF and a con-
ventional Kalman Filter by varying the number of random
variables. We implemented both the LRKF and the conven-
tional KF (which handles random variables individually) in
Perl. This makes the manipulation of the dynamically chang-
ing structure convenient.

For the housing market model in Figure 1, we ran-
domly choose the parameters of the models (priors, RTMs,
RPMs, and ROMs) and provide observations for HMOt and
HPOt(·). To emphasize the difference in scalability, we as-
sume that some set of houses has individual observations in
each timestep, HPOt(·), while the rest of the houses do not.
We ran the two filters over 50 timesteps. The results in graph
4 confirm our theoretical results contrasting the linear time
complexity of LRKF with the cubic time complexity of the
Kalman Filter.

6 Application to Online Social Networks

l

ko

ji,X

lk Oo �

lIji �,

ji,U

Figure 5: Model
with plate no-
tation and in-
duced partition.

For decades social scientists have studied
how different types of relationships impact
individuals and organizations. More re-
cently, research on analyzing online social
networks (OSNs) has demonstrated that re-
lational patterns can be exploited to im-
prove predictive models of link structure
and behavior. Further, the accurate esti-
mation of relationship strengths has appli-
cations to understanding human behavior,
predicting human behavior (e.g. fraud),
privacy control, information prioritization,
recommender systems, search and visual-
ization (see e.g. [Gilbert and Karahalios,
2009], [Xian et al., 2010] and references
therein).

Previous work on OSNs has been char-
acterized by two major limitations: (1)
Following social media it has focused on
binary friendship relations, i.e., two peo-

ple can be either friends or strangers. However, in reality
relationships may fall anywhere along a continuous spec-
trum - an observation made in the social sciences since 1973
[Granovetter, 1973] with the introduction of the notion of
tie strength. (2) Works on link prediction and relation-
ship strength estimation have given little attention to the dy-
namic nature of social networks (SNs). However, it has been
demonstrated that the level of interactions between individ-
uals varies widely over time. For instance, experiments on
the Facebook OSN showed that, on average, 55% of the links
that are active during a given month are no longer active dur-
ing the following month [Viswanath et al., 2009].

Given the relational nature of SNs and the fact that inter-
action data is notably noisy a probabilistic and relational ap-
proach to prediction is best. However, predicting relation-
ship strengths on a single network-snapshot has remained too
expensive for current exact inference algorithms [Sen et al.,
2008]. To exacerbate the above limitations, current OSNs are
potentially very large and rapidly growing.

Here we show that our LRKF is able to carry accurate rela-
tionship strength prediction on large dynamic networks while
using state-of-the-art modeling features and techniques. Fol-
lowing the modeling decisions made by [Xian et al., 2010]
we propose a probabilistic model where hidden variables rep-
resent relationship strength. The model is composed of two
parts (Figure 5): (1) A generative component (top) models
the conditional probability of relationship strength given pro-
file similarities and; (2) a discriminative component (bottom)
models the conditional probability of the interaction activity
between users given the strength of their relationship.

In [Xian et al., 2010] the hidden variables are estimated it-
eratively given a snapshot of the OSN. In sharp contrast, we
are able to filter the state of the network as observations about
user interactions are made. We extend previous work by in-
troducing a linear Gaussian model of relationship evolution
(Equation (16)) that relates state variables across timesteps.
For this purpose, the control-inputs are derived from a linear-
combination of profile similarities. The model has the fol-
lowing components,

P(Xt(i, j)) = exp

⎛⎜⎜⎜⎜⎜⎝− (Xt(i, j) − ct(i, j))2

2σ2
Pt

⎞⎟⎟⎟⎟⎟⎠
∏
l∈U

φUl (Xt(i, j),Ut(i, j)l) =
∏
l∈U

exp

⎛⎜⎜⎜⎜⎜⎝− (Xt(i, j) − αU,l − βU,lUt(i, j)l)2

2σ2
U,l

⎞⎟⎟⎟⎟⎟⎠
∏

ok
t+1∈Ot+1

φROMk (ok
t+1,Xt+1(i, j)) =

∏
ok
t+1∈Ot+1

exp

⎛⎜⎜⎜⎜⎜⎝−
(ok

t+1 − αO,k − βO,kXt+1(i, j))2

2σ2
O,k

⎞⎟⎟⎟⎟⎟⎠

φRTM(Xt+1(i, j),Xt(i, j),Ut(i, j)) = exp

⎛⎜⎜⎜⎜⎝− (Xt+1(i, j) −w ·Ut(i, j) − βTXt(i, j))2

2σ2
T

⎞⎟⎟⎟⎟⎠
(16)

where (i, j) ranges over all pairs of individuals, X are the rela-
tionship strength variables, U are the profile similarity feature
vectors and the ok are interaction observations.

One limitation of this model, which it inherits from its
static predecessor, is that relationship strengths are consid-
ered independent of each other. A better approach is to con-
sider the dependences between edges by introducing RPMs
of the form,

φRPM(Xt(i, j),Xt(i, k)). (17)
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We envision a multivariate Gaussian version of probabilistic
transitivity being represented in this fashion.

7 Related Work

The KF [Kalman, 1960; Roweis and Ghahramani, 1999] is a
method for estimating the state of a dynamic process given
a sequence of noisy observations. It is restricted to linear
dynamic and linear measurement models both with additive
Gaussian noise. The Extended Kalman Filter (EKF) [Soren-
son and Stubberud, 1968] extends the KF to non-linear sys-
tems. For high dimensional data, a sampling method has been
devised, the Ensemble Kalman Filter [Evensen, 1994]. Ex-
act Kalman Filtering for high dimensional data is not feasible
because exact filtering requires matrix inversions which take
time cubic in the number of random variables.

Our RGMs represent the probability density as a product
of node and edge factors. Any multivariate Gaussian is a
quadratic exponential and can thus be written in this form.
This is related to the information form of the Gaussian den-
sity and is the basis of other models such as Directed Gaus-
sian Models (DGMs) [Cowell, 1998] and Gaussian Markov
Random Fields (GMRFs) [Rue and Held, 2005]. However,
RGMs are relational while DGMs and GMRFs are not. Thus,
the previous models do not have a compact (relational) rep-
resentations and, more importantly, an efficient (lifted) exact
inference algorithm.

Relational probabilistic models allow the specification of
models with size independent of the sizes of the popula-
tions in the model [Friedman et al., 1999; Poole, 2003;
Richardson and Domingos, 2006]. Lifted inference algo-
rithms [de Salvo Braz et al., 2005; Milch and Russell, 2006]
attempt to carry as much of the computations without propo-
sitionalizing the model. [Poole, 2003], solves inference prob-
lems by dynamically splitting and unifying sets of ground
atoms. [de Salvo Braz et al., 2005] (FOVE) introduced count-
ing elimination to efficiently eliminate atoms with different
parameterizations. [Milch et al., 2008] (C-FOVE) take a
slightly different approach with the introduction of counting
formulas. However, all of the above lifted inference algo-
rithms are not applicable to models with continuous variables.

[Kersting et al., 2006] introduced Logical HMMs that
combine ideas from Statistical Relational Learning and dy-
namic models. Indeed their work, as ours, pursues the bene-
fits that the relational approach brings to inference and learn-
ing. However, their work is inherently discrete and further,
they assume specific transition and observation models.

For relational models with continuous variables, recent ad-
vances have made inference possible. [Wang and Domingos,
2008] is an approximate algorithm based on sampling, search
and local optimization. [Choi et al., 2010] is an exact variable
elimination algorithm for continuous domains. The latter al-
gorithm is similar to the marginalization problem that is part
of the prediction step in filtering. However, none of these
algorithms have been devised with dynamic models in mind
nor do they address the problem of individual observations.

8 Conclusion and Future Work

We propose Relational Gaussian Models to represent and
model dynamic systems in a relational (first-order) way. Fur-

ther, we present the first algorithm for filtering or tracking
at the first-order level. Our theoretical analysis and empiri-
cal tests show that our approach leads to significant gains in
efficiency and enables filtering for systems with very large
numbers of random variables. We also make the case for the
applicability of lifted inference to address real-world prob-
lems by taking a recently proposed model of social relation-
ship strength and extending it to large dynamic networks.

A limitation of our exact filtering is that we shatter the
model when the random variables in a relational atom receive
different numbers of observations because their variances and
covariances become different. Our current understanding is
that approximate re-grouping of random variables is the only
general recourse in this case.
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A Details of Lifted Prediction

The integration is done using the following rule,∫
Xi

t(a
∗)

exp
(
−AXi

t(a
∗)2
+ 2BXi

t(a
∗) − C

)
=

√
π√
A

exp
(
B2

A
− C
)
. (18)

where A is a constant, B a linear form of random variables
except Xi

t(a
∗), and C is a quadratic form of random variables

except Xi
t(a
∗).

The integration of one random variable in Equation (12)
can be represented as follows,
∫

Xi
t (a∗ )

∏
1≤ j≤n

∏
a′∈Aj
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2
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2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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t Xj
t (a
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σ
i, j
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2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (19)

=

∫

Xi
t (a∗ )

exp

⎛⎜⎜⎜⎜⎜⎜⎝−AXi
t(a
∗)2
+
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∑
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j
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t+1Xj
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∫

Xi
t (a∗ )

exp
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t(a
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∑
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c j
t

∑
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Xj
t (a
′) + c j
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Xj
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t(a
∗)− C
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t (a∗ )

exp
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t(a)

2
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⎛⎜⎜⎜⎜⎜⎜⎝c +
∑

1≤ j≤n

c j
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t + c j

t+1X
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t(
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⎞⎟⎟⎟⎟⎟⎟⎠ , (20)

when c, c j
t and c j

t+1 represent constants calculated from Equa-

tion (19), and X j
t represents

∑
a′∈Aj Xj

t(a
′).

Note the quadratic form in Equation (18) includes the fol-
lowing types of expression,

(X +X′)2 = [X2] + 2[XX] + 2XX′ + [X′2] + 2[X′X′], (21)
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where [X2] is
∑

a∈A X(a)2, and [XX] is
∑

a,a′∈A,a�a′ X(a)X(a′).
Now, Equation (20) is integrated as follows,
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Here, R′t, R′t+1, R′t,t+1, μt, μt+1, σ′tRPM and σ′t+1RPM are new
constants derived from Equation (22).
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