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Abstract

Predicting trust among the agents is of great impor-
tance to various open distributed settings (e.g., e-
market, peer-to-peer networks, etc.) in that dishon-
est agents can easily join the system and achieve
their goals by circumventing agreed rules, or gain-
ing unfair advantages, etc. Most existing trust
mechanisms derive trust by statistically investigat-
ing the target agent’s historical information. How-
ever, even if rich historical information is avail-
able, it is challenging to model an agent’s behavior
since an intelligent agent may strategically change
its behavior to maximize its profits. We therefore
propose a trust prediction approach to capture dy-
namic behavior of the target agent. Specifically, we
first identify features which are capable of describ-
ing/representing context of a transaction. Then we
use these features to measure similarity between
context of the potential transaction and that of pre-
vious transactions to estimate trustworthiness of
the potential transaction based on previous similar
transactions’ outcomes. Evaluation using real auc-
tion data and synthetic data demonstrates efficacy
of our approach in comparison with an existing rep-
resentative trust mechanism.

1 Introduction

Many internet-scale applications are evolving recently, fueled
by and fueling applications open to all, e.g., Web 2.0 and
P2P applications, where end-users play active roles in the
system, and thus their activities in turn significantly impact
the system’s behavior and other users’ experience with the
same. For instance, different from traditional static web sites,
Web 2.0 applications allow users to not only retrieve informa-
tion but also contribute contents and share information with
other users (e.g., Wikipedia1), or peer-to-peer (P2P) networks
[Androutsellis-Theotokis and Spinellis, 2004] enable applica-
tions like content distribution (e.g., BitTorrent2), Distributed

∗The work was partly funded by A-STAR grant numbered 072
134 0055

1http://en.wikipedia.org/wiki/Main Page
2http://www.bittorrent.com/

Computation (e.g., Seti@home3), etc., by establishing direct
connections between the users. Such rich interactions among
users enhance the Internet experience significantly. However,
due to characteristics (e.g., openness, decentralization, het-
erogeneity, etc.) of the massively distributed systems, dis-
honest users can easily join the system and act maliciously
or selfishly to achieve their goals. This thus arises serious
security issue: how to ensure that the potential interaction
partner will not harm the interests of the honest user in a
transaction? A common approach to this issue is to build
automated trust/reputation system [Jøsang et al., 2007] to de-
rive/maintain trust relationships among the agents4.

Many existing trust mechanisms derive trust based on an
agent’s past interactions experience with its counterpart. In
the case that direct experience is not available, trustor resorts
to indirect experience collected from other agents who have
interacted with the target agent. Various techniques (e.g.,
Bayesian approach [Teacy et al., 2006; Zhang and Cohen,
2008; Liu et al., 2009], eigen matrix [Kamvar et al., 2003],
subjective logic [Burnett et al., 2010], etc.) are applied to
study target agent’s past behavior. However, these works as-
sume a relatively static agent behavior thus are not able to
capture an agent’s dynamic behavior patterns, which are com-
mon in a large scale open system since self-interested agents
are very likely to vary their behavior to achieve their goals.
For instance, in an online auction site, a malicious seller may
act honestly in selling cheap items to gather sufficient reputa-
tion and then cheat in selling an expensive item. Traditional
trust mechanisms are likely to incorrectly predict the risky
transaction as safe since a majority of the seller’s past trans-
actions were good.

In this work, we propose a trust prediction approach based
on the target agent’s historical information, aiming at captur-
ing its dynamic behavior pattern to accurately estimate trust-
worthiness of the potential transaction with this agent. The
main idea is that outcome of the potential transaction can
be indicated by that of certain previous transactions, which
have the most similar transaction context with the potential
transaction. Specifically, given a set of a trustor’s past trans-
actions (by chronological order) with the target agent (i.e.,

3http://setiathome.berkeley.edu/
4We call any system participator (e.g., human, software agent,

node, etc.) as an agent
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direct experience), we first define context of a transaction as
a sequence of its immediate previous transactions (a transac-
tion window), each of which is described by a feature vec-
tor. Note that feature selection is application dependent and
we will demonstrate in evaluation section which features of a
transaction are identified using online auction as an example.
We then compare similarity of context of the potential trans-
action and that of previous transactions. The outcome of a
specific previous transaction that has the most similar context
with that of the potential transaction is used as the indicator
to estimate trustworthiness of the potential transaction. The
similarity between two contexts (with the same window size)
is calculated by aggregating feature based similarity between
a pair of previous transactions in the corresponding contexts.

In case that trustor’s direct experience is not avail-
able/sufficient, it will contact other agents for indirect ex-
perience. The direct experience and indirect experience are
merged (by chronological order) to serve as the knowledge
repository (i.e., training data) for trust prediction. Note that
in this work, we do not discuss how to filter out false indirect
experience, which has been thoroughly studied in the commu-
nity [Teacy et al., 2006; Zhang and Cohen, 2008]. In order to
further improve prediction accuracy, we propose to use multi-
ple transaction window sizes and apply Dirichlet distribution
to model multiple trust indicators.

The rest of this paper is organized as follows: In Section
2, we present related works regarding historical information
based trust management mechanisms. In section 3, we elabo-
rate a basic trust prediction approach, propose further refine-
ments and analyze its computational complexity. Evaluation
using real auction dataset and synthetic dataset is conducted
to quantify the performance of the proposed approach which
we compare with a representative trust mechanism in Section
4. We finally summarize this work with discussion of possi-
ble future directions in Section 5.

2 Related work

As the mainstream approach, historical information based
trust prediction mechanisms apply various techniques to
present, derive and update trust. EigenTrust [Kamvar et al.,
2003] is a reputation system developed for P2P environments.
It tries to fulfill the goals of self-policing, anonymity, no
profit for newcomers, minimal overhead and robust to mali-
cious collectives of peers. EigenTrust uses transitivity of trust
and aggregates indirect experience from friends and friends
of friends (FoF), etc. to perform a distributed calculation
to determine the eigenvector of a “trust matrix” over peers.
EigenTrust relies on some pre-trusted peers, which are sup-
posed to be trusted by all peers. In [Ravichandran and Yoon,
2006], a trust system on top of peer group infrastructure is
proposed. The groups are formed based on a particular in-
terest. To calculate trust, the authors introduced Eigen Group
Trust, which is an aggregative version of EigenTrust [Kamvar
et al., 2003]. All the transactions rely on the group leaders,
who are assumed to be trusted and resourceful.

There are some works deriving trust based on homophily
[McPherson et al., 2001; Kumar et al., 2010] (i.e., people
with the similar interest meet and interact often). Differently,

our work applies the similar concept to transaction contexts
(instead of agents) to study target agent’s dynamic behavior.

A few works are proposed to partly address agents’ dy-
namic behavior by applying some intuitive methods. The beta
reputation system proposed by Jøsang et al. [Jøsang and Is-
mail, 2002] estimates reputation of an agents using a prob-
abilistic model (i.e., based on beta probability density func-
tion). This model is able to estimate the reputation of an agent
by aggregating feedbacks provided by multiple advisors. The
authors introduced a forgetting factor in the posterior trust up-
date to get rid of the effect of outdated interaction experience.
TRAVOS [Teacy et al., 2006] is a trust and reputation model
for agent based virtual organizations. It uses time points when
modeling trust and reputation of the target agent, thus is capa-
ble of modeling its behavior within a certain period of time.

Zhang et al. [Zhang and Cohen, 2008] is probably closest
to our approach. It took into account agent’s dynamic be-
havior by introducing the concept of time window. That is,
the ratings of the target agent are partitioned into different
elemental time windows. In each time window, the trustor
counts the numbers of successful and unsuccessful transac-
tions. The trustworthiness of the target agent is firstly calcu-
lated by aggregating numbers of successful and unsuccessful
transactions in each time window (taking into account forget-
ting rate) and then is adjusted according to reputations of the
indirect experience providers. We will compare our approach
with this work in evaluation section to demonstrate advan-
tages of our context similarity based approach.

3 Our approach

3.1 Notation

We denote by A the set of all agents in the system. We as-
sume two types of agents, customers, which request service
from other agents, i.e., providers, which provide service. A
transaction happens when a customer accepts a provider’s ser-
vice. To indicate quality of a service, the customer can rate
the transaction, where rating is a discrete quantitative vari-
able in a certain range, denoted by L = {L1, L2, ..., Ll}. For
instance, the rating could be in the range of [1, 2, 3, 4, 5],
where 1 to 5 represents lowest quality, low quality, medium,
high quality and highest quality respectively. Θax,ay

denotes
the transaction between provider agent ay and customer agent
ax. Each transaction Θ is associated with a feature vector
FΘ = {f1

Θ
, f2

Θ
, ..., fd

Θ
}. Note that in order to efficiently com-

bine various features, we normalize values (for each feature)
to the same range, i.e., [0,1]. The features can be obtained by
agent’s profile or context of the transaction. For instance, in
online auction site, the features can be item’s category, price
or period of the auction, etc. We will detail such example in
evaluation section.

We denote consumer ax’s past transactions with the
provider ay by T D

x,y = {Θ1
ax,ay

,Θ2
ax,ay

, ...}, where D in-

dicates direct experience. The indirect experience, i.e., past
transactions obtained from other agents who have interacted
with ay are denoted by T I

x,y . Given a set of ay’s past transac-
tions (ordered by the time they happen), we can study pattern
of ay’s behavior by setting transaction context (i.e., trans-
action window), which is actually sequential sub set of the
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transaction set, denoted by Ws, where s represents size of
this transaction window.

3.2 Using direct experience

Consider the scenario where customer ax needs to predict
trustworthiness of a potential service provider ay to decide
whether to interact with it or not. When ax has sufficient past
transactions with ay, ax can utilize this as the knowledge pool
to investigate ay’s behavior pattern to predict trustworthiness
of the potential transaction with ay .

The main idea is that, given the most recent transaction
window W r

s of ax’s sequential past transactions T D
x,y with ay

(see Fig. 1 as an example), we select the most similar earlier
transaction window and estimate trustworthiness of the po-
tential transaction Θ based on rating of the transaction which
is immediately following the selected earlier transaction win-
dow. The similarity between transaction windows reflects
how similar is the context/situation of a specific past trans-
action to that of the potential transaction Θ. So outcome of
the past transaction which has the most similar transaction
context is a promising indicator of the real quality of Θ.

Algo. 1 illustrates how our approach predicts trustworthi-
ness of a potential transaction in detail. Given trustor ax’s se-
quential past transactions (by chronological order) T D

x,y with
ay , based on size of the recent transaction window W r

s , ax
obtains the earliest transaction window W e

s , which is actu-
ally a sequence of the first s transactions in T D

x,y. Based on
features of the transactions, ax calculates similarity between
W r

s and W e
s using function getSimilarity(W r

s ,W
e
s ) (Line

6 in Algo. 1), which will be described in detail in the next
sub section. ax then slides W e

s to right by one position to ob-
tain a new W e

s and calculates the similarity between W r
s and

the new W e
s . This process continues until W e

s reaches the
last past transaction but one. After similarity calculation, ax
chooses the earlier transaction window which has the largest
similarity score and obtains outcome (say L ∈ L) of the past
transaction which is immediately following that transaction
window. Then outcome of the potential transaction is esti-
mated as L. ax finally decides whether to interact with ay or
not based on such prediction. For instance, if the predicted
trustworthiness is higher than a predefined threshold, ax en-
ters the transaction, otherwise, ax rejects ay and evaluates
other potential interaction partners.

Note that when ax encounters a new potential transaction
(i.e., after current potential transaction), the recent transaction
window W r

s is shifted to right by one position. So our ap-
proach is able to adapt to newly encountered transaction. We
next discuss how to calculate similarity between two transac-
tion windows in detail.

Similarity calculation

There exist many methods to measure similarity between a
pair of objects (e.g., Jaccard index5, cosine similarity6, etc.).
Given feature vector of each transaction, we apply a heuristic
based on Euclidean distance to calculate similarity between
the two transaction windows.

5http://en.wikipedia.org/wiki/Jaccard index
6http://en.wikipedia.org/wiki/Cosine similarity

Algorithm 1 Trust prediction algorithm

1: Given ax’s sequential past transactions (by chronological order)
T

D
x with ay, based on size of the recent transaction window

W r
s , ax obtains the earliest transaction window W e

s , which is
the first s transactions in T D

x .
2: S′ = 0 //initial similarity score.
3: w = -1 //index of the earlier transaction window
4: while TRUE do
5: ax calculates similarity between W r

s and W e
s :

6: S ← getSimilarity(W r
s ,W

e
s ).

7: if S > S′ then
8: S′ = S
9: w = index of current W e

s .
10: end if
11: if current W e

s reaches last past transaction but one of T D
x

then
12: Breaking WHILE loop.
13: else
14: Sliding W e

s to right by one position to obtain a new W e
s .

15: end if
16: end while
17: ax obtains outcome (say L ∈ L) of the past transaction which

is immediately following the wth W e
s .

18: ax then predicts trustworthiness of the potential transaction Θ
is L.

19: ax finally decides whether to interact with ax or not based on
the prediction.

For the ith (i ∈ [1, s]) transaction of the two transaction

windows Θi ∈ W r
s and Θ

′

i ∈ W e
s , we calculate similarity

between these two transactions using their features (Note that
all transactions have the same set of features):

σ
Θi,Θ

′

i

=
1√∑|FΘ|

j=1
(f j

Θi
− f

j

Θ
′

i

)2
(1)

σ
Θi,Θ

′

i

represents similarity between the two transaction

windows at the ith transaction. Following chronological or-
der, ax is able to measure the overall similarity of the two
transaction windows W r

s and W e
s by aggregating similarity

of all transaction pairs (see Fig. 1 as an illustrative example
where size of transaction window is 3):

Sr,e =

s∑
i=1

σ
Θi,Θ

′

i

(2)

By taking into account multiple features, ax can compre-
hensively measure how similar is the earlier transaction win-
dow to the recent transaction window. Clearly, the more sim-
ilar the two transaction windows, outcome of the potential
transaction is more accurately predicted based on that of the
past transaction which is immediately following that earlier
transaction window.

Improving prediction accuracy

We notice that if window size varies, the prediction outcome
may also vary accordingly since transaction windows with
different sizes may demonstrate different transaction con-
text (i.e., may include or ignore certain behavior patterns).
Therefore, in order to improve prediction accuracy, we vary
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Figure 1: Measuring similarity between recent transaction
window and earlier transaction window.

window size (for both recent transaction window and ear-
lier transaction windows) to obtain multiple prediction results
for a single prediction. Now the question is how to handle
these results to derive the most accurate final prediction re-
sult. Given multiple levels of trustworthiness (see Section 3.1
for notations) of a transaction, we model the prediction re-
sults using Dirichlet distribution [Jøsang and Haller, 2007],
which captures a set of observations that have multiple possi-
ble outcomes.

We assume for a single prediction, there are W different
window sizes and the corresponding prediction results are de-
noted by L′ = {Lk|k = 1, ...,W ;Lk ∈ L}. We then obtain
Dirichlet probability density function:

f(�p|�α) =
Γ(

∑k

i=1
αi)∏k

i=1
Γ(αi)

k∏
i=1

pαi−1

i , (3)

Where �p = {pi ≥ 0|1 ≤ i ≤ k} denotes the |L|-
component random probability variable, and �α = {αi|1 ≤
i ≤ k} denotes the number of predictions corresponding to
one of the possible outcomes (derived fromL′). The expected
value of any of the |L| random variable (i.e., expected proba-
bility of a certain prediction result) is:

E(pi|�α) =
αi∑k

j=1
αj

(4)

An intuitive way to decide the final result from multiple
predictions is that the final prediction Lk ∈ L is the predic-
tion result which has the highest expected probability.

3.3 Incorporating indirect experience

When service consumer ax does not have sufficient past
transactions with the potential service provider ay (which is
common in large-scale, open systems), it may resort to other
agents who have interacted with ay. However, selfish or dis-
honest agents may refuse to provide their experience with ay
or report false information. Many works [Xiong and Liu,
2004; Teacy et al., 2006; Zhang and Cohen, 2008] are pro-
posed to address false reports and discussion of such defence
mechanisms is beyond the scope of this work. By contact-
ing relevant agents, ax collects a set of indirect past transac-
tions with ay , denoted by T I

x,y. Such indirect experience are
merged with ax’s direct experience (if any) to form a knowl-
edge base: Tx,y = T D

x,y

⋃
T I
x,y. Utilizing Tx,y, ax is able to

perform our proposed trust prediction algorithm (Algo. 1) to
predict trustworthiness of the potential transaction. Note that
the mixed direct experience and indirect experience are also
sorted by chronological order.

3.4 Computational complexity

We assume that there are N (direct and/or indirect) past trans-
actions. When single transaction window is considered, we
denote the size of transaction window by S (< N ) (for both
recent transaction window and earlier transaction window).
According to our algorithm, for a single trust prediction, there
are N − S transaction window similarity calculations and in
each of such calculation, trustor calculatesS times of similar-
ity between a pair of past transactions. So the computational
complexity of a single trust prediction is O(NS − S2).

When multiple transaction window sizes are considered for
prediction accuracy improvement, the computational com-
plexity changes accordingly. We denote set of possible win-
dows size by S. Note that Si(∈ S) < N . So the computa-

tional complexity becomes O(N
∑|S|

i=1
Si −

∑|S|
i=1

S2
i ).

Computational complexity of our approach depends on
number of past transactions N , transaction window size Si

and number of window sizes |S|. We can manipulate these
three variables to control computational complexity. In or-
der to comprehensively study target agent’s past behavior, we
do not suggest to reduce N (i.e., removing old transactions)
except that the number of past transactions is so large that
computation speed is seriously slowed or the past behavior
is obviously different from recent ones (e.g., a seller only
got one or two negative comments when he just joined the
system and then got all positive comments for the following
1000 transactions). Alternatively, we suggest to choose ap-
propriate window size and number of these sizes such that
the computational overhead is suitably reduced and trust pre-
diction accuracy is not affected greatly. We will evaluate such
discussion in the evaluation section.

4 Evaluation

4.1 Simulation settings

We use real dataset collected from an Internet auction site Al-
legro7 as well as synthetic data to conduct experiments. The
Allegro dataset contains 10,000 sellers, 10,000 buyers, more
than 200,000 transactions and over 1.7 million comments. We
assume binary outcome of a transaction, i.e., a transaction is
considered successful if its feedback is positive, otherwise, it
is considered unsuccessful. In order to fully understand how a
seller changes its behavior in the transactions, we select a set
of (150) sellers which have sufficient historical information
(i.e., over 100 past transactions).

According to our approach, each transaction is described
by a feature vector. By studying Allegro dataset, we iden-
tify five features which can be used to describe context of a
transaction: (1) category of the item; (2) price of the item;
(3) period of the auction (i.e., difference between auction end
time and auction start time); (4) number of items already sold
by the seller at the time the transaction happens and (5) out-
come of the transaction. Note that in order combine these
features, we first normalize their values to the range of [0,1]
(for feature (2), (3) and (4)); for item category, if two trans-
actions are within the same category, the difference of this
feature is 0, otherwise, the difference is 1 (see Eq. 1); for

7http://allegro.pl/
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transaction outcome, positive outcome is translated to 1 and
negative outcome is translated to 0.

Real allegro dataset provides a real evaluation environ-
ment, however, behavior patterns of the sellers in real data are
fixed. In order to comprehensively evaluate performance of
our approach under different circumstances, and also to more
flexibly control agents’ behavior, we generate synthetic data
derived from real data. Specifically, we generate a synthetic
seller with 100 past transactions and simulate three types of
its dynamic behavior: (i) for a transaction, the seller cheats or
not randomly; (ii) the seller provides good service for the first
half of the past transactions, then followed by bad quality ser-
vices for the remaining half; (iii) the seller conducts several
good transactions and then followed by a bad one (simulating
the real scenario where a seller behaves honestly in selling
cheap items to aggregate sufficient reputation and then cheat
in a transaction selling an expensive item). In order to make
the simulation more realistic, we further adjust outcomes of
the transactions by configuring that a original good/bad trans-
action is good/bad with the probability of 0.85, otherwise,
it is bad/good. Note that all the transactions features (and
values) are taken from real Allegro dataset (i.e., a good/bad
synthetic transaction is generated from a randomly selected
good/bad real transaction). Using synthetic data, we compare
our approach with a personalized trust mechanism8 [Zhang
and Cohen, 2008], which is closest to our approach (see re-
lated work section for a brief description). We call this com-
pared approach PTE (short for personalized trustworthiness
evaluation). Each experiment is repeated 30 times and error
bars are added to indicate deviation of each running.

For both real and synthetic dataset, we use false positive
(i.e., the transaction is unsuccessful but the algorithm pre-
dicted that it would be successful.) rate and false negative
(i.e., the transaction is successful but the algorithm predicted
that it would be risky.) rate as the metrics to evaluate perfor-
mance of the trust mechanisms.

4.2 Results

We first demonstrate performance of our approach using real
Allegro dataset. Fig. 2(a) and 2(b) show false positive rate
and false negative rate respectively when transaction window
sizes vary from 2 to 20 (a specific window size is applied to all
sellers). We observe that different transaction window sizes
result in quite different trust prediction accuracy. The general
trends of the falseness rates are: they ascend and then fall to
the lowest point, and then ascend again. We show that when
window size is 12, we obtain the lowest false positive rate and
false negative rate simultaneously. The results indicate that
by investigating impact of transaction window size, trustor is
able to determine the optimal window size to achieve high
trust prediction accuracy while incurring reasonable compu-
tational overhead (see Section 3.4)

We then conduct experiments to demonstrate how trust pre-
diction accuracy is improved by applying multiple transaction
window sizes. The transaction window size range [2,25] is
split into 5 sub ranges, i.e., [2,5], [6,10], [11,15], [16,20] and

8Since we assume a centralized simulation environment, i.e., on-
line auction site, we assume that there is no false indirect experience.
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(b) False negative rate.

Figure 2: Experiments using Allegro dataset (one transaction
window size).

[21,25]. We show falseness rates by applying different trans-
action window size sub ranges and compare the results with
that when general range [2,25] is applied in Fig. 4. Obvi-
ously, by applying the general range, potential transaction’s
context is comprehensively studied thus generating the most
accurate trust prediction. However, this incurs high compu-
tational overhead. We also observe that by simply applying
certain sub ranges (e.g., [11,15], [16,20]), very high trust pre-
diction accuracy can still be achieved. This again demon-
strates that by choosing appropriate transaction window size
(range), our approach provides high trust prediction accuracy
while keeping computational overhead reasonable.
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(a) False positive rate.
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(b) False negative rate.

Figure 3: Experiments using Allegro dataset (multiple trans-
action window sizes).

We finally compare our approach with PTE using synthetic
dataset. The comparison is conducted under three types of
target seller’s dynamic behavior patterns (see simulation set-
ting Section 4.1). From Fig. 4(a) we observe that under
behavior pattern (i) (i.e., the seller cheats or not randomly),
for PTE, both false positive rate and false negative rate are
kept at roughly 0.5. This is because in all time windows,
trustor counts the similar numbers of successful and unsuc-
cessful past transactions, which makes PTE approximate ran-
dom selection. While our approach tries to match context of
the potential transaction with that of previous transactions to
estimate trustworthiness of the potential transaction, which
demonstrates better results.

When behavior pattern (ii) is applied (see Fig. 4(b))9, PTE
performs poorly at the beginning because most of past trans-
actions are successful, which make PTE incorrectly predicts
that the potential transactions are more likely to be successful
(which are actually risky). Later on, When more unsuccess-
ful transactions are encountered, PTE adjusts the model pa-
rameters to detect the risky transactions. So the overall false
positive rate is around 0.365. On the other hand, although
our approach can not accurately predict potential transac-

9Since the seller mainly acts honestly for the first half transac-
tions and acts dishonestly for the rest ones, we only show false pos-
itive rate.
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(c) Dynamic behavior pattern (iii).

Figure 4: Our approach vs PTE (synthetic dataset, multiple transaction window size).

tion’s trustworthiness at the very beginning either, it is capa-
ble of quickly learning transactions’ contexts thus lowering
the overall false positive rate (around 0.25 when transaction
window size range is [16,20]).

In Fig. 4(c) where behavior pattern (iii) (i.e., the seller be-
haves well for long, and then suddenly misbehaves for one
transaction) is applied, PTE has false positive rate as high as
around 0.65. This is because according to this behavior pat-
tern, most of past transactions are successful, which is very
likely to generate positive predictions. That is to say, PTE
only looks at relative frequency of (un)successful transac-
tions, while our approach is able to discern them since it is
based on context rather than just the relative frequencies.

By comparing with PTE, we observe that under different
behavior pattern scenarios, our approach outperforms PTE
in general by matching transactions’ contexts. Moreover,
by choosing appropriate transaction window size range (e.g.,
[16,20] in this case), our approach improves trust prediction
accuracy significantly.

5 Conclusion

In this work, we focus on studying impact of the agents’ dy-
namic behavior on trust prediction. Our approach relies on
agent’s past behavior to compare contexts of the past transac-
tions with that of a potential transaction. Trustworthiness of
the potential transaction is then estimated based on outcome
of a specific past transaction which has the most similar con-
text. The context of a transaction is actually a transaction
window just before that transaction and similarity between
two transaction windows is calculated based on features of
the corresponding transaction pairs.

Evaluation using real auction dataset and synthetic dataset
demonstrates that by carefully choosing transaction window
size, our approach is capable of accurately predicting trust-
worthiness of a potential transaction based on an agent’s past
transactions (i.e., detecting risky transaction). Moreover, in
synthetic data based experiments, under multiple behavior
patterns, our approach outperforms existing representative
trust mechanism.

The accuracy of the current approach is greatly influenced
by the order of the target agent’s past transactions, which,
however, does not always hold in reality. In the future work,
we intent to relax such restriction. The possible solutions in-
cluding introducing fuzziness in transaction windows match-
ing algorithm or applying hidden markov model (HMM).
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