Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

Eliciting Additive Reward Functions
for Markov Decision Processes

Kevin Regan and Craig Boutilier
Department of Computer Science
University of Toronto
{kmregan, cebly } @cs.toronto.edu

Abstract

Specifying the reward function of a Markov decision pro-
cess (MDP) can be demanding, requiring human assess-
ment of the precise quality of, and tradeoffs among, var-
ious states and actions. However, reward functions often
possess considerable structure which can be leveraged to
streamline their specification. We develop new, decision-
theoretically sound heuristics for eliciting rewards for
factored MDPs whose reward functions exhibit additive
independence. Since we can often find good policies
without complete reward specification, we also develop
new (exact and approximate) algorithms for robust opti-
mization of imprecise-reward MDPs with such additive
reward. Our methods are evaluated in two domains: au-
tonomic computing and assistive technology.

1 Introduction

Markov decision processes (MDPs) require the specification
of a large set of model parameters. While model dynamics
can be learned by observation of the environment, a reward
function usually reflects the subjective preferences of some
user; hence, reward specification can be difficult since it re-
quires mapping human preferences over states and actions
into numbers. Eliciting partial reward specifications can ease
this burden. Recently, models have been proposed for MDPs
with imprecise reward (IRMDPs), along with methods for
computing policies that are robust w.r.t. reward imprecision
using minimax regret [9; 10; 12]. Moreover, these methods
can be used to guide the elicitation of additional reward infor-
mation, thereby improving policy quality by reducing reward
uncertainty (and lowering max regret) [9]. However, existing
models assume a “flat” reward function and do not leverage
the multiattribute structure often present is realistic prefer-
ences. While significant work exists on modeling and elic-
iting multiattribute utility functions with structure (e.g., ad-
ditive independence) in one-shot decision scenarios, insights
gained from this work have found little application to MDPs.

In this paper, we develop elicitation methods for MDPs that
exploit additive independence in multiattribute reward func-
tions. Unlike “flat” utility models, which must grapple with
rewards over state spaces of size exponential in the number of
attributes, we assume a natural additive decomposition of re-
ward that supports elicitation using much simpler, more nat-

2159

ural, and many fewer user queries. Our queries and elicita-
tion techniques draw on the theoretically sound foundations
of multiattribute utility theory [5; 6].

We provide two main contributions. First, we develop tech-
niques for computing minimax regret for IRMDPs with addi-
tive reward. Our exact algorithm is derived from the approach
of [9] for flat reward models, but addresses complications due
to parameter interactions in the multiattribute representation.
We also propose several approximations for regret computa-
tion. Then, after discussing various query types, we develop
a simple heuristic elicitation method for IRMDPs. We show
that by adapting the current solution heuristic to IRMDPs—a
method used extensively for utility elicitation in the minimax
regret framework [3; 4]—we can effectively solve MDPs op-
timally or near-optimally with very few queries about reward
parameters.

Sec. 2 provides background on MDPs, multiattribute util-
ity, and the robust solution of IRMDPs. Sec. 3 describes re-
ward elicitation heuristics and the types of queries used for
eliciting multiattribute reward. In Sec. 4 we outline algo-
rithms for exact and approximate minimax regret computa-
tion with additive IRMDPs, and in Sec. 5 we demonstrate the
effectiveness of our reward elicitation scheme in two concrete
domains, assistive technology and autonomic computing.

2 Background

We focus on infinite horizon MDPs (X, A, {Px.},7, 3,7),
with finite state set X, finite action set A, transition distri-
butions Py, (), discount factor +, initial state distribution /3,
and reward function (X, .A). Given a (deterministic) policy
7 : X — A, the policy value function satisfies:

V7 (30) = 16, 7(x)) + 730 Part)V, (D)

An optimal policy m* maximizes Eq. 1, giving value V'*.

A policy 7w induces an occupancy function f™, where
fT(x,a) is the total discounted probability of being in state
x and taking action a, given 7. Let F be the set of feasible
occupancy functions (i.e., induced by some policy). Policy 7
can be recovered from f™ and vice-versa [8]; we use the two
representations interchangeably, referring to an occupancy
function f as if it were its corresponding policy 7. Hence,
the optimal value function V* satisfies > B(x)V*(x) =
>xa fT(x,0)r(x, @), where f* = f™ is the optimal occu-
pancy. Let f be a | X |x|.A| matrix with entries f(x,a), andr a

|X|x|.A| matrix with entries r(x, a); then > S(x)V*(x) =
f:r (where : is the Frobenius inner product).

We assume that our MDP is factored [2], with states de-
fined by a set of attributes: X = X; x ... x X,,, where each
X is an attribute with finite domain. We write x[i] to denote
the value x; of the ith attribute of x, denote by x_; the restric-
tion of x to the attributes excluding X;, and write (z;,x_;)
to indicate the outcome obtained by conjoining the two. In
addition, we assume a user’s reward function is additive in-
dependent [5; 6] over the attribute space, conditional on the
choice of action.! More precisely, the reward function can be
written as, for any state x = (z1,...,2,) and a € A,

:§ T Ila E /\Uz 9317

K2

where the r; are subreward functions for each attribute, which
are themselves expressed using local utility functions v; and
scaling constants \; s.t. i(x;,a) = \v;(z;,a).® A reward
function is additively decomposable in this way exactly when
the user is indifferent between any two distributions (or “lot-
teries”) p, p’ over states x (given a fixed action a) iff p and
p’ have the same marginals over attributes X;. Elicitation of
additive reward can exploit this structure as discussed below.
We use the following notation: A is an n-vector with entries
Ai; and v an n x |X]| x |A| tensor with entries v;(x[i], a).
Thusr = Aowv = ZZ A\;v; (where ¢ indicates contracted
tensor product). We write Avf below to mean (A o v):f.

An imprecise reward MDP (IRMDP) is an MDP with a set
‘R of feasible reward functions, reflecting uncertainty about
r [9; 12]. In the sequel, R is represented by a set of con-
straints on (A, v). These arise naturally in preference assess-
ment (e.g., behavioral observation or elicitation). Since pol-
icy value cannot usually be proven without knowing r, we use
max regret to measure policy quality, and minimax regret as
our optimization criterion [9; 12]. Define:

R(f, A, v)

r(x,a)

= max Avg — Avuf
gEF
PMR(f,g,R) = max Avg — Aof

MR(f,R) = Jmax, R(f, A\, v) = rgnea}ckr%%}%)\vg Avf (2)

MMR(R) = 1;n1n MR(f,R) = min max max Avg — Avf
€F

feF geF A\, veER

R(f, A, v) is the regret of policy f w.r.t. the optimal pol-
icy given reward parameters (X, v). MR(f, R) is the max-
imum regret of f under any possible realization of reward
(consider an adversary choosing r from R). PMR(f,g,R)
is the pairwise max regret of adopting policy f rather than g.
The minimax optimal policy £* is that with minimum max re-
gret MR(r*,R) = MMR(R). Minimax regret offers robust-
ness in the presence of reward uncertainty, and can effectively
guide elicitation in one-shot settings [3; 4].

"Factored MDPs can also have factored actions, and admit com-
pact specification of dynamics and reward, and efficient solution
techniques [2]. Here we exploit only the factored nature of rewards,
since our focus is on reward elicitation.

2QOur notation assumes an explicit dependence on A for ease of
exposition, but preferences for some/all attributes will be indepen-
dent of A in many MDPs. And if action costs are independent of
state, we can simply treat A as another attribute.

2160

3 Reward Elicitation

We extend “flat” regret-based reward elicitation for MDPs
[9] by incorporating regret-based approaches to multiattribute
decision problems [3; 4]. Elicitation of a reward function is
greatly facilitated by additive structure: we describe some of
the natural queries supported by the additive model in this
section. We also develop a heuristic query selection strategy
guided by minimax regret. Our basic elicitation framework is
as follows: given the current constraints defining R, we com-
pute the minimax optimal policy £*. If MR(f*, R) is below
some threshold 7, we terminate elicitation with this policy,
which is 7-optimal; otherwise, we refine R by asking the user
areward query, guided by the current solution.

3.1 Query Types

The additive structure of the reward function admits both lo-
cal queries involving only single attributes X; and global
queries that involve full state instantiations x. Additive inde-
pendence allows one to determine the local utility functions
v; for each X, independently, and requires global queries
only to fix scaling constants);, which calibrate strength of
preference across attributes [6; 5].

We first consider local queries. For any fixed action a, let
], denote the most preferred value of X; given a, and z}-,
the least preferred. Local anchoring is the process of askirig
a user to identify these values from the domain of X; this
is straightforward for a user. With these values in hand, we
set vg(x;] ,,a) = 1 and vs(x;,,a) = 0 for convenience. We
can then determine v; (z;, a) for any x; using a standard gam-
ble query: the user is asked to identify the probability p with
which they would be indifferent between x; and a gamble
(z] Ti oDy T +,) (which gives :c ., With probability p, and ac
with 1 — p) This determines vz (:cl, a) =p.

Standard gambles, unfortunately, impose a severe cogni-
tive burden on users because of the precision required, and
one which is generally unnecessary: we can often find good
or optimal policies with only loose bounds on the v;(x;,a)
terms. Instead we use local bound queries, which given
some fixed p, ask a user whether she prefers x; to the gamble
(z],.p,27,). A positive response means v;(x;,a) > p, and
a negative response that v;(z;,a) < p.*> All local utilities v;
can be partially elicited using only local bound queries, using
yes/no queries which obviate the need for users to explicitly
quantify the strength of their preferences.

Scaling parameters)\; calibrate strength of preference
across attributes; thus, they require global queries, but only
of a specific form. Global anchoring queries ask the user
to specify her most preferred and least preferred state-action
pairs (x,a) " and (x,)™, respectively, and are again easy to
assess. We fix a reference outcome xO for a € A* This
can be any salient outcome, but for concreteness, we set
x4 [i] = x;f,, which yields:

r((xza, xf)i), a)= ri(xza, a)+z rj(x;

J#i

T
i,a

a)=r1i(ziq,a) 3)

3 Approximate indifference (“not sure”) can also be handled.
“The same state can be chosen for each a; and if state rewards
are independent of actions, then dependence on «a is not needed.

The reward r((xza,x?i),a) in Eq. 3 can be elicited
with a standard gamble asking for the probability p for
which the user is indifferent between ((z,,x%),a) and
((x,a)T,p, (x,a)*). Since Ui(xza,a) = land ri(xza,a) =
)\ivi(:vzu,a), Eq. 3 implies that \; is exactly the re-
ward elicited for outcome r((z],,x%),a). As with local
queries, rather than asking precise numerical queries, we use
global bound queries which fix a probability p and ask which

of ((z},,x%),a) and ((x,a) ", p, (x,a)"’) is preferred. No-

2,4 -1
tice glébal bound queries constrain each A; independently.
The absence of constraints linking components of A can be
leveraged in minimax regret computation (see Sec. 4).

To summarize, we elicit reward parameters by first ask-
ing the user to specify x;':a and xl{-a (local anchoring) for
each X;,a, and (x,a)" and (x,a)* (global anchoring). We
then use local bound queries to constrain local utilities v and
global bound queries to constrain scaling factors A. We now
turn to query selection: which queries to ask when.

3.2 Query Selection using Minimax Regret

At each round of elicitation we select a query ¢, whose re-
sponse p refines our knowledge of R, and ideally reduces
minimax regret. To select suitable queries, we adapt the
current solution (CS) heuristic [3; 9], which uses the solu-
tion to the minimax optimization for query selection. Let
(fe, g%, A%, v°) be the solution given current reward polytope
R: f€ is the minimax optimal policy; A°, v° are the reward
parameters that maximize regret of £¢; and g€ is adversarial
policy (i.e., optimal for A°, v¢). CS computes a score S(¢),
for each potential query ¢, that measures its potential to re-
duce the max regret of f¢. We develop scoring functions for
each query type below. The CS heuristic asks the query with
the highest score.’> We use marginal occupancy probabilities,
fi(ziya) =3, f((%i, %), a), in defining scores.

Local Bound A local bound query requires selection of an
attribute-value, action pair (x;,a) and local utility bound p.
Define the local utility gap of (x;, a) to be:

v-gap(z;,a) =1 vi(x;,a)— | vi(z4,a),
where 1 v;(2;, a) and | v;(x;, a) are the maximum and min-
imum values v;(x;, a) can take in R, when fixing v§(z;, a)
for all j # i. We fix the bound p in the local bound query

for (z;,a) at the midpoint of this gap (hence any response
narrows the gap by half). To score (x;, a), notice that

PMR(f, g R)=max} XD > efa(ziajvilaia). ()

where gfa (z;,a) = g;(2;,a) — fi(z;,a). Thus, the impact
on PMR of tightening the bound on v;(x;, a) is mediated by
the difference in policy marginals g;(z;, a) — f;(x;, a) and the
scaling constant \;. Any response gives a new constraint on
v;(x;, a) that changes PMR by at most

Su(xi,a) = A] - gfa(zi, a) - v-gap(x;, a)/2.
This is the score of a local bound query (z;, a) (assuming that
we fix the query bound p to be the gap midpoint).

3The score can be combined with other factors relevant to query
selection, e.g., the cognitive effort required to answer a query.

2161

w; (2, a)

Uzz(‘riva)? 1112(.1‘; 7a,)

TUZ(IL‘!G’)

v,—l(xi,a), Uzl(xi 70,,)

Jvi(zi,a)

Uf(xiva)v vf(xé,a/)

ibz(l;a/) T’l:h(I;a,)

Figure 1: A bisection of the bounding rectangle induced by a com-
parison query.

vi(wj,a’)

Global Bound A global bound query requires selection of
an attribute ¢ and a bound p. Similar to local bound queries,
define the scaling gap M-gap(i) =1 A\; — | \;, where 1),
and | \; are the max/min values that)\; can take in R given
other reward parameters fixed by A°, v°¢. We always query the
midpoint of this gap, giving a score much like local bounds:

Sa@) = Y Y &fA(wi a)vf(wi,a)h-gap(i) /2

z,€X; acA

Local Comparison Local comparison queries ask a user to
compare two distinct values of an attribute: is (z;,a) pre-
ferred to (x},a’). We do not use such queries in our ex-
periments (our local domains have a natural preference or-
der), but for completeness, we briefly describe how to score
such queries using a method proposed in [4]. Given the
query above, we project a bounding hyper-rectangle onto the
plane of the two parameters v;(z;,a), v;(x},a’). The con-
straint imposed by a query response divides the 2D-rectangle
along a 45-degree line (Fig. 1). With respect to PMR, val-
ues v§(x;, a) and v§(z}, a’) may remain feasible, or else are
pushed to lie at intersection of the diagonal with the bounding
rectangle. Let v} (z;,a),v} (2}, a’) and vZ(z;,a), vi(z}, a’)
be the coordinates of these two points. Let va(x;,a) =
max(|v§(z,a) — v} (4, a)|, |[vi(xi,a) — v (x;,a)]) be the
greatest change in value that v;(z;, a) can realize given the
query response. We score potential reduction in PMR as:

Su(wisa,7%, @) = A [@f (i, 0)va (o,)+ ef (2, Yo ().

4 Computing Minimax Regret

To compute minimax regret we adapt the constraint genera-
tion approach of [10], solving a series of LPs:

min ¢
£,
subject to: 0 > A\jv;g; — Avif, YV (gi, A, v;) € GEN
feF

Here GEN is a set of constraints corresponding to a subset of
possible adversarial choices of policies and rewards. If GEN
contains all vertices r = (A, v) of polytope R and the cor-
responding optimal policies gy, this LP computes minimax
regret exactly. However, most constraints will not be active
at optimality, so iterative constraint generation is used: given
solution f to the relaxed problem with a subset GEN of con-
straints, we find the most violated constraint, i.e., the A\, v, g
that maximizes regret of f. If no violated constraints exist,

then f is optimal. Violated constraints are computed by solv-
ing MR(f, R), using a mixed integer program (MIP):

Iga\}/alrn)\lzve BV — Aouf 5)
subject to: Qq = Avg +YPq -V Vaec A
V<(1-I. M+ Qa Yaec A

Zlazl

Here I, is an |S|-vector of indicator variables denoting
whether (adversarial) policy g takes action a; and M is a vec-
tor of sufficiently large constants (these can be tightened in
several ways). This formulation contains the quadratic terms
Av. However, when no constraints link scaling constants A
(e.g., as with global bound queries), an optimal solution must
set \; to its maximum)\, or minimum ;. In such a case,
we can linearize the MIP with the following reformulation.
We introduce indicators J, where J; = 1 means \; = AiT and
J; = 0 means \; =)\f-. Then in the optimal solution we

have: Av = JA" v — (1 — J)A . The quadratic term Ju is
linearized using a “big-M” formulation in which we introduce
a continuous variable Z which replaces Jv, with constraints
Z<v+(1—J)M and Z < JM’' (here M’ is a sufficiently
large constant). The result is a (linear) MIP with continuous
variables Q, V,Z, A, v and binary variables I, J.

While constraint generation with this MIP solves mini-
max regret exactly, exact solutions are not needed to effec-
tively guide query selection [3]: approximations often suf-
fice. Furthermore, the linearization of the quadratic MIP for
MR(f,R) only works when independent upper bounds are
available on the \;. To this end, we implemented an alter-
nating optimization model that independently optimizes the
components of Eq. 2: we repeatedly compute, in turn, an
optimal (adversarial) policy g (fixing A, v), scaling factors
(fixing g, v), and local utility functions v (fixing g, A). This
reduces the optimization for max regret to a sequence of LPs
that locally explore solution space, avoiding the potentially
expensive solution of the linear MIP; and it is applicable even
when the MIP cannot be linearized. Alternating optimization
is guaranteed to converge and must return a feasible solution
(w.r.t. Eq. 2), and quality can be further improved using ran-
dom restarts. Finally, when used in constraint generation, it
provides a lower bound on minimax regret.

We investigated the performance of exact and approximate
(10 random restarts) minimax regret computation on a small
set of random MDPs with 2—4 binary attributes. Results in
the table below (avg. 30 runs) show that while runtime of the
exact formulation grows quickly with reward dimension, ap-
proximation runtime and error remain low. This suggests that
alternating approximation will provide an effective substitute
for the MIP w.r.t. guiding elicitation.

‘R dim. Runtime (secs) MMR
Al vl MIP Alt. MIP Alt. Error
2 4 0.51 | 0.40 90.66 88.79 1.87
3 6 5.65 | 0.77 | 107.94 | 107.45 | 0.49
4 8 174420 | 1.09 | 149.52 | 149.19 | 0.33

The alternating model gives only a lower bound on MMR.
Upper bounds are also valuable, since they offer a guaran-

2162

tee on max regret at any point during elicitation (e.g., this is
useful for termination). To quickly generate upper bounds,
we linearize Eq. 2 using the reformulation-linearization tech-
nique (RLT) of Sherali [111.° We assessed its effectiveness by
computing an upper bound on MMR with the MDPs above,
with results in the table below. The linearization is, naturally,
much more efficient than the MIP, but produces weak up-
per bounds, that on average are an order of magnitude larger
than the exact solution. However, we will see in Sec. 5 that
linearization often gives better approximations when: (i) the
MDP is structured; and (ii) R is sufficiently constrained.

‘R dim. Runtime (secs) MMR
Al vl MIP Lin. | MIP Lin. Error
2 4 0.51 | 0.18 90.66 | 1019.28 928.61
3 6 5.65 | 0.31 | 107.94 | 1564.87 | 1456.93
4 8 174420 | 0.63 | 149.52 | 2236.93 | 2087.41

S Experiments

We now describe two domains that are naturally modeled us-
ing MDPs with additive reward, and explore the effectiveness
of our approach to reward elicitation.

5.1 Assistive Technology

We present a simplified model of the COACH system [1],
whose general goal is to guide a patient with dementia
through a task with ¢ steps such as hand-washing using verbal
or visual cues, while minimizing intrusion. Prompts can be
issued at increasing levels of intrusiveness until (at the high-
est level k) a caregiver is called to assist the person in task
completion. This results in action space A = {0,1,...,k}.
The state is defined by three variables S = (T, D, F); T =
{0,1,...,¢} is the number of tasks steps successfully com-
pleted by the person, D={0, 1, 2, 3,4, 54} is the delay (time
taken during the current step), and F'={0, 1, ..., k-1} tracks
whether a prompt at a specific level was attempted on the
current task step, but failed to immediately get the person
to the next step. The dynamics express the following intu-
itions. The no-prompt action will cause a “progress” transi-
tion to the next step (setting delay and failed-prompt to zero),
or a “stall” transition (same step with delay increased by one).
The probability of reaching the next step with action a = n
is higher than @ = n—1 since more intrusive prompts have a
better chance of facilitating progress; however, progress prob-
ability decreases as delay increases. Reaching the next step
after prompting is less likely if a prompt has already failed
at the current step. The reward function is: 7(¢,d, f,a) =
rq(t)+7ra(d)+7p(a), where: 74(t) is a positive “task comple-
tion” reward (non-zero if ¢t = ¢ task, zero otherwise); rq(d) is
a negative “delay” penalty; and r,,(a) is a negative “prompt-
ing” penalty associated with prompting the person. Typically,
rp(a = k) is a very large negative cost for calling the care-
giver (relative to other costs); and the subreward functions
rq(d) and rp,(a) are both assumed to be monotonic (in delay
and prompting level, respectively). Each subreward function
is the product of a scaling constant and local utility function:

®Details of the upper bound formulation are omitted for the sake
of brevity and can be found in a forthcoming technical report.

1.0[- -- Flat Reward - Approx. Lower Bound

—— Add. Reward - Approx. Lower Bound
Add. Reward - Approx. Upper Bound
Add. Reward - True Reward

Relative Minimax Regret

50 100 150 200
Number of Queries

Figure 2: Preference Elicitation in COACH Domain (30 runs)

r; = \v;. Attribute F' does not occur in the reward function,
so requires no elicitation.

Local Anchoring Local anchoring requires no elicitation
from the user, since the best/worst values for each attribute
T, D, A are given by assumption: penalties for D and A in-
crease monotonically in level, while ¢ = £ is known to be the
preferred value of 7' (while vy (t) = 0 for all ¢ # £). Since we
specify local utility functions on a [0, 1] scale, we use nega-
tive scaling constants to ensure that the subreward functions
for “penalties” are negative.

Global Anchoring Our domain also permits global anchor-
ing without input from the user. The most preferred state-
action pair occurs when the task has been completed with no
delay and no prompting: (x,a)’ = (t =¢,d = 0,a = 0).
The least preferred pair is when no progress is made beyond
the first step despite the most intrusive prompts: (x,a)* =
(t = 0,d = 54+,a = k). We set r(xT,a1) = 1 and
r(x1,a,) = —1. In this case 7(xt,at) # 0, and we set
reference state (x°,a%) = (t=0,d=0,a=0).

Local Bound Local bound queries in this domain are rea-
sonably natural, especially for professional caregivers for
whom our potential elicitation application is designed. For
instance, consider a query involving vg, with this structure:
d=3%*%(d=0,b,d=>5+)? For bound b = 0.6, we might
pose this as: “Would you prefer a certain delay of 3 or a sit-
uation in which there is a 60% chance of delay 0 and a 40%
chance of delay 5+? (all else being equal)”’. Local bound
queries involving vy, are specified similarly. No local elicita-
tion of v, is needed: only v, (¢) has positive reward.

Global Bound We calibrate the scaling constants A using
global bound queries. For instance, consider a query involv-
ing \g of the form: (d*,x%,a%) = ((x,a)7,b,(x,a)t).
For b = 0.2 this query could be expressed as: “Would you
prefer the situation in which at step one there is no delay,
and a prompt of level k was issued (calling the caregiver); or
would you prefer the following: 20% of the time the goal is
reached with no delay and no prompting, but 80% of the time
progress is not made beyond the first step and the maximal
delay occurs despite the most intrusive prompting?” Given
our anchoring assumptions, a positive response constrains
Ad < 1 —2b7 We can bound Ap in a similar fashion. Note
that A\, = 1 is implied by our other settings.

Since our local utility functions are monotonic, local com-
parison queries yield no useful information. The sole chal-
lenge of elicitation in this domain is assessing the strength of

"This constraint is different than if all v; were positive, but fol-
lows directly from r(d*,x%,a%) > r({(x,a) ", b, (x,a)")).

2163

o

- -- Flat Reward - Approx. Lower Bound

—— Add. Reward - Approx. Lower Bound

- Add. Reward - Approx. Upper Bound
Add. Reward - True Regret

=
3

=
=

Relative Minimax Regret
=

021

004 10 20 30 10 50 60 70

Number of Queries
Figure 3: Preference Elicitation in Autonomic Domain (30 runs)

local preference over the domains of attributes D and A, and
calibrating the relative importance (via scaling factors) of the
local utility functions for each of D, T" and A.

Assessment We assessed the effectiveness of elicitation on
an instance of this domain with ¢ = 10 steps and £k = 4
prompt levels. We simulate elicitation using a reward func-
tion reflecting the actual use of the COACH system [1] to
generate user responses. The reward function has 11 (un-
known) parameters and the size of the state-action space is
|X][A] = 960. This is large enough that exact minimax re-
gret computation is not fast enough to support real-time in-
teraction with a user. Instead we use the alternating approx-
imation to compute minimax regret; this provides us with a
lower bound and max regret. We used RLT to compute an
upper bound as well. We use the current solution strategy
to select local and global bound queries. To determine the
advantage of explicitly modeling the additive reward struc-
ture in the COACH domain, we also performed elicitation on
the same MDP using a flat reward model in the reward func-
tion has |X||.4| = 960 dimensions. In this case we use the
query selection strategy and the approximate minimax algo-
rithm (which again gives a lower bound on MMR) proposed
in [9]. This can be viewed as the flat model variant of our
additive approach. Results—shown in Fig. 2—are averaged
over 30 runs with randomized initial R.

Comparing lower bounds shows a clear advantage for addi-
tive elicitation. But even comparing the upper bound for the
additive approach with the lower bound for the flat model,
we see the additive model yields significant leverage, prov-
ably reducing minimax regret to zero after 70 queries (the
lower bound conjectures MMR=0 after roughly 28 queries).
By comparison, after 200 queries 8% of the original regret re-
mains in the lower bound produced by the flat reward model.
Furthermore, the “flat” queries involve comparisons not over
individual attribute values, but of full state-action instantia-
tions, placing additional cognitive burden on the user. True
regret is also given, showing the actual regret (loss) of the
minimax optimal policy in the additive model w.r.t. to the true
reward function (of course, the elicitation algorithm does not
have access to this). We see that true regret is significantly
less than the lower bound on minimax regret. This suggests
that (much earlier!) termination using the lower bound on
max regret would be beneficial in practice.

5.2 Autonomic Computing

The autonomic computing task [7] involves allocating com-
puting or storage resources to servers as computing demands
from clients change over time. We have K application server

elements e . . .ex, and N units of resource which may be as-
signed to the server elements (plus a “zero resource”). An al-
location is specified by n = (ny ...n;) where ZZK n; < N.
Finally there are D demand levels at which each server el-
ement can operate. A full specification of demand levels is
denoted d = (d; ...dy).

A state is given by the current allocation of resources and
current demand levels for each server: x = (n,d). Actions
are allocations m = (my...my) of up to N units of re-
source to the K application servers. Uncertainty in demand
is exogenous and the action in the current state uniquely de-
termines the allocation in the next state. Thus the transi-
tion function is composed of ¢ Markov chains Pr(d} | d;),
one for the demand at each server element. The reward
r(n,d,m) = u(n,d) — ¢(n,d, m) is composed of a posi-
tive utility u(n, d) and the negative cost ¢(n, d, m). The cost
¢(n,d, m) is the sum of the costs of taking away one unit
of resource from each server element at each time step. We
assume that the cost term is known. The utility term u(n, d)
can be factored into local utility functions v;(n;, d;) for each
server ¢. In this setting, utility functions are defined with re-
spect to a common unit (potential revenue), so there is no
need for calibration: A = 1.

Reward elicitation proceeds by having a server bound its
local utility for a given demand and resource level. An exam-
ple query is: “Given n units of resource and a demand level
of d, are the potential earnings generated greater or equal to
b”. An answer of “yes” imposes the following constraint on
the local utility function: v;(n;,d;) > b.8
Assessment We examined the effectiveness of our ap-
proach to elicitation of additive reward in this domain using
a small MDP with K = 2, N = 3, D = 3, yielding a reward
function of dimension 24. We used the CS heuristic to select
queries and approximated minimax regret using alternating
optimization (and RLT to produce an upper bound). As with
COACH, we compare to elicitation using a flat version of the
reward model in the same MDP (with 90 states/reward pa-
rameters) using the same methodology as above. Results are
shown in Fig. 3. We see once again that elicitation proceeds
quickly and that taking advantage of the additive indepen-
dence in the reward model yields considerable leverage. The
upper bound on max regret generated by the additive model
proves that an optimal solution is found more quickly (using
24 fewer queries) than even the lower bound on max regret us-
ing the flat model (which cannot guarantee optimality). True
regret is, again, less than the lower bound on max regret.

6 Conclusions and Future Work

We have developed an approach to reward elicitation for
MDPs whose reward functions exhibit additive indepen-
dence. As in one-shot multiattribute decision problems, this
structure admits more cognitively manageable, yet decision-
theoretically sound, queries involving single attributes, and
requires very few (and very stylized) global queries. By
adopting the minimax regret framework, we further reduce

8Generally, server utility has no closed form: utility for a spe-
cific allocation is bounded using a combination of simulation and
numerical optimization; hence elicitation is in fact costly.

2164

elicitation effort by using simple comparison and bound
queries, and allowing elicitation to terminate with approxi-
mately optimal solutions. By adapting algorithms for mini-
max regret computation and regret-based heuristics to query
selection, we have demonstrated more effective elicitation
performance than can be achieved with unstructured reward.

A number of interesting directions remain. Though our
approximations address the computational difficulty of min-
imax regret to an extent, further research is needed (e.g.,
by using a precomputed set of nondominated policies [10;
12], incorporating solution techniques for factored MDPs,
etc.). Our additive assumption, while somewhat restrictive,
can be relaxed to allow generalized additive independence
(GAI) [5]—techniques for elicitation and computing mini-
max regret in GAI models [4] should be readily adaptable
to MDPs. More interesting is the investigation of addition
types of queries that exploit the sequential nature of the deci-
sion problem and may more quickly rule out certain policies
as optimal (e.g., querying preferences over trajectories or at-
tribute occurrence frequencies induced by a policy).

Acknowledgments Thanks to the reviewers for their help-
ful comments. This research was supported by NSERC.

References

[1] J. Boger, P. Poupart, J. Hoey, C. Boutilier, G. Fernie, and
A. Mihailidis. A decision-theoretic approach to task assistance
for persons with dementia. [JCAI-05, pp.1293-1299, Edin-

burgh, 2005.

C. Boutilier, T. Dean, and S. Hanks. Decision theoretic
planning: Structural assumptions and computational leverage.
JAIR, 11:1-94, 1999.

C. Boutilier, R. Patrascu, P. Poupart, and D. Schuurmans.
Constraint-based optimization and utility elicitation using the
minimax decision criterion. Art. Intel., 170:686-713, 2006.
D. Braziunas and C. Boutilier. Minimax regret-based elicita-
tion of generalized additive utilities. UAI-07, pp.25-32, Van-
couver, 2007.

P. C. Fishburn. Interdependence and additivity in multivariate,
unidimensional expected utility theory. Int. Econ. Rev., 8:335—
342, 1967.

R. L. Keeney and H. Raiffa. Decisions with Multiple Objec-
tives: Preferences and Value Trade-offs. Wiley, NY, 1976.

J. O. Kephart and D. M. Chess. The vision of autonomic com-
puting. Computer, 36:41-52, 2003.

M. L. Puterman. Markov Decision Processes:
Stochastic Dynamic Programming. Wiley, NY, 1994.
K. Regan and C. Boutilier. Regret-based reward elicitation for
Markov decision processes. UAI-09, pp.454-451, Montreal,
2009.

K. Regan and C. Boutilier. Robust policy computation in
reward-uncertain MDPs using nondominated policies. AAAI-
10, pp.1127-1133, Atlanta, 2010.

H. Sherali and A. Alameddine. @ A new reformulation-
linearization technique for bilinear programming problems. J.
Global Optim., 2:379-410, 1992.

H. Xu and S. Mannor. Parametric regret in uncertain Markov
decision processes. CDC-09, pp.3606-3613, Shanghai, 2009.

(2]

(3]

(4]

(5]

(6]
(71

(8]

Discrete

(9]

[10]

[11]

[12]

