
Lifted Probabilistic Inference by First-Order Knowledge Compilation

Guy Van den Broeck, Nima Taghipour, Wannes Meert, Jesse Davis and Luc De Raedt

Department of Computer Science
Katholieke Universiteit Leuven

Celestijnenlaan 200A, B-3001 Heverlee, Belgium
{guy.vandenbroeck, nima.taghipour, wannes.meert, jesse.davis, luc.deraedt}@cs.kuleuven.be

Abstract

Probabilistic logical languages provide power-
ful formalisms for knowledge representation and
learning. Yet performing inference in these lan-
guages is extremely costly, especially if it is done
at the propositional level. Lifted inference algo-
rithms, which avoid repeated computation by treat-
ing indistinguishable groups of objects as one, help
mitigate this cost. Seeking inspiration from logical
inference, where lifted inference (e.g., resolution)
is commonly performed, we develop a model theo-
retic approach to probabilistic lifted inference. Our
algorithm compiles a first-order probabilistic the-
ory into a first-order deterministic decomposable
negation normal form (d-DNNF) circuit. Compi-
lation offers the advantage that inference is poly-
nomial in the size of the circuit. Furthermore, by
borrowing techniques from the knowledge compi-
lation literature our algorithm effectively exploits
the logical structure (e.g., context-specific indepen-
dencies) within the first-order model, which allows
more computation to be done at the lifted level.
An empirical comparison demonstrates the utility
of the proposed approach.

1 Introduction

Probabilistic logical languages, which combine the advan-
tages of graphical models with those of first-order logic
[Getoor and Taskar, 2007; De Raedt et al., 2008], have re-
ceived much attention in recent years. Since these languages
offer more expressivity than their logical and probabilis-
tic counterparts, performing efficient inference is challeng-
ing. In order to reduce the cost of inference in these lan-
guages, Poole [2003] proposed performing lifted inference,
which avoids repeated computation by treating indistinguish-
able groups of objects as one.

Various solutions have been proposed (e.g., [de Salvo Braz
et al., 2005; Milch et al., 2008; Jha et al., 2010]). While
significant progress has been made, we lack a complete un-
derstanding of how to perform lifted inference, that is, how to
unify the principles of inference in first-order logic with those
of inference in graphical models. The goal of lifted inference
is analogous to that of the resolution principle in first-order

logic as both try to perform inference at the first-order level
and to ground out only when necessary.

In the literature on inference in graphical models, one can
distinguish two types of approaches: probabilistic inference
methods such as variable elimination and belief propaga-
tion and logical inference methods based on weighted model
counting [Chavira and Darwiche, 2008]. Most existing lifted
inference techniques have lifted probabilistic inference meth-
ods toward the use of first-order logic. What has been largely
unexplored is applying techniques from inference in first-
order logic to lifted probabilistic inference.

The key contribution of this paper is that we introduce a
first-order knowledge compilation approach to lifted proba-
bilistic inference. We do so by upgrading propositional d-
DNNF (deterministic decomposable negation normal form)
circuits to the first-order setting. Given a weighted clausal
theory (i.e., weights are assigned to predicates), our approach
compiles it into a first-order d-DNNF, which can perform
weighted model counting in time polynomial in the size of
the first-order d-DNNF. It is easy to show that several existing
probabilistic logic representations such as parfactors [Poole,
2003] and Markov Logic [Singla and Domingos, 2008] can
be transformed into an equivalent weighted first-order theory.

In this paper we present a model theoretic approach to
lifted inference that builds on well known concepts from
logical inference, such as model counting, unit propaga-
tion, and Shannon decomposition. We show essentially
that existing concepts from lifted probabilistic inference
have their model-theoretic counterpart. Furthermore, our
WFOMC (weighted first-order model counting) approach ex-
ploits context-specific independencies [Boutilier et al., 1996],
which arise when the probabilistic dependencies have an in-
ternal logical structure. We also show that WFOMC can lift
more inference problems than alternative approaches.

2 Background and Notation

We first introduce standard notions of (function free) first-
order logic. An atom p(t1, . . . , tn) consists of a predicate
p/n of arity n followed by n terms ti. Terms are either con-
stants or variables. A literal l is an atom a or its negation ¬a.
A clause is a disjunction l1 ∨ ... ∨ lk of literals. If k = 1,
we have a unit clause. We often write clauses as their set of
literals. Clauses are assumed to be universally quantified. A
substitution θ = {v1 = t1, ..., vl = tl} is an assignment of

2178

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

terms ti to variables vi. A theory is a finite set of clauses
denoting the conjunction of its clauses. An expression is an
atom, literal, clause or theory. The set of all logical variables
appearing in an expression e is denoted by Vars(e). The func-
tions atom(e) and lit(e) map an expression to the atoms and
literals it contains. An expression is ground if it does not
contain any variables. A Herbrand interpretation is a set of
ground atoms. All atoms in the interpretation are assumed to
be true, while all other atoms belonging to the Herbrand base
(the set of all possible ground atoms) are assumed to be false.
An interpretation I satisfies a theory T , written as I |= T , if it
satisfies all the clauses c ∈ T . An interpretation that satisfies
the theory is a model for the theory and we denote the set of
models of a theory T by M(T) = {I | I |= T}.

We now extend these notions by adding to each expression
e a constraint set (CS) which is a set of constraints defined
on Vars(e). The CS essentially represents a constraint satis-
faction problem and denotes a conjunction of constraints of
the form: 1) v ∈ D, where D is the domain of the vari-
able v and v ∈ Vars(e); 2) vi �= vj with vi, vj ∈ Vars(e);
3) or, v �= k, with v ∈ Vars(e) and k a constant. Nega-
tions of these constraints are also allowed. A substitution
θ = {v1 = t1, . . . , vl = tl} is a solution to a CS cs if and
only if all constraints in csθ are ground and satisfied. When
a solution to a CS exists, we say the CS is satisfiable. The set
of assignments to variable v for which the CS is satisfiable is
denoted by Sol(cs, v).

Expressions e together with their associated constraint set
cs are called c-expressions and are written as (e, cs). Thus,
we can talk about c-literals, c-clauses and c-theories. The
functions atomc(e), litc(e) and cs(e) map an expression to its
c-atoms, c-literals and CS. In the remainder of the paper we
work with c-expressions and often drop the c for ease of expo-
sition. Furthermore, constraints can be simplified or reduced
using standard constraint solving techniques and we implic-
itly allow that. Space restrictions do not allow for a more
detailed analysis. One particular type of reduction is to apply
equalities of the form v = t, i.e., a c-expression (e, {cs, v =
t}) is reduced to (e{v = t}, cs{v = t}). A substitution
θ = {v1 = t1, . . . , vl = tl} can be regarded as a conjunction
of equality constraints, e.g., v1 = t1 ∧ . . . ∧ vl = tl. There-
fore, applying a substitution θ to a c-expression (e, cs) yields
the c-expression (e, cs ∧ θ) which is equivalent to (eθ, csθ).

Two c-literals L1 = (l1, cs1) and L2 = (l2, cs2) c-
unify with substitution θ if and only if l1θ = l2θ and the
CS (cs1 ∧ cs2)θ is satisfiable. The result is denoted as
(l1θ, (cs1 ∧ cs2)θ), or θ = (l2θ, (cs1 ∧ cs2)θ). We write
that L1θ � L2θ. The most general unifier is denoted by
θ = mgu(L1, L2). Two c-expressions e1 and e2 are inde-
pendent, written as e1 ⊥⊥ e2, if no c-atom a1 ∈ atomc(e1) c-
unifies with a c-atom a2 ∈ atomc(e2). The set of groundings
gr(e) of a c-expression e is the set of ground c-expressions eg
s.t. ∃θ for which eg = eθ and cs(e)θ is satisfied. Intuitively,
a clause c represents all its ground instances cθ, whereas a
constrained clause (c, cs) represents all ground instances cθ
such that csθ is true according to the constraint theory.

Example 1. Take the constrained literal

l = (flies(X), X �= kiwi ∧X ∈ Bird).

The mgu of l and flies(pigeon) is θ = {X = pigeon}, be-
cause it is the most general unifier of the unconstrained lit-
erals and csp(l)θ = (pigeon �= kiwi ∧ pigeon ∈ Bird) is
satisfied. Constrained literal l is independent from flies(kiwi)
because the mgu of the unconstrained literals gives rise to the
unsatisfied constraint kiwi �= kiwi .

3 Algorithm

Our approach to lifted inference converts the first-order prob-
abilistic inference task to a weighted first-order model count-
ing problem. We do so by compiling a clausal theory to a first-
order d-DNNF circuit, thereby lifting the knowledge compi-
lation approach. In the next subsections we discuss the key
elements of our approach: (i) how to cast probabilistic infer-
ence into a weighted model counting problem, (ii) which for-
mula does a circuit represent, (iii) how to compile the theory
to an equivalent circuit, and (iv) how to compute the weighted
model count using the circuit.

3.1 Weighted First-Order Model Counting

Weighted First-Order Model Counting (WFOMC) augments
a theory in first-order logic with a positive weight function
w and a negative weight function w, which assign a weight
to each predicate. The WFOMC problem for a theory T of
c-clauses consists of computing

wmc(T,w,w) =
∑
I|=T

∏
a∈I

w(Pred(a))
∏

a∈HB(T)\I
w(Pred(a))

where HB(T) is the Herbrand base and Pred maps atoms to
their predicate.

Representing existing probabilistic logical models such as
Markov logic networks (MLN) or parfactors as WFOMC
problems requires transforming them into a set of c-clauses.

Example 2. An MLN is a set of pairs (Fi, ri) where Fi is a
formula in first-order logic and ri a real-valued number. Since
WFOMC works on literals and not clauses, we reify each for-
mula Fi in the MLN, creating a new atom fi(Vars(Fi)) ≡ Fi.
The weight functions of the reified atom are w(fi) = eri and
w(fi) = 1.

Take the MLN formula with weight 2:

2 friends(X,Y) ∧ smokes(X) ⇒ smokes(Y).

We introduce a new predicate f that represents the truth value
of this formula and which is assigned w(f) = e2 and w(f) =
1. The friends and smokes predicates are assigned w(.) =
w(.) = 1. In the logical theory we put

f(X,Y) ≡ [friends(X,Y) ∧ smokes(X) ⇒ smokes(Y)]

which in CNF form is
smokes(Y) ∨ ¬ smokes(X) ∨ ¬ friends(X,Y) ∨ ¬ f(X,Y)
friends(X,Y) ∨ f(X,Y)
smokes(X) ∨ f(X,Y)
¬ smokes(Y) ∨ f(X,Y).

The WFOMC of this theory is equal to the partition function
of the MLN. Parfactors can be transformed into a set of
c-clauses in a similar way.

2179

3.2 First-Order d-DNNFs

Deterministic decomposable negation normal form (d-
DNNF) circuits [Darwiche and Marquis, 2002] are directed
acyclic graphs whose leaves represent literals and whose in-
ner nodes represent formulae in propositional logic. The in-
ner node operators in propositional d-DNNFs are:
• Decomposable conjunction l ∧© r, representing the formula

l ∧ r with the constraint that the operand formulas l and r
are independent (l ⊥⊥ r).

• Deterministic disjunction l ∨© r, representing the formula
l ∨ r with the constraint that the operands cannot be true at
the same time (l ∧ r is unsatisfiable).
We generalize propositional d-DNNFs to first-order d-

DNNF (FO d-DNNF) circuits, where leaves represent first-
order literals and inner nodes represent first-order formu-
lae. FO d-DNNFs are more compact than their propositional
counterparts. In addition to the propositional operators in in-
ner nodes, we define the following novel operators:
• Inclusion-exclusion IE(x, y, z), representing the formula

x ∨ y with the extra operand z ≡ x ∧ y, which is required
to perform (weighted) model counting in the circuit.

• Decomposable set-conjunction ∧© c over isomorphic
operands, represented by a single child circuit c.

• Deterministic set-disjunction ∨© c over isomorphic
operands, represented by a single child circuit c.

These last two operators differ from their propositional coun-
terparts in that they have only one child node c, which repre-
sents a potentially large set of isomorphic operands.

unit clause leaf

set-disjunction

set-conjunction

decomposable
conjunction

deterministic
disjunction

∧

x ∈ Smokers

∧

∨

∧

y /∈ Smokers

∧

∨

Smokers
⊆ People

∧
∧

f(x, y)

∧

smokes(X), X ∈ Smokers

f(X,Y), Y ∈ Smokers

¬ smokes(Y), Y /∈ Smokers

f(X,Y), X /∈ Smokers, Y /∈ Smokers

friends(x, y) ¬ f(x, y)

∧
¬ friends(x, y)

Figure 1: FO d-DNNF circuit of Example 2.

Example 3. Figure 1 shows the FO d-DNNF circuit for the
CNF of Example 2. Variables are in the domain People.
Example 4. Figure 2b represents a set-conjunction of
|People| operands. Since all operands are isomorphic (iden-
tical up to the value of Skolem constant x), they are repre-
sented by a single child, parametrized in x. We will later see
that these operands have identical weighted model counts.

Similarly, Figure 2c shows a set-disjunction of theories that
are identical up to the value of FunPeople. Again, the circuit
only contains a single child of the set-disjunction, which is
parametrized in FunPeople.

3.3 Auxiliary Operations

Next, we introduce the auxiliary operations for splitting and
shattering, which are needed in the compilation process.
Whenever the pre-condition holds before applying the opera-
tion, the post-condition holds after applying it.

Splitting

Some compilation rules require that all c-clauses c in the the-
ory be split w.r.t. a certain c-atom a.
Operator SPLIT(c, a) =

if ∀ ac ∈ atomc(c) : ac ⊥⊥ a∨gr(ac)\gr(a) = ∅ then {c}
else {SPLIT(cmgu, a)} ∪

⋃
cr∈Cr

SPLIT(cr, a)
for some ac ∈ atomc(c) such that gr(ac) \ gr(a) �= ∅,
θ = mgu(a, ac),
cmgu = (lit(c), cs(c) ∧ θ ∧ cs(a)),
and Cr = {(lit(c), cs(c) ∧ ¬e)|e ∈ (θ ∧ cs(a))} \ {c}

Postconditions

1. ∀ as ∈ atomc(SPLIT(c, a)) : as ⊥⊥ a ∨ gr(as) ⊆ gr(a)
2. gr(c) =

⋃
cs∈SPLIT(c,a) gr(cs)

The purpose of splitting is to divide a clause into an equiv-
alent set of clauses (Postcondition 2) such that for each atom
as in each clause, either as is independent from a or is sub-
sumed by it, because it covers a subset of the ground atoms
of a (Postcondition 1).
Example 5. Splitting
c = (flies(X) ∨ ¬ haswings(X), X �= kiwi ∧X ∈ Animal)
a = (flies(X), X �= penguin ∧X ∈ Bird),

where domain Bird ⊂ Animal , results in cmgu =
(flies(X) ∨ ¬ haswings(X), X �= kiwi ∧ X �= penguin ∧
X ∈ Bird), c1r = (flies(penguin) ∨ ¬ haswings(penguin))
and c2r = (flies(X) ∨ ¬haswings(X), X �= kiwi ∧ X ∈
Animal \ Bird).

After splitting, clauses c1r and c2r are independent from a,
while the c-atom (flies(X), X �= kiwi ∧X �= penguin∧X ∈
Bird) in cmgu is implied by a.

Finally, splitting an entire theory C with respect to c-atom
ac is defined as SPLIT(C, ac) =

⋃
c∈C SPLIT(c, ac). Split-

ting was introduced by Poole [2003] for parfactors. We apply
it to clauses and extend it with set membership constraints.

Shattering

Some compilation rules require the theory C to be shattered.
Operator SHATTER(C) =
if ∃ a ∈ atomc(C) such that SPLIT(C, a) �= C
then SHATTER(SPLIT(C, a)) else C

Postcondition ∀ a1, a2 ∈ atomc(SHATTER(C)) :
a1 ⊥⊥ a2 ∨ gr(a1) = gr(a2)

Shattering performs splitting until convergence. The post-
condition states that after shattering, all c-atom groundings
are either disjoint or identical. The specific assignments to the
logical variables cannot be distinguished any further. A vari-
ant of shattering on parfactors was proposed for FOVE [de
Salvo Braz et al., 2005].

2180

3.4 Compilation Rules

The purpose of the compilation rules is to transform a CNF
into a set of simplified CNFs that are combined using a FO
d-DNNF operator from Section 3.2. This requires that (1)
the compiled circuit is equivalent to the original theory and
(2) the (decomposable, deterministic) properties of the FO d-
DNNF operators hold. We continue compiling the simplified
CNFs until they become unit clauses, the leafs of the FO d-
DNNF circuit.

Compiling a set of c-clauses C to FO d-DNNF is per-
formed by the COMPILE(C) function, which tries to recur-
sively apply the compilation rules in the order we present
them here. A compilation rule applies when its preconditions
are met.

Caching

Before compiling a theory, we attempt to retrieve its circuit
from a cache of previously compiled theories. Reusing pre-
viously computed FO d-DNNFs turns the circuit from a tree
into a DAG. Caching is an essential feature of propositional
knowledge compilation algorithms. Currently, we employ
a naive caching scheme that only recognizes the reuse of
ground theories.

Unit Propagation

We now consider the case where the CNF contains unit
clauses. First, we describe an auxiliary operation to perform
unit propagation of a c-literal l on a single c-clause c, where
a is the atom of l.

Precondition {c} = SPLIT(c, a) (c has been split w.r.t. a)
Operator UPCLAUSE(c, l) =
if ∃ lc ∈ litc(c), ∃ θ : lθ � lcθ then ∅
else {(L, cs(c))} with L = {lc|lc ∈ litc(c) : l ⊥⊥ lc}
Unit propagation distinguishes between two cases: if the

clause contains a literal that unifies with the propagating lit-
eral l, the clause is removed. Otherwise, the clause atoms that
unify with the propagating atom are removed from the clause.

This generalizes to a compilation rule on a set of clauses C
containing a unit clause cu.

Precondition ∃ cu ∈ C : litc(cu) = {l}, atomc(cu) = {a}
Operator UNITPROP(C) =

COMPILE(Cup) ∧© COMPILE({cu})
where Cup =

⋃
c∈C

⋃
s∈SPLIT(c,a) UPCLAUSE(s, l)

Postcondition Cup ⊥⊥ cu and C ≡ Cup ∧ cu

The Postcondition states that the returned conjunction is de-
composable and equivalent to the original theory.

Example 6. Figure 2a shows unit propagation of the unit
clause friends(X,X). The first two clauses require split-
ting w.r.t. the unit clause atom, which creates two copies of
each clause: one where X = Y and one where X �= Y .
Next, the first copy of the first clause is removed, because it
is subsumed by the unit clause. In the first copy of the sec-
ond clause, the atom that unifies with the unit clause atom is
removed, because it must be false in any model. This yields
the clause likes(X,X).

Finally, the unit clause becomes independent of the other
clauses, and can be split off in a decomposable conjunction.

The unit clause is a leaf of the circuit, while the remainder of
the theory requires further compilation.

Independence

When the theory contains two sets of independent clauses, we
can split them using a decomposable conjunction.

Precondition C1 ⊥⊥ C2

Operator

INDEP(C1 ∪ C2) = COMPILE(C1) ∧© COMPILE(C2)

Inclusion-Exclusion

Intuitively, when the theory contains a clause whose literals
can be divided into two sets that do not share any logical
variables or constraints, inclusion-exclusion is possible. The
children of an inclusion-exclusion node are simpler than their
parent, because they have shorter clauses.

Preconditions C is a set of c-clauses such that
1. C = {(L1 ∪ L2, csL)} ∪ CR

2. Vars(L1) ∩Vars(L2) = ∅
3. ¬∃v1 ∈ Vars(L1), v2 ∈ Vars(L2) : (v1 �= v2) ∈ csL

Operator INCEXC(C) =
IE(COMPILE(C1), COMPILE(C2), COMPILE(C3))
with C1 = {(L1, csL)} ∪ CR

C2 = {(L2, csL)} ∪ CR

C3 = {(L1, csL), (L2, csL)} ∪ CR.
Postconditions

1. M(C) = M(C1) ∪M(C2)
2. M(C3) = M(C1) ∩M(C2).

Example 7. C-clause (helps(X) ∨ ¬ succeeds(Y), X ∈
People, Y ∈ Task) has two subclauses: c1 =
(helps(X), X ∈ People) and c2 = (¬ succeeds(X), X ∈
Task) which are not linked by a logical variable. The IN-
CEXC operator results in an inclusion-exclusion node with
child circuits for c1, c2 and c1 ∧ c2.

A special case of inclusion-exclusion, Shannon decom-
position, occurs when L1 = {a} and L2 = {¬a} and a
is a ground atom. Then C3 becomes a contradiction and
C1 ∨C2 is a deterministic disjunction. This decomposition is
always performed when the theory contains a ground atom,
because adding the clause a ∨ ¬a to a theory containing a
does not change the set of models. Shannon decomposition is
a common operation in logical inference. We generalize it to
inclusion-exclusion.

Example 8. Having a c-clause c = (fun(bob) ∨
¬ friends(bob,X), X ∈ People), applying Shannon de-
composition results in a decomposable disjunction of
the circuits for {{fun(bob)}, c} and {{¬ fun(bob)}, c},
which after an application of UNITPROP results in
fun(bob) ∨© (¬ fun(bob) ∧©¬ friends(bob,X), X ∈ People).

Shattered Compilation

For the next two operations, the theory needs to be shat-
tered. Furthermore, shattering might introduce new opportu-
nities for the independence, inclusion-exclusion or Shannon
decomposition rules. Because we only shatter in this stage of
the compilation process, the previous operators use what is
called splitting as needed [Kisyński and Poole, 2009].

2181

friends(X,Y) ∨ dislikes(X,Y)
¬ friends(X,Y) ∨ likes(X,Y)

friends(X,X)

∧

friends(X,Y) ∨ dislikes(X,Y), X �= Y
¬ friends(X,Y) ∨ likes(X,Y), X �= Y

likes(X,X)
friends(X,X)

(a) Unit Propagation of friends(X,X)

dislikes(X,Y) ∨ friends(X,Y)
fun(X) ∨ ¬ friends(X,Y)

∧

x ∈ People

dislikes(x, Y) ∨ friends(x, Y)
fun(x) ∨ ¬ friends(x, Y)

(b) Independent Partial Grounding

fun(X), X ∈ FunPeople
¬ fun(X), X /∈ FunPeople
fun(X) ∨ ¬ friends(X,Y)
fun(X) ∨ ¬ friends(Y,X)

∨

FunPeople
⊆ People

fun(X) ∨ ¬ friends(X,Y)
fun(X) ∨ ¬ friends(Y,X)

(c) Atom Counting of fun(X)

Figure 2: Intermediate compilation steps. Circles are FO d-DNNF inner nodes. White rectangles show the theories before and
after applying the rule. Shaded rectangles are leafs of the circuit, representing unit clauses. All variable domains are People.

Preconditions C is a set of clauses
1. ∃ a ∈ atomc(C) : SPLIT(C, a) �= C

Operator SHATTERCOMP(C) = COMPILE(SHATTER(C))

Independent Partial Groundings

Preconditions C is a set of c-clauses such that
1. ¬∃CI ⊂ C : CI ⊥⊥ C \ CI

2. A function root such that ∀ c ∈ C : root(c) ∈ Vars(c)
3. ∀ l1, l2 ∈ litc(C) : l1θk1 ⊥⊥ l2θk2

where θki = {(root(c) = ki)|c ∈ C}
and k1, k2 arbitrary unique constants

Operator IPG(C) = ∧©k∈K COMPILE(Cθk)
with k a parameter for a constant,
and K such that ∀ c ∈ C : K = Sol(root(c), cs(c))

Postconditions

1. Cθk1 ⊥⊥ Cθk2 with k1, k2 arbitrary unique constants
2. C ≡ ∧

k∈K Cθk
3. ∀ k1, k2 ∈ K : COMPILE(Cθk1)

∼= COMPILE(Cθk2),
meaning that all operand circuits are isomorphic.

Precondition 3 guarantees that every literal in the theory
contains a variable in {root(c)|c ∈ C} and that the variable
appears in the same positions of the argument lists of two
unifying atoms. Consequently, any pair of atoms that previ-
ously unified, becomes independent after partially grounding
to a different constant. Postcondition 2 states that the set-
conjunction of all operands is equivalent to the original the-
ory. Postcondition 1 makes the set-conjunction decompos-
able and follows straightforwardly from Precondition 3.

The operands of a decomposable set-conjunction were de-
fined to be isomorphic. If after shattering the theory con-
tains no independent sets of clauses (Precondition 1), the con-
straints and domains of each root(c) are identical and each
clause is grounded w.r.t. the same set of constants K. Apply-
ing independent partial grounding in a naive way would cre-
ate |K| subcircuits – a potentially very large number. How-
ever, because the subcircuits are isomorphic (identical up to
renaming of the grounding constant, Postcondition 3), the d-
DNNF for C is more succinctly represented by compiling
only one child theory Cθk, where k is a parameter represent-

ing the grounding constant. This makes both the compila-
tion complexity and FO d-DNNF size independent from |K|.
Independent partial grounding is based on the same underly-
ing ideas as partial inversion in FOVE and the power rule in
CPs [Jha et al., 2010].

∧

x ∈ People

∨
∧∧

∧
∧

y ∈ People ¬ fun(x)fun(x)

dislikes(x, Y) ¬ friends(x, Y)∨

friends(x, y)

∧
¬ friends(x, y) dislikes(x, y)

(1) (2)

Figure 3: Circuit after continuing compilation of Figure 2b

Example 9. Figure 2b shows a theory T where indepen-
dent partial grounding can be applied by choosing the root
function that maps each clause to its X variable. When
these variables are grounded to different constants (Tθalice
and Tθbob), the different groundings are independent, which
means they form a decomposable conjunction. This naive ap-
proach would generate |People| subcircuits. We can do better
by observing that the partially grounded theories are identi-
cal up to renaming of the constants, and so are the circuits.
Therefore, it suffices to compile a single theory Tθx where x
represents some constant in the domain People.

Independent partial grounding does not simplify the the-
ory. By grounding logical variables, however, it creates new
opportunities for other rules. For example, the bottom the-

2182

ory of Figure 2b contains a ground atom fun(x), which al-
lows for Shannon decomposition. This is shown in Figure 3.
In the branch where fun(x) is false (labeled with (2) in Fig-
ure 3), subsequent steps of unit propagation simplify the the-
ory in a decomposable conjunction of unit clause leafs. The
other branch (1) requires one more step of independent partial
grounding and Shannon decomposition.

Atom Counting

Preconditions C is a set of c-clauses such that
1. ∃ a ∈ atomc(C) : Vars(a) = {v}

Operator ATOMCOUNTING(C) =
∨©D⊆S COMPILE(C ∪ {cD, c̄D})
with S = Sol(v, cs(a)), D the domain parameter,
cD = ({a}, cs(a) ∧ (v ∈ D)),
and c̄D = ({¬a}, cs(a) ∧ (v /∈ D)).

Postconditions For F,G ⊆ S :

1. M(C ∪ {cF , c̄F}) ∩M(C ∪ {cG , c̄G}) = ∅ ∨ F = G
2. COMPILE(C ∪ {cF , c̄F }) ∼= COMPILE(C ∪ {cG, c̄G}),

meaning that all operand circuits are isomorphic.

When the theory contains an atom with a single logical
variable v, we can partition the set of models depending on
the values for v for which the atom is true. The disjunctions
between these partitions are deterministic (Postcondition 1),
because their models disagree in at least one atom.

Because the theory has been shattered, the individuals k ∈
D are indistinguishable. As a result, the operands of the de-
terministic disjunction are isomorphic (Postcondition 2) and
their circuits only differ in the domain D. Again, we only
compile a FO d-DNNF that is parametrized in D but whose
size is independent of |D| and |S|. Atom counting by itself
does not simplify the theory, but by introducing two new unit
clauses, unit propagation will be able to eliminate a from the
theory entirely in subsequent compilation steps. Atom count-
ing is inspired by counting elimination in FOVE and the gen-
eralized binomial rule in CPs.

fun(X), X ∈ FunPeople

¬ fun(X), X /∈ FunPeople

¬ friends(X,Y), X /∈ FunPeople

¬ friends(X,Y), X ∈ FunPeople, Y /∈ FunPeople

∧
∧

∧

∨

FunPeople
⊆ People

Figure 4: Circuit after continuing compilation of Figure 2c

Example 10. Figure 2c shows a theory T that only allows for
atom counting. All logical variables are implicitly elements
of domain People. The fun(X) atom has 2|People| partial in-
terpretations (e.g., {fun(1), fun(2)}, {fun(1),¬ fun(2)}, . . . ,
{¬ fun(1),¬ fun(2)} when the number of people is 2). We
can create a theory equivalent to T by conjoining each partial

interpretation with T , and taking the disjunction over all par-
tial interpretations. Because each partial interpretation differs
in at least one truth assignment, this disjunction is determin-
istic.

Compiling the theory as such defies the point of lifted in-
ference, because it creates 2|People| subcircuits. However,
we can observe that all subcircuits are isomorphic. They are
identical up to the set of constants c for which fun(c) is true.
We only need to compile one single subcircuit, parametrized
in the subset FunPeople of People. We will later see that
evaluating the weighted model count using this circuit is only
linear in |People|, which makes this operator lifted.

Atom counting only adds unit clauses to the theory. Fig-
ure 4 shows how three subsequent steps of unit propagation
split off a unit clause leaf until the remaining theory becomes
a unit clause leaf of the circuit itself.

Grounding

Operator GR(C) = COMPILE(∪k∈Sol(v,cs(v))C{v = k})
for some v ∈ Vars(C)

If no other compilation rule applies, we ground out a logical
variable in the theory, after which compilation is retried. A
good heuristic is to select the variable with the smallest num-
ber of solutions | Sol(v, cs(v))|.

3.5 First-Order Smoothing

Compilation steps such as unit propagation or inclusion-
exclusion may remove literals from branches of the d-DNNF.
The groundings of these literals may go unaccounted for
when doing model counting in the d-DNNF. This problem
is solved by smoothing the circuit [Darwiche and Marquis,
2002], which we lift to the first-order level as well.

Smoothing first propagates a set of c-atoms upwards in the
circuit, representing the groundings that are accounted for in
the circuit. Binary conjunctions, disjunctions and inclusion-
exclusion nodes propagate the union of these sets. In set-
conjunctions with a parametrized constant kr, special care
is taken to generalize the counted atoms of the child to the
full set of operands by applying the inverse substitution θ−1

kr
,

which replaces the placeholder constant kr by the variables to
which the root function maps. Similarly, for set-disjunctions
parametrized in domain D, the set of counted atoms of the
representative child is generalized to the full set of operands
by removing the domain constraints v ∈ D and v /∈ D from
the atoms.

Second, smoothing adds nodes to the circuit where
operands of (set-)∨© or IE count different sets of atoms.
When an atom a with constraints csa is missing from node
n, the node is replaced by COMPILE({a,¬a}, csa) ∧©n

Example 11. The circuit in Figure 3 is not smooth.
The bottom disjunction’s operands cover a different set of
atoms. The right branch covers only friends(x, y) while
the left branch covers friends(x, y) and dislikes(x, y). In
this case, first-order smoothing is identical to propositional
smoothing. It substitutes the right branch by a decom-
posable conjunction of the right branch and the circuit
dislikes(x, y) ∨©¬ dislikes(x, y).

2183

Example 12. The circuit in Figure 4 is not smooth. The
theory in the root node (Figure 2c) covers atoms fun(X)
and friends(X,Y). The circuit below the root node cov-
ers fun(X) entirely, but is not accounting for the atoms
friends(X,Y), X ∈ FunPeople, Y ∈ FunPeople . First-
order smoothing compensates for this by inserting a decom-
posable conjunction below the set-disjunction. The operands
of the new conjunction are (1) the original child of the
set-disjunction and (2) the compiled circuit for the theory
friends(X,Y) ∨ ¬ friends(X,Y), X ∈ FunPeople, Y ∈
FunPeople . As a result, all ground atoms of the original the-
ory are being counted.

3.6 Propagating the Weighted Model Count

As for propositional d-DNNFs, smooth FO d-DNNFs permit
weighted model counting in time polynomial in the size of the
circuit, by interpreting the d-DNNF as an arithmetic circuit.
In a leaf with c-atom a of predicate p:

wmc(a) = w(p)| gr(a)| and wmc(¬a) = w(p)| gr(a)|.

As in propositional knowledge compilation and from Post-
conditions 1 and 2 of INCEXC:

wmc(l ∧© r) = wmc(l)× wmc(r),

wmc(l ∨© r) = wmc(l) + wmc(r),

wmc(IE(c1, c2, c3)) = wmc(c1) + wmc(c2)− wmc(c3).

For a set-conjunction coming from independent partial
grounding, the operands are not only isomorphic, but they
have the same WFOMCs, due to shattering. Its weighted
model count is wmc(∧©k∈Kchildk) = wmc(childk)

|K|,
which can be computed in time independent of |K|.

Set-disjunction due to atom counting is more complicated.
We know that the operands have d-DNNF circuits isomor-
phic to childD, but they have different weighted model
counts. Iterating over all D ⊆ S would be intractable
and defeats the purpose of lifted inference. However, with
Dn = {D|D ⊆ S, |D| = n}, we observe that ∀D1, D2 ∈
Dn : wmc(childD1) = wmc(childD2). We can group to-
gether subsets of S of equal size, because they have identical
WFOMCs. Furthermore, because set-disjunction is determin-
istic and |Dn| =

(|S|
n

)
, we find

wmc(∧©D⊆SchildD) =
∑
d

(|S|
d

)
wmc(childD∧|D| = d).

While model counting for all other node types is indepen-
dent of the domain sizes, model counting for set-disjunction
is linear in |S|.

4 Empirical Evaluation

In this section, we evaluate our approach on common bench-
marks in the lifted inference literature including compet-
ing workshops and workshop attributes [Milch et al., 2008],
friends and smokers [Singla and Domingos, 2008], sick and
death [de Salvo Braz et al., 2005] as well as a novel exam-
ple. We compare the performance of WFOMC with counting
first-order variable elimination (C-FOVE) [Milch et al., 2008]

and propositional variable elimination (VE). WFOMC is im-
plemented in Scala1 and we used the publicly available Java
implementation of C-FOVE.2

Figure 5 contains representive results on three different
tasks. It plots how inference time varies with the domain
size on each task. It includes two results for WFMOC, one
which only measures circuit evaluation time and another that
includes both compilation and evaluation time. Compilation
is only needed once per theory and can be amortized across
all domain sizes. For C-FOVE and ground VE, the plot shows
inference time as these methods have no compilation phase.

For both the competing workshops and friends and smokers
tasks, ground VE quickly runs out of memory and achieves
worse performance than the lifted methods. When consider-
ing only inference time, WFOMC is the same or faster than
C-FOVE. When considering both compilation and inference
time, WFOMC is faster for larger domain sizes, but C-FOVE
is slightly faster for small domain sizes.

We extended the friends and smokers example with an ex-
tra formula: friends(X,Y) ∧ drinker(X) ⇒ drinker(Y).
WFOMC can lift this theory whereas C-FOVE cannot lift it.
We omit the curve for C-FOVE because the implementation
fails.3 Ground VE quickly runs out of memory.

Lifted inference provides a significant advantage compared
to ground inference. WFOMC can identify and lift more
structures than C-FOVE making it more efficient in these
cases. In cases where the operators in C-FOVE are sufficient
to fully lift the theory, WFOMC’s inference is faster, but has
a small overhead associated with the compilation step. It is
important to note that knowledge compilation only needs to
be performed once per theory, that is, it is independent of the
domain size (for a fixed evidence set).

5 Related Work

WFOMC builds upon the technique of probabilistic infer-
ence through knowledge compilation [Darwiche and Mar-
quis, 2002]. To date, these approaches have only explored
compiling propositional d-DNNF circuits [Chavira et al.,
2006]. In contrast, we define first-order d-DNNF circuits and
present an algorithm for compiling them.

Existing approaches to lifted inference have primarily fo-
cused on standard probabilistic inference algorithms such as
variable elimination (e.g., [Poole, 2003; de Salvo Braz et
al., 2005; Milch et al., 2008]) and belief propagation (e.g.,
[Singla and Domingos, 2008]). WFOMC differs from these
types of methods in two significant ways. First, we take a
model theoretic approach to inference. Second, our algorithm
exploits local structure (e.g., context specific independence)
within the the model. Considering local structure can sub-
stantially improve the efficiency of inference, and this type of
structure is common in probabilistic logical models.

The approaches of Jha et al. [2010] and Gogate and
Domingos [2010] are more similar in spirit to our approach.
Jha et al. also approach the problem from the perspective

1http://dtai.cs.kuleuven.be/wfomc/
2http://people.csail.mit.edu/milch/blog/
3In theory, C-FOVE should be able to solve this theory by

grounding it and performing VE.

2184

200 400 600 800 1,000

101

102

103

104

105

Number of people

ti
m
e
(m

s)
Competing Workshops

0 2,000 4,000 6,000 8,000
101

102

103

104

Number of people

Friends Smoker

WFOMC (comp+inf)

WFOMC (inf)
C-FOVE
VE

5 10 15
100

101

102

103

104

Number of people

Friends Smoker Drinker

Figure 5: Inference times for the competing workshops, friends smokers, and friends smokers drinker tasks.

of logical inference and identify a limited class of models
where tractable lifted inference is possible. For example,
their approach excludes models that contain a clause where
the same predicate appears more than once. Furthermore, it
only works if the inference can be done fully on the lifted
level. Gogate and Domingos [2010] propose a lifted ver-
sion of AND/OR search. The d-DNNF structure is closely
related to AND/OR structures. However, as noted by Dechter
and Mateescu [2007], d-DNNF’s are theoretically more ex-
pressive. Gogate and Domingos’ approach differs in that
they approach the problem from a different angle and use
weighted CNF clauses instead of weighted model counting.
Furthermore, they do not support caching and have no opera-
tor equivalent to the inclusion-exclusion operator.

6 Conclusions

We proposed the first model theoretic approach to lifted prob-
abilistic inference. We introduced first-order d-DNNF cir-
cuits and presented an algorithm to compile a first-order prob-
abilistic theory into one of these circuits. Our algorithm ex-
ploits well known concepts from logical inference including
model counting, unit propagation, and Shannon decomposi-
tion. Furthermore, we drew connections between our model
theoretic inference rules and those proposed for probabilis-
tic inference, bringing us closer to understanding the connec-
tion between lifted inference in first-order logic and graphical
models.

Acknowledgements The authors would like to thank Mau-
rice Bruynooghe for valuable feedback. Guy Van den Broeck
is supported by the Research Foundation-Flanders (FWO-
Vlaanderen). This research is supported by GOA/08/008
‘Probabilistic Logic Learning’.

References

[Boutilier et al., 1996] Craig Boutilier, Nir Friedman, Moi-
ses Goldszmidt, and Daphne Koller. Context-specific in-
dependence in Bayesian networks. In Proceedings of UAI,
pages 115–123, 1996.

[Chavira and Darwiche, 2008] Mark Chavira and Adnan
Darwiche. On Probabilistic Inference by Weighted Model
Counting. Artificial Intelligence, 172(6-7):772–799, April
2008.

[Chavira et al., 2006] Mark Chavira, Adnan Darwiche, and
Manfred Jaeger. Compiling Relational Bayesian Networks
for Exact Inference. International Journal of Approximate
Reasoning, 42(1-2):4–20, May 2006.

[Darwiche and Marquis, 2002] Adnan Darwiche and Pierre
Marquis. A Knowledge Compilation Map. Journal of Ar-
tificial Intelligence Research, 17(1):229–264, 2002.

[De Raedt et al., 2008] Luc De Raedt, Paolo Frasconi, Kris-
tian Kersting, and Stephen Muggleton, editors. Probabilis-
tic inductive logic programming: theory and applications.
Springer-Verlag, Berlin, Heidelberg, 2008.

[de Salvo Braz et al., 2005] Rodrigo de Salvo Braz, Eyal
Amir, and Dan Roth. Lifted first-order probabilistic infer-
ence. In Proceedings of IJCAI, pages 1319–1325, 2005.

[Dechter and Mateescu, 2007] Rina Dechter and Robert Ma-
teescu. AND/OR search spaces for graphical models. Ar-
tificial Intelligence, 171(2-3):73–106, February 2007.

[Getoor and Taskar, 2007] L. Getoor and B. Taskar, editors.
An Introduction to Statistical Relational Learning. MIT
Press, 2007.

[Gogate and Domingos, 2010] Vibhav Gogate and Pedro
Domingos. Exploiting Logical Structure in Lifted Prob-
abilistic Inference. In Proceedings of StarAI, 2010.

[Jha et al., 2010] Abhay Jha, Vibhav Gogate, Alexandra Me-
liou, and Dan Suciu. Lifted Inference Seen from the Other
Side: The Tractable Features. In Proceedings of NIPS,
2010.

[Kisyński and Poole, 2009] Jacek Kisyński and David Poole.
Constraint processing in lifted probabilistic inference. In
Proceedings of UAI, pages 293–302, 2009.

[Milch et al., 2008] Brian Milch, Luke S. Zettlemoyer, Kris-
tian Kersting, Michael Haimes, and Leslie Pack Kaelbling.
Lifted Probabilistic Inference with Counting Formulas. In
Proceedings of AAAI, pages 1062–1068, 2008.

[Poole, 2003] David Poole. First-order probabilistic infer-
ence. In Proceedings of IJCAI, pages 985–991, 2003.

[Singla and Domingos, 2008] P. Singla and P. Domingos.
Lifted first-order belief propagation. In Proceedings of
AAAI, pages 1094–1099, 2008.

2185

