
A Convex Formulation of Modularity
Maximization for Community Detection

Emprise Y. K. Chan Dit-Yan Yeung
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Hong Kong, China
{emprisec,dyyeung}@cse.ust.hk

Abstract
Complex networks pervade in diverse areas rang-
ing from the natural world to the engineered world
and from traditional application domains to new
and emerging domains, including web-based social
networks. Of crucial importance to the understand-
ing of many network phenomena, dynamics and
functions is the study of network structural prop-
erties. One important type of network structure is
known as community structure which refers to the
existence of communities that are tightly knit lo-
cal groups with relatively dense connections among
their members. Community detection is the prob-
lem of detecting these communities automatically.
In this paper, based on the modularity measure pro-
posed previously for community detection, we first
propose a reformulation of an optimization prob-
lem for the 2-partition problem. Based on this new
formulation, we can extend it naturally for tack-
ling the general k-partition problem directly with-
out having to tackle multiple 2-partition subprob-
lems like what other methods do. We then pro-
pose a convex relaxation scheme to give an itera-
tive algorithm which solves a simple quadratic pro-
gram in each iteration. We empirically compare our
method with some related methods and find that our
method is both scalable and competitive in perfor-
mance via maintaining a good tradeoff between ef-
ficiency and quality.

1 Introduction
Many complex systems that consist of a large number of
interacting entities or individuals are best described as net-
works. Complex networks can be found everywhere. Broadly
speaking there are three major types of complex networks,
namely, social networks, physical networks and biological
networks. Social networks include Web-based communities,
coauthorship and citation networks of researchers, social ser-
vices networks, terrorist networks, etc.; physical networks in-
clude electric power distribution networks, Internet and the
World Wide Web, telecommunication networks, sensor net-
works, highway transportation networks, etc.; and biologi-
cal networks include neural networks in human and animal

brains, networks of metabolic pathways, genetic regulatory
networks, food webs, and so on. Many of the networks found
in these applications are gigantic in size and also complex in
both structure and dynamics.

Since network structural properties often affect network
functions and behavioral characteristics, studying the topol-
ogy or structure of complex networks is among the most im-
portant facets of network science [Newman et al., 2006]. One
important type of network structure is the so-called commu-
nity structure [Girvan and Newman, 2002]. In many net-
works, there exist communities (or called clusters or network
motifs) which correspond to relatively densely connected sets
of vertices sharing some common properties. For example,
they may correspond to emerging communities or political
groups in a social network, congested areas in a telecommu-
nication network, pathways between interacting constituents
in a metabolic network, or hot spots in a disease or rumor
spreading network. Identifying or detecting the communi-
ties in a network, called community detection, is to identify
the clusters and possibly also their hierarchical organization
using primarily local information about the relationships be-
tween individuals.

A principled approach to the study of complex networks is
based on graph theory by representing a complex network as
a graph, so that the relationships between the interacting en-
tities correspond to the edges between vertices in the graph.
For example, the presence of an edge between two vertices
in a social network may represent friendship or partnership
between two persons. There have been two relatively inde-
pendent lines of research on several variants of this problem.
One line of research has been pursued by computer scientists
under the general name of graph partitioning [Kernighan and
Lin, 1970; Shi and Malik, 1997]. The problem is to parti-
tion the vertices of a graph into groups such that the number
of edges lying between the groups is minimal. This prob-
lem is fundamental to many parallel computing and circuit
layout applications. The second line of research, sometimes
referred to as hierarchical clustering or community structure
detection, has mainly been pursued by sociologists and more
recently by physicists, mathematicians and biologists. Un-
like the first line of research, many applications of the second
line have been focused on social and biological networks al-
though possible applications in other areas have also drawn
the attention of many researchers.

2218

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

If there exists community structure in a network, we ex-
pect the intra-community edges to be significantly denser
than the inter-community edges. In other words, when de-
tecting the existence of communities, we search for structure
that maximizes the number of intra-community edges while
minimizing the number of inter-community edges. To pro-
vide a quantitative measure for characterizing the existence of
community structure, the modularity measure was proposed
in [Newman and Girvan, 2004] by measuring how different
the network is when compared with one with edges placed at
random according to the degree distribution. The modularity
values range from −0.5 to 1 [Brandes et al., 2008], with a
higher positive value indicating a stronger support for com-
munity structure in the network. However, finding a partition
with the highest modularity is NP-hard, making it necessary
to rely on approximation methods especially when the net-
work is large.

Most existing methods are hierarchical algorithms based
on either the agglomerative or divisive approach. The ag-
glomerative approach merges clusters repeatedly. An ag-
glomerative method based on the modularity measure is
called CNM [Clauset et al., 2004]. On the other hand, the di-
visive approach tackles multiple 2-partition problems repeat-
edly. One popular divisive method based on the modularity
measure uses an eigenvector-based algorithm to tackle each
2-partition problem by splitting a cluster based on the leading
eigenvector of some matrix [Newman, 2006]. After apply-
ing the hierarchical algorithms, postprocessing methods such
as the Kernighan-Lin algorithm [Kernighan and Lin, 1970]
and greedy vertex move [Noack and Rotta, 2009] are usually
applied to further improve the modularity value obtained.

Modularity maximization may also be formulated as an
optimization or mathematical programming problem. It
has been proved that the problem is an integer linear pro-
gram (ILP) with O(n2) variables [Brandes et al., 2008]. If the
method tackles the problem via tackling multiple 2-partition
modularity maximization subproblems, each 2-partition sub-
problem can be formulated as an integer quadratic pro-
gram (IQP) with O(n) variables [Agarwal and Kempe, 2008].

The focus of this paper is to study the community detec-
tion problem based on a principled optimization approach.
We first propose a reformulation of an optimization problem
for the 2-partition problem. Based on this new formulation,
we can extend it naturally for a formulation representing the
general k-partition problem directly as an IQP with kn vari-
ables without having to tackle multiple 2-partition subprob-
lems. We then propose a convex relaxation scheme based on
the k-partition problem formulation to give an iterative algo-
rithm which solves a simple quadratic program (QP) in each
iteration. Empirical studies show that our method is scalable
and gives competitive results. Compared with other methods
based on mathematical programming, our method is much
faster and more scalable. In addition, with respect to the mod-
ularity obtained, it outperforms other methods which require
postprocessing to obtain reasonable results.

The rest of this paper is organized as follows. In the next
section, we will review the modularity measure and previous
work on the 2-partition problem. Section 3 will present our
extension for the k-partition problem and details of the algo-

rithm. We will present both 2-partition and k-partition exper-
iments in Section 4 and compare our method with several re-
lated methods. Some implementation details for dealing with
large networks will be discussed in Section 5. Finally, we will
give some concluding remarks in Section 6.

2 Previous Work
We represent each network by an undirected connected graph
G = (V,E), where V = {vi} and E = {{vi, vj}} denote
the vertex set and edge set, respectively, and n = |V | and
m = |E| the corresponding cardinalities. The edge set E can
also be represented by a symmetric n × n adjacency matrix
A where each element Aij in A is equal to 1 if {vi, vj} ∈ E
and 0 otherwise. Let Pk = {C1, . . . , Ck} denote a complete
partition of V into k disjoint clusters Ci each of which is a
nonempty set of vertices. In the sequel, we may drop the
subscript k in Pk for notational simplicity if its value is irrel-
evant in the context. Also, we let E(Ci) denote the number
of intra-cluster edges within cluster Ci.

Modularity was first proposed in [Newman and Girvan,
2004] as a performance measure for the quality of the com-
munity structure (i.e., partition) found by a community de-
tection or clustering algorithm. There are several different
but equivalent forms for expressing the modularity q(P) of a
partition P . One convenient form is expressed based on the
cluster structure [Brandes et al., 2008]:

q(P) =
∑
Cj∈P

⎡⎣E(Cj)

m
−

(∑
vi∈Cj

deg(vi)

2m

)2
⎤⎦ , (1)

where deg(vi) =
∑

j Aij is the degree of vi. To maximize
q(P), it would be desirable to maximize the first term and
minimize the second term inside the outermost summation
in (1). To maximize the first term, each cluster should con-
tain as many edges as possible. To minimize the second term,
the graph should be split into many clusters each with a small
total degree. However, these two criteria cannot be achieved
independently, showing the necessity of a tradeoff in the op-
timization problem. It has been shown that maximizing the
modularity can exhibit undesirable behavior such as nonlo-
cality [Brandes et al., 2008].

Instead of expressing q(P) in terms of the cluster struc-
ture, we may also expand the outermost summation in (1) to
express it in terms of the vertices directly. Let us introduce an
extra variable dij for each pair of vertices vi and vj such that
dij = 1 if vi and vj belong to the same cluster and dij = 0
otherwise. The modularity is now expressed as follows:

q(P) =
1

2m

∑
ij

(
Aij − deg(vi)deg(vj)

2m

)
dij . (2)

This alternative form is informative in revealing a different
interpretation of the modularity measure. Inside the summa-
tion in (2), the first term Aij is the actual number of edges
between vi and vj and the second term deg(vi)deg(vj)/2m
is the expected number of edges between them if edges are
placed randomly according to the degrees. To a certain ex-
tent, the second term plays the role of a “null hypothesis”

2219

against which the first term is “tested”. The modularity q(P)
is obtained by summing the difference of the two terms above
over all pairs of vertices that belong to the same cluster in P .

Given a partition P and hence the relationship between ver-
tices, we can compute the modularity q(P) easily as in (2).
The problem of maximizing the modularity can be formulated
as an ILP to obtain a partition P , via the dij , that maximizes
q(P). Note that since dij = dji and dii = 1, it suffices to
introduce only

(
n
2

)
= O(n2) optimization variables dij for

i < j. To ensure consistency of the variables dij in rep-
resenting a valid partition P ,

(
n
3

)
= O(n3) constraints are

introduced to enforce the reflexivity, symmetry and transitiv-
ity properties. However, this discrete optimization problem is
known to be NP-complete [Brandes et al., 2008], making it
unappealing to solve the ILP directly for most practical appli-
cations.

A previous work [Newman, 2006] proposed a method for
the 2-partition problem by solving a modified optimization
problem with the objective function given in (2).1 The for-
mulation involves a modularity matrix Q where each element
Qij is just the term Aij − deg(vi)deg(vj)/2m in (2). Also,
the variable dij is rewritten as (yiyj + 1)/2 where yi = 1 if
vi ∈ C1 and yi = −1 if vi ∈ C2. Moreover, we note that∑

ij Aij =
∑

i deg(vi) = 2m and hence
∑

ij Qij = 0. Thus
the modularity q(P2) for a 2-partition P2 can be simplified to

q(P2) =
1

4m

∑
ij

Qij(yiyj + 1)

=
1

4m

∑
ij

Qijyiyj

=
1

4m
yTQy (3)

in a quadratic form of the vector y = (y1, . . . , yn)
T ∈

{−1,+1}n. Maximizing q(P2) is thus an IQP:

max
y

1

4m
yTQy

subject to yi ∈ {−1,+1}, ∀i. (4)

The NP-completeness of this problem [Brandes et al., 2008]
has triggered some efforts to devise approximation methods.

An eigenvector-based method was proposed in [Newman,
2006]. The method is similar to spectral partitioning ex-
cept that the matrix used is the modularity matrix instead of
the Laplacian matrix. After solving the eigendecomposition
problem, the vertices are assigned to clusters based on the
signs of the elements in the eigenvector corresponding to the
largest eigenvalue.

Another method based on a vector programming relaxation
of the IQP was proposed in [Agarwal and Kempe, 2008].
It replaces each variable yi by an n-dimensional vector yi

with constraints yT
i yj = 1 and solves the relaxed problem

by semi-definite programming (SDP). After that, the result is
rounded to give two partitions by randomly generating a hy-
perplane to separate the vectors yi on the hypersphere. The

1The final partition is obtained by tackling multiple 2-partition
problems repeatedly.

best partition obtained out of 5,000 randomly generated hy-
perplanes is then reported as the solution.

3 Our Proposed Method
In this section, we first propose an extension of the IQP for
the 2-partition problem in (4) to the general k-partition prob-
lem. We then propose an iterative rounding scheme by solv-
ing a convex relaxation of the IQP. Some issues on tackling
the k-partition problem are discussed, including our recom-
mendation of the convex relaxation scheme to use.

3.1 k-partition Integer Quadratic Program
To facilitate extension to the k-partition problem, we first give
a different formulation of the IQP for the 2-partition problem.
Our point of departure is to rewrite the variable dij in (2) as∑2

p=1

(zpi+1
2

)(zpj+1
2

)
= 1

4

(∑2
p=1 zpizpj + 2

)
where zpi =

+1 if vi ∈ Cp and zpi = −1 otherwise. Since
∑

ij Qij =

0, the modularity q(P2) can be expressed as a sum of two
quadratic terms:

q(P2) =
1

8m
(zT1 Qz1 + zT2 Qz2), (5)

where zp = (zp1, . . . , zpn)
T . Note that (5) is equivalent

to (3) for the 2-partition problem, with the only difference be-
ing that there is redundancy in this new formulation because
z1i = −z2i.

Extension to the general case is now straightforward. Let
dij =

∑k
p=1

(zpi+1
2

)(zpj+1
2

)
= 1

4

(∑k
p=1 zpizpj + 4 − k

)
and Z = (z1, z2, . . . , zk) ∈ {−1,+1}n×k. The k-partition
optimization problem can be formulated as follows:

max
Z

1

8m
Tr(ZTQZ)

subject to zpi ∈ {−1,+1}, ∀p, ∀i
k∑

p=1

zpi = −(k − 2), ∀i. (6)

Unlike the ILP formulation based on (2) which requires
the reflexivity, symmetry and transitivity constraints to be en-
forced explicitly on the variables dij , the IQP formulation
in (6) automatically satisfies these properties. Moreover, we
note that the number of optimization variables in the IQP for-
mulation (6) is kn which is much less than O(n2) in the ILP if
k � n. The value of k corresponds to the maximum number
of clusters allowed. If a graph attains its maximum modular-
ity with k̂ clusters and we set k ≥ k̂, the optimal solution will
still involve only k̂ clusters. In practice, the number of clus-
ters needed for attaining the maximum modularity is often
found to be a small fraction of n due to the so-called reso-
lution limit [Fortunato and Barthélemy, 2007]. Thus the as-
sumption that k � n is a very reasonable one that is satisfied
in many real-world applications.

3.2 Convex Relaxation
Despite the favorable properties of the formulation in (6), its
non-convexity makes it hard to solve directly. We propose
here a simple yet effective convex relaxation scheme.

2220

Auxiliary Function
We note that the form Tr(ZTQZ) represents a real quadratic
surface centered at the origin if Z is a real-valued matrix. An
optimization method for optimizing continuous functions can
then be used instead of handling the combinatorial nature of
the original discrete IQP. Once the continuous optimization
problem has been solved, we can round the continuous values
of the solution to discrete values to approximate the discrete
optimization variables in (6).

However, the continuous version of the optimization prob-
lem in (6) is still not convex because Q is an indefinite ma-
trix. We observe that the rounding result is only affected by
the relative ordering of the continuous values instead of the
actual values. Let us consider an auxiliary function defined
as Tr(ZTQZ)−λ‖Z‖2 = Tr(ZTQZ−λZTZ). Maximizing
this auxiliary function will give a solution that approximates
the ordering of the continuous values that could be obtained
based on the original objective function. If we set λ to the
largest (positive) eigenvalue of Q, the matrix S = Q − λI
will be negative semi-definite and hence Tr(ZTSZ) is con-
cave downwards. Thus optimizing this auxiliary function is
a convex optimization problem that can be used to approxi-
mate the ordering of the variables. We also note that for the
discrete IQP in (6), optimizing the auxiliary function is ex-
actly equivalent to optimizing the original function because
‖Z‖2 = kn for zpi ∈ {−1,+1}.

Iterative Vertex Assignment
Based on the observations above, we propose an iterative al-
gorithm for vertex assignment that assigns vertices to clusters
in stages.2

Let U ⊆ V denote the set of vertices that have already been
assigned to clusters. The algorithm ends when U = V . In
each iteration, with some vertices already assigned, it solves a
convex QP to choose some vertices from Ũ = V \U to assign
to clusters and update U and Ũ accordingly. The convex QP
can be formulated as follows:

max
Z

1

8m
Tr(ZTSZ)

subject to zpi ∈ [−1,+1], ∀p, ∀vi ∈ Ũ
k∑

p=1

zpi = −(k − 2), ∀vi ∈ Ũ

zpi set to assigned values ±1, ∀p, ∀vi ∈ U .
(7)

We can see that it searches within a hypercube on the auxil-
iary function.

Suppose we start with all vertices unassigned, i.e., U =
∅. It will give a trivial solution with all zpi = −(k − 2)/k,
since {zpi}kp=1 are equal and ‖Z‖2 is minimum. To break the
symmetry, we randomly assign a vertex to the first cluster via
an equality constraint and hence U 	= ∅.

Our preliminary investigation shows that assigning all ver-
tices to clusters after solving the QP once does not give very

2The reasons for not assigning all vertices at once will be made
clear below.

good results. Instead, we use an iterative procedure. After
solving the QP in each iteration to obtain the solution Ẑ, we
only choose a fixed number C of the vertices with largest val-
ues and assign vertex vi to cluster Cq if q = argmaxp ẑpi.
This can be seen as a rounding scheme that converts the val-
ues ẑpi from [−1,+1] to {−1,+1} for the corresponding zpi.
The rationale behind this scheme is that those vertices with
high ẑpi values have higher confidence to be assigned to the
corresponding clusters. After choosing the vertices, we up-
date U and Ũ and proceed to the next iteration as long as
U 	= V .

The algorithm is summarized in Algorithm 1 below. The
parameter ρ ∈ (0, 1) affects the rate of rounding. After each
iteration, C (= max{
 n

lnn ln 1
ρ�, 1}) vertices with the largest

values are rounded, so the total number of iterations needed
is around lnn(ln 1

ρ)
−1 = O(lnn). In general, using a larger

value of ρ takes more iterations to complete the whole pro-
cedure but gives better quality in terms of the modularity ob-
tained. Thus choosing an appropriate value for ρ requires a
tradeoff between efficiency and quality.

Algorithm 1 Iterative Algorithm for Vertex Assignment
C := max{
 n

lnn ln 1
ρ�, 1}

i := rand(n)
z1i := 1; zpi := −1 for p ≥ 2
while not all vertices have been assigned do

perform QP to obtain solution Ẑ

R := C vertices in Ũ with largest values of maxp ẑpi
for each vi ∈ R do

q := argmaxp ẑpi
zqi := 1; zpi := −1 for p 	= q

end for
end while

Issues on k-partition
The algorithm described above works well for 2-partition.
When k = 2, the second constraint of (7) imposes the equal-
ity z1i = −z2i and hence the signs of the variables can re-
flect how the corresponding vertices should be assigned to
clusters. However, it does not work very well for the gen-
eral k-partition problem especially when k is large. For ex-
ample, in the beginning when only the first cluster C1 has
been assigned a randomly chosen vertex vi, {zpi}kp=2 are
equal due to symmetry. If another vertex vj is highly un-
likely to belong to cluster C1 with z1j = −1, we will see that
z2i = · · · = zki = −(k− 3)/(k− 1) due again to symmetry.
For large k, the value −(k − 3)/(k − 1) is still very small
(close to −1) making it hard to decide to which cluster vj
should be assigned.

We propose a revised form of (7) to alleviate this problem.
We note that removing the bounded region constraint on Z
does not alter the property of approximating the relative or-
dering. On the other hand, by allowing zpi ∈ (−∞,+∞), a
vertex vj can take a very negative zpj value if it is highly un-
likely to belong to cluster Cp. This makes it possible for some
zpj value to get significantly large to justify for assigning it to
a currently unassigned cluster if it does not fit into any of the

2221

already assigned clusters. The relaxed optimization problem
is as follows:

max
Z

1

8m
Tr(ZTSZ)

subject to zpi ∈ (−∞,∞), ∀p, ∀vi ∈ Ũ
k∑

p=1

zpi = −(k − 2), ∀vi ∈ Ũ

zpi set to assigned values ±1, ∀p, ∀vi ∈ U .
(8)

We have also considered another approximation scheme to
further relax the problem by removing the equality con-
straints:

max
Z

1

8m
Tr(ZTSZ)

subject to zpi ∈ (−∞,∞), ∀p, ∀vi ∈ Ũ
zpi set to assigned values ±1, ∀p, ∀vi ∈ U .

(9)

This relaxation basically removes the direct interaction be-
tween clusters and considers the assignment of vertices to
clusters independently. We can also use a simple rounding
scheme to assign vertices to clusters by identifying the largest
ẑpi values as before.

Note that in (9) the assigned vertices in U set affine plane
constraints (zpi = ±1) to yield a related convex QP problem.
Let X be equal to Z with the rows corresponding to the as-
signed vertices in U removed. By substituting the assigned
values of zpi into the objective function, the constrained QP
in (9) is equivalent to the following unconstrained QP:

max
X

1

8m
Tr

(
XTS′X+ 2FTX

)
, (10)

where S′ and F are appropriate matrices. Setting the first
derivative of the objective function in (10) to zero, it is easy to
see that this problem is equivalent to solving the linear system
S′X = −F which has a closed-form solution.

4 Experimental Validation
In this section, we present experimental results of several re-
alizations of Algorithm 1 and compare them empirically with
some closely related methods in the community detection lit-
erature. For easy reference, we use M1 to refer to using (8) for
the QP in Algorithm 1 and M2 to using (9). For each method,
we allow two variants corresponding to running with restart
(R) and without restart (N). For example, M2R refers to M2
with restart. In the algorithm, while choosing vertices for
assignment (rounding) with the restart (R) option after solv-
ing a QP, further rounding will be terminated to restart a new
QP if a previously unassigned cluster is assigned the first ele-
ment. The rationale behind the restart option is that assigning
to a new cluster may result in a large change in modularity
obtained by the QP. For example, assigning two vertices to
a newly assigned cluster together may not mean these two
vertices are close to each other. We use MATLAB to imple-
ment our methods, with M1R/M1N implemented using the

large-scale algorithm (allowing only equality constraints) of
the quadprogQP solver and M2R/M2N implemented using
the pcg preconditioned conjugate gradients method for lin-
ear systems.3 More implementation details will be provided
in Section 5. For all four variants, we need to set the pa-
rameter k for the k-partition problem as well as the rounding
parameter ρ.

Our first set of experiments is for the 2-partition problem.
The two representative and closely related methods for tack-
ling this problem are the eigenvector-based method (Eig) of
[Newman, 2006] and the vector programming method (VP)
of [Agarwal and Kempe, 2008]. For the general k-partition
problem, there does not exist any method in the literature
based on modularity maximization that tackles the prob-
lem directly. Instead, the methods (such as Eig and VP)
for 2-partition are applied repeatedly to tackle a 2-partition
subproblem at a time, often requiring a postprocessing
step at the end such as applying the Kernighan-Lin algo-
rithm [Kernighan and Lin, 1970] in order to obtain reason-
able results. Thus they are best regarded as hybrid methods.
Therefore our second set of experiments for the k-partition
problem will mainly be based on studying the effect of vary-
ing the k parameter on the four variants of our algorithm.
Nevertheless, we will quote some results reported for other
methods on the same datasets to put our work in perspec-
tive. Note, however, that the results reported for CNM and
our method do not apply any postprocessing method while
those for other methods do.

We use six network datasets commonly used by other re-
searchers working on this topic, with network size (i.e., ver-
tex set size n) varying from 34 to 27,519. These datasets are
the karate club network of Zachary (karate) [Zachary, 1977],
a social network of bottlenose dolphins (dolp) [Lusseau
et al., 2003], a collaboration network of jazz musi-
cians (jazz) [Gleiser and Danon, 2003], a metabolic network
for nematode (meta) [Jeong et al., 2000], a network of email
contacts at a university (email) [Guimerà et al., 2003], and
a coauthorship network of scientists working in condensed
matter physics (phy) [Newman, 2001].

4.1 2-partition Experiments
We run implementations of M2R, Eig and VP on a Windows-
based Genuine Intel(R) CPU T2500 @ 2.00GHz machine.
Table 1 shows the experimental results reporting both clus-
tering quality and efficiency.

Network Size M2R Eig VP
karate 34 0.3718[0.09] 0.3715[0.01] 0.3718[7.46]
dolp 62 0.4027[0.18] 0.3899[0.01] 0.4027[8.22]
jazz 198 0.3193[0.25] 0.3048[0.01] 0.3151[15.3]
meta 453 0.3188[0.27] 0.2648[0.01] 0.3175[65.0]
email 1,133 0.3469[0.51] 0.2850[0.02] 0.3675[607]
phy 27,519 0.4250[10.2] 0.0346[0.75] -

Table 1: Modularity q(P2) and running time (in seconds
shown inside square brackets) of M2R, Eig and VP.

3Our MATLAB implementation can be downloaded from
http://www.cse.ust.hk/∼dyyeung/code/cqp.rar.

2222

For M2R, we set ρ = 0.9 and perform 10 runs for each
dataset. The modularity and running time reported are the
average values over 10 runs. For 2-partition, since z1i = −z2i
for all vi ∈ U , the optimization variables in (9) automatically
satisfy z1j = −z2j for all vj ∈ Ũ . Therefore M1R and M2R
are equivalent when k = 2. We choose M2R instead of M1R
here because solving a linear system using pcg is 3 to 6 times
faster.

The randomness of our algorithm comes from the initial
random vertex selection for assigning to the first cluster. We
notice that the result obtained is not very sensitive to the ran-
dom initialization. For the karate network, for instance, we
obtain the optimal modularity (0.3718) in 9 out of 10 runs
and a suboptimal value (0.3715) only once when the first ver-
tex chosen happens to lie between two clusters. For all the
networks tested, the standard deviation of the modularity ob-
tained over 10 runs is always below 0.0023.

From the results, we notice that M2R always outperforms
Eig in terms of the modularity measure and achieves cluster-
ing quality comparable to VP but requires significantly less
running time. Although Eig is simple and hence very effi-
cient, it can only make use of the leading eigenvector with
the largest eigenvalue which cannot capture well the network
behavior especially for large networks. For example, for the
phy network, using the leading eigenvector can only give a
very low modularity of 0.0346 but it can reach 0.3599 if the
eigenvector corresponding to the 18th largest eigenvalue is
used instead. Although VP can often obtain a near-optimal
quality, its need for O(n2) optimization variables makes it
infeasible for moderately large networks, including the phy
network. Our algorithm maintains a good tradeoff between
quality and efficiency, with roughly linear time complexity
with respect to the number of vertices.

4.2 k-partition Experiments
We now compare the four variants of our algorithm for the
k-partition problem on the email network by varying the pa-
rameter k. For each variant, we perform 10 runs for each
value of k and report the average result.

Figure 1 summarizes the results obtained by the four vari-
ants. We can see that M1 is generally inferior to M2. Al-
though they have similar behavior when k is less than the
optimal number of clusters k̂, the performance of M1 deteri-
orates as k increases. For M2, the modularity increases ini-
tially and becomes steady when k exceeds around 10. More-
over, the number of clusters l obtained by M1 is not very
stable and varies a lot as k increases, making it crucial to
choose an appropriate k value for M1 to work effectively. If
k is set too large, it is difficult to have an appropriate round-
ing scheme when the equality constraints of (8) vary. On the
other hand, for M2, since the interaction between clusters is
removed after eliminating the equality constraints, the l value
obtained is independent of k when k exceeds around 10. This
explains why M2 always reports the same result for larger k
values. Previous work shows that k̂ is about 8 to 11 [Noack
and Rotta, 2009], implying that the l value found by our al-
gorithm is a good approximation of k̂.

Allowing for restart usually leads to a larger l value but re-

Figure 1: Modularity q(Pk) (upper) and number of clusters l ob-
tained (lower) by varying k for the email network when ρ = 0.81.

quires some extra iterations. When ρ is large enough, the
restart option makes very little difference. When ρ is not
large, M2R usually outperforms M2N as shown in Figure 1
because the restart option avoids assigning too many vertices
to a newly assigned cluster. However, the effect on M1 is not
obvious and it depends on the dataset used. The benefit of the
restart option is generally more significant when ρ is small or
l is large, but the number of extra iterations needed increases
with l.

In general, we recommend using M2R over other variants
because M2 is more stable than M1 and allowing restart gen-
erally gives better performance.

4.3 Comparison with Other Methods
We now quote some results from the literature reported for
other methods to give a comparison with our method. The
four methods included in our comparison are an agglomera-
tive algorithm (CNM) [Clauset et al., 2004], an eigenvector-
based divisive algorithm (Eig) [Newman, 2006], a vector pro-
gramming algorithm (VP) [Agarwal and Kempe, 2008], and
a mutli-level algorithm (MLA) [Noack and Rotta, 2009]. For
our algorithm, we use the pcg implementation of M2R and
run it on a Linux-based Genuine Intel(R) Core(TM)2 Duo

2223

E8400 @ 3.00GHz machine. Both the average and maxi-
mum modularity and average running time over 10 runs are
reported for our method. Table 2 summarizes the results for
all six network datasets. Note that no results were reported
for CNM and Eig on the dolp network and VP cannot be ap-
plied to large networks such as the phy network. All methods
compared except CNM applied postprocessing algorithms for
fune-tuning in order to obtain the results reported here.

Network qmean qmax time CNM Eig VP MLA
karate .4103 .4174 .099 .381 .419 .420 .4197
dolp .5219 .5268 .212 - - .526 .5276
jazz .4400 .4414 .269 .439 .442 .445 .4447
meta .4224 .4285 1.45 .402 .435 .450 .4461
email .5348 .5465 2.66 .494 .572 .579 .5774
phy .7830 .7832 6311 .668 .723 - .8143

Table 2: Average and maximum modularity q(Pk) and av-
erage running time (in seconds) over 10 runs by M2R for
ρ = 0.9 as well as modularity reported for other methods
in the literature.

We can see that M2R outperforms CNM consistently for all
datasets. For small networks, M2R generally obtains close to
optimal modularity values. For larger networks, it can still
obtain competitive results even without applying any post-
processing step.4 For the karate network, we note that Eig
without postprocessing can only obtain a modularity of 0.393
which is much lower than that obtained by M2R. Unlike the
other methods which are hierarchical in taking an agglom-
erative or divisive approach to tackle the modularity maxi-
mization problem, a major difference of our method is that it
tackles the k-partition problem directly. As a consequence,
our method can tackle the k-partition problem directly even
when k is set to be smaller than k̂ while other methods cannot.

Our method also has competitive advantage in terms of
running time. For networks with n < 1000, it is very fast
and gives the results almost instantly. Empirically we found
that the time complexity of our algorithm is about linear in
the number of variables, i.e., O(kn). The main reason for the
dramatic increase in running time for the phy network is due
to the large l value. The restart option for M2R adds around
l extra iterations. For instance, at ρ = 0.9, the number of
iterations reported by M2N is only 98, while M2R is 208 as
l = 128. M2N only takes about 1800s to complete while
M2R takes more than 6000s.

In summary, these experiments show that our method can
scale well with the network size and can obtain results com-
parable to methods that are computationally much more de-
manding or require postprocessing.

5 Some Implementation Details and
Complexity Analysis

In this section, we will provide some implementation details
including specific techniques to speed up our algorithm.

4Although we could also perform postprocessing to further im-
prove the results, our priority here is to push the limit of a principled
approach based entirely on a well-formulated optimization problem.

The MATLAB functions needed for our optimization prob-
lem do not support direct optimization of the trace form
Tr(ZTSZ) with respect to a matrix variable Z. As such,
we construct a matrix M in the form of a block diagonal
matrix with S appearing k times in the diagonal blocks and
use the vec operator to vectorize Z to a long column vector
z ∈ nk. Thus we can rewrite Tr(ZTSZ) as zTMz with-
out involving the trace operator. However, directly storing
M requires O(kn2) space. To overcome this problem, we
note that S can be expressed as S = A − λI − ddT

2m where
d is the degree vector (i.e., a vector of the degrees of the
n vertices) and hence it is sufficient to store only A and d
which require O(m + n) space in total. Since A is typically
sparse for the applications of interest to us, m is typically
O(n) rather than O(n2). Besides the great saving in terms
of storage, this scheme also leads to significant speedup in
matrix multiplication. While performing the matrix multi-
plication Sz1 directly requires O(n2) operations, performing
it in the form Az1 − λz1 − d(dT z1)

2m instead requires only
O(m + n) operations. Therefore, the matrix multiplication
Mz = ((Sz1)

T , . . . , (Szk)
T)T requires only O(k(m + n))

operations and O(m+ kn) space.
Using the scheme above, we can use quadprog for M1

and pcg for M2 by passing function arguments for comput-
ing Mz. Normally quadprog or pcg converges in T (kn)
steps as there are kn variables. In addition, our algorithm re-
quires O(lnn) iterations. Therefore, the total time complex-
ity is O(T (kn)k(n +m) lnn). This agrees with our empiri-
cal results showing that the running time is roughly linear to
O(kn) if we take T (kn) = O(1) for these datasets because
the number of steps needed varies in a small range (1 to 39)5

and also m = O(n), resulting in the overall time complexity
of O(kn lnn). We note that the lnn factor is not easy to ob-
serve unless n is very large. With the restart option, around
l ≤ k extra iterations are added and thus the overall time
complexity increases to O(kn(lnn+ k)).

Moreover, we can speed up quadprog further by sub-
stituting the assigned values to give a sum of quadratic and
linear terms similar to (10). Doing so reduces the number of
variables from kn to k|Ũ |. However, this requires deleting
appropriate rows and columns in S (and hence A) to obtain
S′. Deleting rows and columns in a sparse matrix can be slow
if we use an ordinary row/column deletion method. To over-
come this problem, we delete appropriate rows and columns
from an identity matrix (which can be done efficiently) to
construct a (sparse) matrix B so that AB is equal to A with
the appropriate columns deleted. Deletion of rows can be
done in a similar way. This greatly reduces the time used to
find S′ and F in (10) and is very useful for both quadprog
and pcg.

We search for the appropriate value of k by doubling it
each time to rerun M2. We stop this procedure when l < k

5As | ˜U| gets smaller, pcg converges in much fewer steps. The
number of steps ranges from 14 to 39 in the first pcg operation for
all six networks, but it gradually decreases and needs only one or
two steps to converge in the last pcg operation. For example, in the
phy network, the initial numbers of steps are: 39, 29, 23, 23, 19, 16,
16, 14, 14, . . .

2224

3

or the improvement in modularity is very small. The stable
number of clusters, denoted l′, can be found when k is at
most equal to 2l′. In addition, the number of steps for pcg to
converge is independent of k since the exact solution of the
linear system for each cluster can be found using the conju-
gate gradient method in at most n steps. Hence T (kn) can be
reduced to O(n).6 So the total time complexity for finding l′

is O(n(n + m) lnn
∑ln l′+1

i=1 2i) = O(l′n(n + m) lnn). If
we assume l′ ≈ k̂ , k̂ = O(lnn) and m = O(n) for social
networks, the overall time complexity is O(n2 ln2 n). As for
space complexity, the overall complexity is O(m + kn) =
O(n lnn).

6 Conclusion
We have presented a new formulation which allows us to
perform modularity maximization for tackling the general k-
partition problem directly. Our formulation requires only kn
variables in an IQP as compared to O(n2) variables in an ILP
formulation. Based on a relaxation of the formulation, we
have presented an iterative algorithm for tackling the prob-
lem. Our experiments give very encouraging results. Not
only is the proposed method scalable in terms of both time
and space complexity, but it also gives very competitive re-
sults with respect to the modularity measure. Moreover, our
method provides a way to determine the number of communi-
ties in the network as long as the maximum number allowed
in the formulation is no less than the actual number. This ca-
pability makes our method applicable under more general set-
tings. Our future research will also consider the use of qual-
ity measures other than modularity for solving the k-partition
problem under an optimization framework.

Acknowledgment
This research has been supported by General Research Fund
621310 from the Research Grants Council of Hong Kong.

References
[Agarwal and Kempe, 2008] G. Agarwal and D. Kempe.

Modularity-maximizing network communities via mathe-
matical programming. The European Physical Journal B,
66(3):409–418, 2008.

[Brandes et al., 2008] U. Brandes, D. Delling, M. Gaertler,
R. Görke, M. Hoefer, Z. Nikoloski, and D. Wagner. On
modularity clustering. IEEE Transactions on Knowledge
Data Engineering, 20(2):172–188, 2008.

[Clauset et al., 2004] A. Clauset, M. E. J. Newman, and
C. Moore. Finding community structure in very large net-
works. Physical Review E, 70(6):066111, Dec 2004.

[Fortunato and Barthélemy, 2007] S. Fortunato and
M. Barthélemy. Resolution limit in community de-
tection. Proceedings of the National Academy of Sciences
of the United States of America, 104(1):36, 2007.
6In practice, T (kn) is found to be much smaller than O(n) prob-

ably because the constant of proportionality is small and hence no-
ticeable change can only be observed when the network size n is
huge.

[Girvan and Newman, 2002] M. Girvan and M. E. J. New-
man. Community structure in social and biological net-
works. Proceedings of the National Academy of Sciences
of the United States of America, 99(12):7821–7826, June
2002.

[Gleiser and Danon, 2003] P. Gleiser and L. Danon. Com-
munity Structure in Jazz. Advances in Complex Systems,
6(4):565–573, 2003.

[Guimerà et al., 2003] R. Guimerà, L. Danon, A. Dı́az-
Guilera, F. Giralt, and A. Arenas. Self-similar community
structure in a network of human interactions. Physical Re-
view E, 68(6):065103, Dec 2003.

[Jeong et al., 2000] H. Jeong, B. Tombor, R. Albert, Z. N.
Oltvai, and A. L. Barabàsi. The large-scale organization
of metabolic networks. Nature, 407(6804):651–654, Oct
2000.

[Kernighan and Lin, 1970] B. Kernighan and S. Lin. An effi-
cient heuristic procedure for partitioning graphs. Bell Sys-
tem Technical Journal, pages 291–307, 1970.

[Lusseau et al., 2003] D. Lusseau, K. Schneider, O. Bois-
seau, P. Haase, E. Slooten, and S. Dawson. The bottlenose
dolphin community of doubtful sound features a large pro-
portion of long-lasting associations. Behavioral Ecology
and Sociobiology, 54:396–405, 2003. 10.1007/s00265-
003-0651-y.

[Newman and Girvan, 2004] M. E. J. Newman and M. Gir-
van. Finding and evaluating community structure in net-
works. Physical Review E, 69(2):026113–+, feb 2004.

[Newman et al., 2006] M. Newman, A.L. Barabási, and D.J.
Watts, editors. The Structure and Dynamics of Networks.
Princeton University Press, Princeton, NJ, USA, 2006.

[Newman, 2001] M. E. J. Newman. The structure of sci-
entific collaboration networks. Proceedings of the Na-
tional Academy of Sciences of the United States of Amer-
ica, 98(2):404–409, 2001.

[Newman, 2006] M. E. J. Newman. Modularity and com-
munity structure in networks. Proceedings of the Na-
tional Academy of Sciences of the United States of Amer-
ica, 103(23):8577–8582, 6 2006.

[Noack and Rotta, 2009] A. Noack and R. Rotta. Multi-level
algorithms for modularity clustering. In Jan Vahrenhold,
editor, SEA, volume 5526 of Lecture Notes in Computer
Science, pages 257–268. Springer, 2009.

[Shi and Malik, 1997] J. Shi and J. Malik. Normalized cuts
and image segmentation. In Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition, pages 731–737, San Juan, Puerto Rico, 17–
19 June 1997.

[Zachary, 1977] W. W. Zachary. An information flow model
for conflict and fission in small groups. Journal of Anthro-
pological Research, 33:452–473, 1977.

2225

