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Abstract

Largely motivated by Semantic Web applications,
many highly scalable, but incomplete, query an-
swering systems have been recently developed.
Evaluating the scalability-completeness trade-off
exhibited by such systems is an important require-
ment for many applications. In this paper, we ad-
dress the problem of formally comparing complete
and incomplete systems given an ontology schema
(or TBox) T . We formulate precise conditions on
TBoxes T expressed in the EL, QL or RL profile of
OWL 2 under which an incomplete system is indis-
tinguishable from a complete one w.r.t. T , regard-
less of the input query and data. Our results also al-
low us to quantify the “degree of incompleteness”
of a given system w.r.t. T as well as to automati-
cally identify concrete queries and data patterns for
which the incomplete system will miss answers.

1 Introduction

Ontology schemas (or TBoxes) are often used for describing
the meaning of data stored in various sources. In this set-
ting, query languages are based on conjunctive queries (CQs),
with the ontology providing the vocabulary used in queries
[Glimm et al., 2007; Lutz et al., 2009; Calvanese et al., 2007].

Largely motivated by Semantic Web applications, there has
been a growing interest in the development of ontology-based
query answering systems that are highly scalable in practice,
but that are incomplete, i.e., they are not guaranteed to com-
pute all query answers for some combinations of queries, on-
tologies, and datasets accepted as valid inputs. Examples of
widely-used such systems are Oracle’s Semantic Data Store,
Jena, DLEJena, OWLim, Minerva and Sesame.

A challenge when using incomplete systems is to evalu-
ate the scalability-completeness trade-off exhibited by differ-
ent systems for a given application. As recently pointed out
[Stoilos et al., 2010b], the use of existing performance evalu-
ation benchmarks, such as LUBM [Guo et al., 2005], has se-
rious limitations for this purpose. In particular, results using
these benchmarks tell us little about the system’s behaviour
for the application at hand: they are limited to a specific on-
tology schema (the LUBM TBox about an academic domain),

queries (LUBM contains a fixed pre-computed set of 14 sam-
ple queries), and datasets (a fixed number of relational struc-
tures hard-coded into the benchmark’s scripts). Furthermore,
correct answers can only be measured by comparison with the
output of a complete system, and cannot be verified for large
datasets that no complete system can handle.

The framework in [Stoilos et al., 2010b; 2010a] partly ad-
dresses these limitations. The intuition behind these works is
that given a TBox T and query q, it may be possible to com-
pute a finite collection of datasets, called a testing base, such
that if a system is complete for T , q and each dataset in the
collection, then it will also be complete for any dataset. In
this case, one could say that an incomplete system is (q, T )-
complete—that is, it behaves exactly like a complete reasoner
w.r.t. q and T , and regardless of the data (which is typically
unknown and/or frequently changing). Furthermore, answers
for each dataset in a testing base are known at generation
time (thus, easy to verify), and the framework also provides
a quantitative measure of completeness that makes compar-
ison between different systems possible. Although there are
ontologies and queries for which such testing base would nec-
essarily be infinite, Stoilos et al. also identified sufficient con-
ditions on T and q under which a (finite) testing base is guar-
anteed to exist and provided algorithms for computing it.

This framework, however, relies on the assumption that
both the TBox and queries of interest are known. Although in
many applications the TBox is under the control of the appli-
cation developers, queries depend on users’ needs and appli-
cation developers may only have a rough idea of which ones
might be of particular relevance. Consequently, the assump-
tion that test queries should be fixed in advance for evaluation
purposes is likely to be too strict a requirement.

In this paper, we address this limitation and develop a novel
framework in which completeness evaluation depends only
on the application’s TBox T , and not on a set of pre-defined
queries. More precisely, given T , we study the problem of
generating a finite collection of conjunctive queries (a query
testing base), such that if a system is (q, T )-complete for each
query q in the collection, then it will also be (q′, T )-complete
for any arbitrary query q′. As well as providing a new quan-
titative measure of completeness depending only on T , this
would allow us to identify circumstances under which an in-
complete reasoner is indistinguishable from a complete one
for a particular TBox T , regardless of the user’s query and
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input data. As a result, application developers would be able
to assess with a much higher degree of confidence whether a
given system meets their needs.

In practice, our framework relies on the techniques devel-
oped in [Stoilos et al., 2010b] and [Stoilos et al., 2010a] in
order to check whether a system is (q, T )-complete for each
q in a query testing base (and hence we are subject to their
same practical limitations). Conceptually, however, we are
addressing a very different problem since we are interested in
automated query generation, rather than in data generation.

It is worth emphasising that automated query generation
is an active research topic in databases [Poess and Stephens,
2004; Khalek and Khurshid, 2010]. The focus in the database
literature, however, is on performance evaluation rather than
on completeness of the evaluated query engines.

The main contributions of this paper are as follows:
• We extend the framework in [Stoilos et al., 2010b] with

the notion of a query testing base.
• We explore the limitations of the new framework and

formulate precise conditions under which a query testing
base would necessarily be infinite.

• We identify sufficient conditions on T for which a (fi-
nite) query testing base can be efficiently obtained. In-
terestingly, such sufficient conditions are strongly re-
lated to the notion of weak acyclicity, which is widely
used in the context of data exchange [Fagin et al., 2005].

• We present query generation algorithms for the logics
underpinning the QL, EL and RL profiles of the new
standard ontology language OWL 2 [Motik et al., 2009].

• We provide preliminary empirical evidence suggesting
that our framework is feasible in practice.

This paper is accompanied with an online technical report
containing complete proofs and additional technical details.1

2 Preliminaries

Description Logics We assume basic familiarity with DL
syntax, semantics and standard reasoning problems.

When in Section 3 we speak of an arbitrary description
logic L, we refer to a fragment of the DLs underpinning
OWL and OWL 2. We use standard notions of an L-TBox
T (the schema), an L-ABox A (the data), and an L-ontology
O = T ∪ A, but assume that ABoxes contain only atomic
assertions of the form A(a) or R(a, b), with A and R atomic.
Also, we sometimes use the standard notion of homomor-
phism (isomorphism) between ABoxes. Finally, to avoid con-
flating schema and data, we only consider DLs without nom-
inals (i.e., that do not allow individuals in the TBox).

We next recapitulate the syntax of the concrete DLs men-
tioned in Section 4, namely DL-Lite2 [Calvanese et al., 2007]
and EL [Baader et al., 2005], which provide the logical un-
derpinning for the QL and EL profiles of OWL 2.

A role is an atomic role R or its inverse R−. The func-
tion ar(R, a, b) takes a role R and individuals a, b, and returns

1http://ijcai2011.tripod.com/querycompleteness.pdf
2The logic used in this paper is the simplest one among those in

the DL-Lite family, and it is commonly referred to as DL-Litecore.

R(a, b) if R is atomic, or P (b, a) if R = P−, with P atomic.
A DL-Lite-concept B is either atomic, or of the form ∃R.�
with R a role. A DL-Lite-TBox is a finite set of GCIs of the
form B1 � B2 (positive GCI), or B1 � ¬B2 (negative GCI),
with B1 and B2 DL-Lite concepts.

The set of EL-concepts is given by the following grammar,
where A,R are atomic and C(i) are EL-concepts:

C := � | A | C1 � C2 | ∃R.C

An EL-TBox T is a finite set of GCIs of the form C1 � C2

with C1 and C2 EL-concepts. We use the notation C1 ≡ C2

as an abbreviation for C1 � C2 and C2 � C1. We assume
from now on that EL-TBoxes are normalised, i.e., that each
GCI in T is in one of the following forms, with A(i) atomic
or �, and R atomic: A1 � A2, A1 � A2 � A, A1 � ∃R.A2,
or ∃R.A2 � A1.

The DLs considered in this paper can be seen as fragments
of First-Order Logic (FOL), and their semantics is standard
[Baader et al., 2002]. The definitions of reasoning problems
such as consistency and entailment are also standard.
Conjunctive Queries We use standard notions of (function-
free) term and variable. A concept atom is of the form A(t)
with A an atomic concept and t a term. A role atom is of
the form R(t, t′) for R an atomic role, and t, t′ terms. A
conjunctive query (CQ) q is an expression of the form

q(x1, . . . , xn) ← {α1, . . . , αm}
where each αi is a concept atom or a role atom and each xj

is a distinguished variable occurring in some αi. A certain
answer to q w.r.t. O = T ∪ A is a tuple c = 〈c1, . . . , cn〉 of
individuals such that O entails the FOL formula obtained by
building the conjunction of all atoms αi in q, replacing each
distinguished variable xj with cj and existentially quantify-
ing over the remaining variables. We denote with cert(q,O)
the set of all certain answers to q w.r.t. O. Finally, we some-
times use the well-known notions of homomorphism from a
query q to q′ and between a CQ and an ABox.
The Chase CQ answering in L ∈ {DL-Lite, EL} can be
characterised according to the notion of chase, adapted from
database dependency theory. Given a consistent L-ontology
O = T ∪ A, chaseL(O) is a (possibly infinite) forest-shaped
ABox constructed step-by-step from A and which represents
all models of O for the purpose of CQ answering. More
precisely, cert(q,O) = cert(q, chaseL(O)), where we abuse
notation and use cert(q, chaseL(O)) to represent those an-
swers to q w.r.t. chaseL(O) containing only individuals from
A (which we call named chase individuals from now on).

The chase construction rules for DL-Lite and EL are given
in [Calvanese et al., 2007] and [Rosati, 2007], respectively.
They are also given in a compact way in our technical report.

3 Framework

We next present our query generation framework. We start
by recalling the notion of a CQ answering algorithm given in
[Stoilos et al., 2010b], which will allow us, on the one hand,
to abstract from the specifics of implemented systems and, on
the other hand, to establish general results that hold for any
system satisfying certain basic properties.
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Definition 1. A CQ answering algorithm ans for a DL L is a
procedure that, for each L-ontology O and CQ q computes in
a finite number of steps a set of tuples ans(q,O) of the same
arity as the certain answers to q.

It is sound if, for each O and q, ans(q,O) ⊆ cert(q,O),
and it is complete if cert(q,O) ⊆ ans(q,O).

It is monotonic if ans(q,O) ⊆ ans(q,O′) for each q, O
and O′ such that O ⊆ O′.

It is invariant under renamings if, for each q, O = T ∪ A,
and O′ = T ∪ A′ with A and A′ isomorphic, ans(q,O) and
ans(q,O′) are identical modulo the same isomorphism.

Finally, ans is well-behaved if it is sound, monotonic and
invariant under renamings.

Intuitively, a well-behaved algorithm implements the se-
mantics of CQ answering faithfully: query answers can only
grow if we add axioms to the ontology, and they cannot de-
pend on trivial renamings of ABox individuals. This allows
us to rule out “unreasonable” algorithms at this level of gener-
ality. All incomplete systems known to us are well-behaved.

We next recall the notion of completeness for a fixed query
q and TBox T studied in [Stoilos et al., 2010b; 2010a].
Definition 2. Let L be a description logic, q a CQ, T an L-
TBox and ans a CQ answering algorithm for L. We say that
ans is (q, T )-complete if for each ABox A s.t. O = T ∪A is
consistent, we have that cert(q,O) ⊆ ans(q,O).

We can then introduce our notion of a query testing base:
a set of CQs for a TBox T that we can use to ensure that an
incomplete reasoner behaves exactly like a complete one for
T , regardless of the input query and data.
Definition 3. Let L be a description logic, and let T be an
L-TBox. A Query Testing Base (QTB) Q for T and a class
CL of CQ answering algorithms for L is a finite set of CQs
such that the following property holds for each algorithm ans
in CL: If ans is (q, T )-complete for each q ∈ Q, then it is
also (q′, T )-complete for each CQ q′.

To make our results as general as possible, we have param-
eterised QTBs w.r.t. a given class of algorithms—that is, a
family of algorithms that share certain properties.

Unfortunately, as shown by the following theorem, QTBs
fail to exist even for the empty ontology because such a QTB
would need to contain infinitely many queries.
Theorem 4. Let L be a DL. No QTB exists for T = ∅ and
the class of well-behaved CQ answering algorithms for L.

Proof. Let Q be an arbitrary, but finite, set of CQs and let
m be the maximum number of variables in a query from Q.
Consider also the following query:

q(x) ← {R(x, y1), R(y1, y2), . . . , R(ym−1, ym)}

We provide a well-behaved algorithm ans for L that is (p, ∅)-
complete for each p ∈ Q, but it is not (q, ∅)-complete, which
proves our theorem. Let ans proceed as follows when given a
CQ qin and an L-ontology Oin = Tin ∪ Ain:
• If Tin �= ∅, return cert(qin,Ain)

• If Tin = ∅, do the following:
1. If qin has at most m vars., return cert(qin,Ain).

2. Otherwise, return the empty set.
The algorithm is clearly (p, ∅)-complete for each p ∈ Q, as it
returns cert(p,Ain). It is, however, incomplete for q, which
contains m+1 variables, as it returns the empty set regardless
of Ain. Finally, ans is clearly sound, invariant under renam-
ings (the way it operates does not depend on Ain, but rather
on the shape of qin and Tin), and also monotonic.

The proof of Theorem 4 suggests that the notion of a well-
behaved algorithm is too general: no matter how large a QTB
is, we can find a (rather unnatural) well-behaved algorithm
that is complete for all queries in the QTB, but incomplete
for some other queries. To obtain useful results, we thus need
to require additional properties to CQ answering algorithms.

Towards this goal, we observe that most incomplete sys-
tems are based on database or RDF triple store technologies.
Given O = T ∪A and q as input, these systems first determin-
istically “saturate” A with new assertions using the knowl-
edge in T and then answer the query q directly w.r.t. the sat-
urated ABox, as if it was a database. Hence, their behaviour
can be characterised at a general level as given next.
Definition 5. An ABox-saturation algorithm for L is an al-
gorithm that given as input an L-ontology O = T ∪ A and a
CQ q proceeds as follows:

1. It computes a saturation ABox Af whose contents de-
pend only on O, and such that A ⊆ Af .

2. It returns those answers to q w.r.t. Af containing only
individuals from A. From now on, we abuse notation
and write cert(q,Af ) to represent (only) such answers.

Furthermore, we assume that ans is stable: if Af is the satu-
ration ABox for T ∪A, then the saturation ABox for T ∪Af

is also Af .
Note that the negative result in Theorem 4 does not apply

to the class of well-behaved ABox-saturation algorithms. In-
deed, ABox-saturation algorithms are always complete if the
TBox is empty. If one such algorithm is incomplete, it is be-
cause it fails to capture relevant knowledge from the TBox.

As shown in the following theorem, however, there exist
TBoxes expressed in rather simple ontology languages for
which no QTB exists, even if we restrict ourselves to well-
behaved ABox-saturation algorithms.
Theorem 6. There is a TBox T in L ∈ {EL,DL-Lite} such
that no QTB exists for the class of all well-behaved ABox-
saturation algorithms for L.

Proof. (Sketch) Let Q be an arbitrary, but finite, set of CQs
and let m be the maximum number of variables in a query
from Q. Consider the following EL-TBox

Tel = {A � ∃R.A}
and the following query.
q(x) ← {R(x, y1), R(y1, y2), . . . , R(ym−1, ym), A(ym)}

Similarly to the proof of Theorem 4, we can provide a well-
behaved ABox-saturation algorithm that is (p, Tel)-complete
for each p ∈ Q, but not (q, Tel)-complete. Details are pro-
vided in our technical report. The proof for DL-Lite is anal-
ogous, by considering query q and the TBox Tlite = {A �
∃R.�, ∃R−.� � A}, which entails Tel.
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4 Computing a Query Testing Base

In this section we identify fairly general, yet practical, suffi-
cient conditions on TBoxes that guarantee the existence of a
QTB and yield algorithms to compute such a QTB efficiently.

Towards this goal, we observe that the proof of Theorem
6 exploits the fact that we can have DL TBoxes which imply
cycles over existential quantifiers. As a result, no matter how
large the maximum role depth of a query in the QTB is, we
can always define an algorithm that “unfolds” the cycle only
up to that depth. Such algorithm may then be incomplete for
queries with a larger role depth. Our intuition is that a QTB
for T may be guaranteed to exist if we can ensure that such
cycles do not occur (even implicitly) in T .

In Section 4.1 we focus on the logics DL-Lite and EL and
provide a sufficient condition for preventing cycles. We as-
sume from now onwards that EL TBoxes are normalised as
described in the preliminaries.

In Section 4.2 we focus on the description logics underpin-
ning the RL profile of OWL 2 [Motik et al., 2009], and show
that for such DLs a QTB always exists.

4.1 DL-Lite and EL
To preclude cycles in DL-Lite and EL TBoxes, we rely on
the weak acyclicity condition borrowed from database theory
[Fagin et al., 2005] and which can be checked efficiently.

Roughly speaking, if O = T ∪A and T is weakly acyclic,
then a run of the corresponding chase does not lead to an
infinite generation of new individuals. Thus, weak acyclicity
also prevents cyclic existential quantification.

The following definition is a straightforward application of
the general notion of weak acyclicity to DL-Lite and EL.
Definition 7. Let T be an L-TBox, with L ∈ {DL-Lite, EL}.
The dependency graph for T is the smallest graph with the
following elements:

• Nodes: A node vA for each atomic concept A and nodes
vR/1 and vR/2 for each atomic role in T .

• Edges: For R atomic and A,B either atomic or �, let
[A] = A, [∃R.B] = R/1 and [∃R−.B] = R/2.

– If T ∈ DL-Lite, then the graph contains the follow-
ing edges for each positive GCI (B � C) ∈ T :
∗ An edge v[B] → v[C].

∗ A special edge v[B]
∗→ vR/2 if C = ∃R.�.

∗ A special edge v[B]
∗→ vR/1 if C = ∃R−.�.

– If T ∈ EL, it has edges vA → v� and vR/1 → v�
for each atomic A and R, as well as the following
edges for each ( �

1≤i≤n
Bi � C) ∈ T with n ≤ 2:

∗ Edges v[Bi] → v[C].

∗ Special edges v[Bi]
∗→ v[D] and v[Bi]

∗→ v[R/2] if
C = ∃R.D.

The dependency graph for T is weakly acyclic if it con-
tains no cycle going through a special edge.

Intuitively, special edges signal the possible creation of a
new individual via existential quantification during the chase
construction, whereas the other edges keep track of possible
propagation of information between existing individuals.

Example 8. Consider the following EL-TBox:

T = {Student ≡ ∃takesCourse.Course,
GradCourse � Course,

GradStudent � ∃takesCourse.GradCourse}
Although the dependency graph for T is cyclic, there is no
cycle involving a special edge; hence, T is weakly acyclic.

The next theorem follows from a general result for weakly
acyclic tuple-generating dependencies [Fagin et al., 2005].
Theorem 9. Let L ∈ {DL-Lite, EL} and let O = T ∪ A be
a consistent L-ontology such that T is weakly acyclic. Then,
there is a polynomial in the size of A bounding the length of
every chase sequence.3

Hence, weak acyclicity establishes a bound on the size of
the chase (and hence also of the canonical model of O).

Since the chase is forest-shaped, each unnamed individual
is connected to a named individual via a unique “path” of
role assertions. Therefore, we can characterise the assertions
generated by the application of chase rules as follows.
Definition 10. Let O = T ∪ A be a consistent L-ontology
for L ∈ {DL-Lite, EL}. A path of chaseL(O) is a subset of
chaseL(O) of the form {A(a)} with A atomic, a named and
A(a) �∈ A, or {ar(R1, a, b1), . . . , ar(Rn, bn−1, bn), B(bn)}
with B either atomic or �, a named and each bi unnamed.

We can then define a family of queries for checking
whether an incomplete system captures the relevant informa-
tion that could possibly be introduced by the application of
chase rules. Such queries should depend only on the shape of
the TBox T (and not on the particular input ABox).
Definition 11. Let L ∈ {DL-Lite, EL}, let T be an L-TBox
with Tp ⊆ T the subset of T containing no negative GCIs,
and let LHS = {C | C � D ∈ Tp}. For each C ∈ LHS, let
c1 and c2 be individuals uniquely associated to C, and let

AC =

⎧⎨
⎩
{A(c1)} if C = A

{A1(c1), A2(c1)} if C = A1 �A2

{ar(R, c1, c2), A(c2)} if C = ∃R.A

where A is either atomic or �. Let AT =
⋃

C∈LHS AC . A
CQ q is a chase query w.r.t. T if it can be obtained from a
path of chaseL(T ∪ AT ) by replacing each individual c with
a variable xc such that xc is distinguished iff c is named.4

Example 12. The following are all the chase queries (modulo
isomorphisms) w.r.t. TBox T from Example 8:

q1(x) ← {Course(x)}
q2(x) ← {Student(x)}
q3(x) ← {takesCourse(x, y)}
q4(x) ← {takesCourse(x, y),Course(y)}
q5(x) ← {takesCourse(x, y),GradCourse(y)}

The following lemma shows that chase queries can be used
to check for the presence of any relevant piece of new infor-
mation introduced by the application of chase rules.5

3A chase sequence is any sequence of chase rule applications
transforming A into chaseL(O).

4Note that a chase query has exactly one distinguished variable.
5A detailed proof can be found in our technical report.
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Lemma 13. Let L ∈ {DL-Lite, EL} and let O be a con-
sistent L-ontology. The CQ obtained by replacing in a
path of chaseL(O) each (un)named individual c with an
(un)distinguished variable xc is a chase query w.r.t. T .

As a result, if an ABox-saturation algorithm is complete for
each chase query, it should be possible to homomorphically
embed chaseL(O) into the saturation ABox Af computed by
the algorithm for O.5

Lemma 14. Let L ∈ {DL-Lite, EL} and let O = T ∪ A
be a consistent L-ontology. Let ans be a well-behaved ABox-
saturation algorithm that is (q, T )-complete for each chase
query q for T . Finally, let Af be the saturation ABox com-
puted by ans for O. Then, there is a homomorphism μ from
chaseL(O) to Af that maps named individuals to themselves.

Furthermore, weak acyclicity ensures the existence of a
polynomial bound in both the size and number of chase
queries for each input, as shown by the following Lemma.

Lemma 15. Let L ∈ {DL-Lite, EL}. Each chase query for a
weakly acyclic L-TBox T is of size polynomial in the size of
T . Also, there are polynomially many non-isomorphic chase
queries in the size of T .

Proof. (Sketch) Given T and an ABox A, Theorem 9 implies
that the the size of chaseL(O) is polynomial in the size of A.
Let O′ = T ∪AT as in Definition 11. Since the size of AT is
bounded by the size of T , the size of chaseL(O′) (and hence
the size of each chase query) is polynomially bounded by the
size of T . Finally, the number of chase queries is bounded by
the number of assertions in chaseL(O′) and it is thus polyno-
mially bounded by the size of T .5

Lemmas 14 and 15 suggest that the set of chase queries for
a weakly acyclic TBox T constitutes a QTB for T .

Theorem 16. Let L ∈ {DL-Lite, EL} and let T be a weakly
acyclic L-TBox. Then, the set of all chase queries (unique up
to isomorphism) is a QTB for T and the class of well-behaved
ABox-saturation algorithms for L. Furthermore, the size of
such QTB is polynomial in the size of T .

Proof. Let q be a CQ and let A be an ABox s.t. O = T ∪ A
is consistent. Then, cert(q,O) = cert(q, chaseL(O)).

If c ∈ cert(q, chaseL(O)), there is a homomorphism σ
from q to chaseL(O) which maps the distinguished variables
to c. Since ans is (q′, T )-complete for all chase queries q′,
Lemma 14 implies that there also exists a homomorphism μ
between chaseL(O) and Af that maps named individuals to
themselves. But then, σ composed with μ is a homomor-
phism from the variables of q to the individuals in Af which
maps distinguished variables to c; hence, c ∈ cert(q,Af ).
Since ans(q,O) = cert(q,Af ) we have that c ∈ ans(q,O),
which implies that the set of all chase queries is a QTB. Fi-
nally, since T is weakly acyclic, Lemma 15 then implies that
such QTB is of size polynomial in the size of T .

4.2 DLP

Description Logics Programs (DLP) [Grosof et al., 2003] is a
prominent family of DLs which provide the logical underpin-
ning for the RL profile of OWL 2 [Motik et al., 2009]. The

logics in this family impose syntactic restrictions to avoid, on
the one hand, the need to infer the existence of individuals
not explicitly present in the ABox and, on the other hand,
the need for nondeterministic reasoning. Such DLs have re-
cently become popular since they are amenable to implemen-
tation using rule-based reasoning engines. In fact, many in-
complete ontology reasoners use rule-based forward-chaining
techniques to perform reasoning.

Therefore, DLP logics have been designed so as to satisfy
the property given in the following lemma.

Lemma 17. Let L be in DLP. For each L-ontology O = T ∪
A, there is an ABox A′ mentioning only individuals from A
and such that cert(q,O) = cert(q,A′) for every CQ q.

Since reasoning in DLP does not require the generation of
“fresh” individuals, it is intuitive to expect that a QTB is guar-
anteed to exist. Furthermore, such QTB would only need to
include queries asking for all instances of each atomic con-
cept and each atomic role occurring in the ontology.

Theorem 18. Let L be in DLP and let T be a L-TBox. Let Q
consist of a query qA(x) ← A(x) for each atomic concept A
in T and a query qR(x, y) ← ar(R, x, y) for each (possibly
inverse) role occurring in T . Then, Q is a QTB for T and the
class of all well-behaved ABox-saturation algorithms.

Proof. Let ans be a well-behaved ABox-saturation algorithm
that is (q′, T )-complete for each q′ ∈ Q. Let q be a CQ and
let A be an ABox such that O = T ∪ A is consistent. We
show that cert(q,O) ⊆ ans(q,O).

If c ∈ cert(q,O), then c ∈ cert(q,A′), for some A′ as in
Lemma 17. Hence, there is a homomorphism μ from q to A′

mapping distinguished variables to c and s.t. for each body
atom A(t) (respectively R(t, t′)) in q, A(μ(t)) ∈ A′ (respec-
tively R(μ(t), μ(t′)) ∈ A′); furthermore, μ(t) ∈ ans(qA,O)
and 〈μ(t), μ(t′)〉 ∈ ans(qR,O) since qA, qR ∈ Q and ans is
complete for qA and qR. But then, μ(t) ∈ cert(qA,Af ) and
〈μ(t), μ(t′)〉 ∈ cert(qR,Af ), with Af the saturation ABox
for O computed by ans; thus, A(μ(t)) ∈ Af (respectively
R(μ(t), μ(t′)) ∈ Af ), and c ∈ ans(q,O), as required.

5 Evaluation

We have implemented a prototype query generator for DL-
Lite and computed a QTB for a DL-Lite version of the LUBM
TBox. The computation of LUBM’s QTB required less than
a second and contained only 16 queries, denoted as Q1-Q16.
(Note that the QTB is so small because many concepts never
appear on the right-hand side of a GCI).

We have used this QTB to evaluate the following systems:
Sesame 2.3-prl,6 OWLim,7 Jena v2.6.48 using both its Ont-
Model and InfModel interfaces, DLEJena,9 Oracle’s Seman-
tic Data Store10 using both the RDFS and OWLPrime pro-

6http://www.openrdf.org/
7http://www.ontotext.com/owlim/
8http://jena.sourceforge.net/
9http://lpis.csd.auth.gr/systems/DLEJena/

10http://www.oracle.com/technetwork/database/options/semantic-
tech/index.html
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Sesame, Oracle RDFS DLEJena

Q8 Q9 Q11 Q14 Q15 Q16 Q14 Q15 Q16
.84 .89 .87 .5 .25 .15 .5 .25 .15

OWLim, Jena O Micro, Oracle OWLPrime

Q11 Q14 Q15 Q16
.87 .5 .25 .15

Table 1: Completeness degree for queries in LUBM’s QTB

files, and Pellet v2.2.2.11 To this end, we generated the re-
quired datasets for each query in the QTB using the tech-
niques from [Stoilos et al., 2010a], which we then used to
compute the corresponding completeness degree for each sys-
tem. (For DL-Lite TBoxes, a finite collection of such datasets
is guaranteed to exist for each query [Stoilos et al., 2010a]).

As expected, Pellet (a fully-fledged OWL 2 reasoner) was
found to be complete for all queries. More interesting is the
fact that Jena Full in its InfModel implementation was also
complete for all queries and hence we can claim that it is in-
distinguishable from a complete reasoner like Pellet w.r.t. the
LUBM TBox, regardless of the query and the data. In con-
trast, as shown in Table 1, all the other systems were found
incomplete for some query.

We observe that all systems in Table 1 were incomplete
for queries Q14-Q16, which involve undistinguished vari-
ables and hence require reasoning with existential quantifiers.
Concerning the remaining queries, OWLim, Jena Micro in
its OntModel implementation and Oracle OWLPrime, were
found incomplete for Q11(x) ← Student(x). Even if Q11
contains only distinguished variables, LUBM’s TBox entails
the GCI GradStudent � Student, which can only be derived
using existential quantifiers. In contrast, DLEJena is com-
plete for Q11 since it pre-computes the ontology’s subsump-
tion hierarchy using a complete DL reasoner before saturat-
ing the ABox. Finally, Sesame and Oracle RDFS, which are
essentially RDF-Schema reasoners, are additionally incom-
plete for all queries that require reasoning with constructs not
available in RDFS, such as inverse roles.

6 Conclusions

In this paper, we have studied the problem of query genera-
tion for evaluating the completeness of Semantic Web reason-
ers. Our techniques allow us to formally determine whether
an incomplete system is indistinguishable from a complete
one for a given TBox, regardless of the data and the query.
Our framework and algorithms are complementary to those
in [Stoilos et al., 2010b] and [Stoilos et al., 2010a], in which
both TBox and query were assumed to be fixed.

Our evaluation is, however, still preliminary and we are
planning to implement and evaluate our query generation
techniques also for EL. Finally, we are also planning to ex-
tend our techniques for more expressive DLs.
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