
A Comprehensive Approach to
On-Board Autonomy Verification and Validation ∗

M. Bozzano, A. Cimatti, M. Roveri, A. Tchaltsev

Fondazione Bruno Kessler
{bozzano,cimatti,roveri,tchaltsev}@fbk.eu

Abstract

Deep space missions are characterized by severely
constrained communication links. To meet the
needs of future missions and increase their scien-
tific return, future space systems will require an in-
creased level of autonomy on-board. In this work,
we propose a comprehensive approach to on-board
autonomy relying on model-based reasoning, and
encompassing many important reasoning capabil-
ities such as plan generation, validation, execu-
tion and monitoring, FDIR, and run-time diagno-
sis. The controlled platform is represented sym-
bolically, and the reasoning capabilities are seen as
symbolic manipulation of such formal model. We
have developed a prototype of our framework, im-
plemented within an on-board Autonomous Rea-
soning Engine. We have evaluated our approach
on two case-studies inspired by real-world, ongoing
projects, and characterized it in terms of reliability,
availability and performance.

1 Introduction

Deep space and remote planetary exploration missions are
characterized by severely constrained communication links.
Limited spacecraft visibility, reduced data rates and high
communication latency do not allow for real-time control by
Ground operators. For surface missions, a high level of in-
teraction with the environment may require significant ef-
forts from Ground, implying high cost of operations. Fur-
thermore, adequate Ground control could be compromised
due to communication delays and required Ground decision-
making time, endangering the system, although safing proce-
dures are strictly adhered to. To meet the needs of future mis-
sions and increase their scientific return, future space systems
will require an increased level of intelligence on-board. Tak-
ing autonomous decisions by creating plans based on up-to-
date information, and re-planning in response to unexpected
events or anomalous conditions, would greatly improve the
efficiency of a mission, system safety, and potentially reduce
the cost of Ground operations.

∗This work was sponsored by the European Space Agency under
contract ITT-AO/1-5184/06/NL/JD - On Board Model Checking.

In this paper we propose a comprehensive formal frame-
work for on-board autonomy with on-ground support. The
novelty of the proposed solution lies in the definition of a for-
mal framework, comprehensive of heterogeneous functional-
ities (plan generation, execution and monitoring, fault detec-
tion, isolation and recovery, and run-time diagnosis), suited
both for on-ground and on-board reasoning. This framework
relies on a symbolic representation of the system under con-
trol, and allows one to capture its intrinsic partial observabil-
ity (available system sensors may not allow for conclusive
determination of the system status). This framework enables
for the formal validation of the model of the controlled sys-
tem used for the deliberative, execution and verification ac-
tivities. We propose to use safe assumption-based contingent
plans. At execution time, these plans sense the world and,
depending on its state, may execute different actions. More-
over, they are annotated with conditions that help monitoring
whether the assumptions are satisfied during the execution.
Our framework separates the discrete part of the system under
control from the continuous parts (e.g., power consumption)
to facilitate deliberative reasoning.

This solution has been developed in response to an invita-
tion to tender of the European Space Agency aiming at de-
veloping an integrated approach for model based on board
autonomy [OMC-ARE, 2008]. We have developed 1) an Au-
tonomous Reasoning Engine (ARE) for spacecraft missions,
structured according to a generic three-layers hybrid auton-
omy architecture that are responsible for deliberation, execu-
tion, and low-level control, and 2) a prototype of the ARE,
based on the NUSMV model checker [Cimatti et al., 2000].
The ARE is largely independent of the controlled system, and
can be easily adapted to any system providing POSIX compli-
ant interfaces. As requested by ESA, we have evaluated our
approach on two case-studies inspired by real-world, ongoing
projects, and we have characterized it in terms of reliability,
availability and performances using a spacecraft simulator,
running on-board software on real hardware target emulators
currently used in ESA, hence very close to the platforms used
in real missions. The successful performance characteriza-
tion showed practical feasibility of the approach. Quoting the
ESA project officer, “initially we would have never thought
that you would be able to run on such hardware”.

This paper is structured as follows: we first present the
modeling and reasoning framework, then we discuss the

2398

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

ARE, we present the experimental characterization, and fi-
nally we discuss related work and draw some conclusions.

2 Modeling and Reasoning Framework

2.1 Formal Model of the System

We model the system under control following the Planning as
Model Checking approach presented in [Cimatti et al., 2003b;
Bertoli et al., 2006]; we extend it to enable reasoning about
resources (e.g., battery power, acquired data). Note that the
model of the system includes both the nominal behavior and
the behavior in presence of faults, and that our formalization
is independent of the language used to specify the model.

Definition 1 (System) A system is a tuple M =
〈Q, I,A, T ,O,X ,R,RE〉 where:

• Q is a finite set of states;
• I ⊆ Q is a set of initial states;
• A is a finite set of actions;
• T : Q×A → 2Q is the transition relation;
• O is a finite set of observations;
• X : Q → 2O is the observation function;
• R is a finite set of resources;
• RE : 2Q → (R → R

2) is a resource estimation function.

We require that X (s) �= ∅ for every s ∈ Q.

This representation separates out the discrete control part
and the continuous parts, in order to facilitate model based
validation and deliberation. The two parts are associated via
the resource estimation function RE , that provides an esti-
mate of resources (lower and upper bounds) in a set of states.
For RE(S, r) = 〈m,M〉, with m ≤ M , we use RE(S, r)l =
m and RE(S, r)h = M respectively to refer to the lower
and upper bounds (represented as rational numbers) of the re-
sources r in S. We say that RE(S1) ≤R RE(S2) (RE(S1)
is less then, or equal to, RE(S2)) iff ∀r ∈ R.RE(S1, r)

h ≤
RE(S2, r)

l, and RE(S1) �≤R RE(S2) for its negation.
Given an action a ∈ A, the precondition of an action a is

the set of states pre(a) = {s ∈ Q | ∃s′ ∈ Q, 〈s, a, s′〉 ∈ T }.
An action a can be applied to a state s ∈ Q (set of states
S) only if s ∈ pre(a) (S ⊆ pre(a)). Otherwise, s has (S
contains states with) no successors if action a is applied. We
write S[o,�] to denote the set {s ∈ S|o ∈ X (s)}, of states
compatible with observation o, and dually S[o,⊥] to denote
the set {s ∈ S|∃o′ ∈ X (s), o′ �= o} of states that are com-
patible with any observation other than o. The set of states
indistinguishable from a set S ⊆ Q, written IND(S), is the
set IND(S) = {s ∈ Q | ∃s′ ∈ S.∀o ∈ O(o ∈ X (s) ⇐⇒
o ∈ X (s′))}. The set of states indistinguishable from S al-
ways includes S, i.e., S ⊆ IND(S).

2.2 Model validation

With a formal model at hand, it is possible to use techniques
such as model checking [Clarke et al., 1999] to validate its
behavior. Model checking allows one to exhaustively verify
the model against a set of properties typically expressed in
temporal logic, e.g., PSL [Eisner and Fisman, 2006]. Un-
derlying technologies include BDD-based [Bryant, 1992] or
SAT-based [Biere et al., 2003] techniques.

To manage the complexity of the model and of the vali-
dation, techniques such as predicate abstraction [S. Graf and
H. Saidi, 1997] and Counterexample Guided Abstraction Re-
finement (CEGAR) [Clarke et al., 2003] can be applied: an
abstraction of the concrete system is computed [Lahiri et al.,
2006]; a counterexample trace for the abstract system is built;
if the trace has a counterpart in the concrete system, then a
genuine counterexample has been found; otherwise the ab-
straction will be refined, and the loop iterated.

2.3 Plan generation, validation, execution and
monitoring

The planning problem consists of finding a plan whose execu-
tion guarantees the achievement of the given goal. In the plan-
ning community, different notions of goal and different solu-
tions have been studied, see e.g., [Ghallab et al., 2005]. Here,
we restrict ourselves to consider reachability goals [Cimatti
et al., 2003b; Bertoli et al., 2006], that are characterized by
a non-empty set of goal states G ⊆ Q that the system under
control is aimed to achieve.

In this work we consider weak and strong plans [Cimatti et
al., 2003b]. Weak plans are plans that have a chance to reach
the goal, while strong plans are plans that are guaranteed to
achieve the goal despite the non-determinism and the partial
observability of the controlled system. Intuitively, a plan P is
a weak solution to the planning problem for goal G from a set
of states S, iff the plan is such that all the actions in it are ap-
plicable in the set of states that can be achieved by progress-
ing the set of initial states till the current point of execution;
and the set of states that can be reached by progressing the set
of initial states following all the possible branches of the plan
has a non-empty intersection with the set of goal states. This
means that there exists an execution of the plan that can (but
is not guaranteed to) reach the goal. On the other hand, strong
plans are such that the execution is guaranteed to achieve the
goal, despite the non-determinism of the controlled system
and the incomplete run-time information.

Planning under partial observability requires being able to
reason under uncertainty; belief states [Bonet and Geffner,
2000; Bertoli et al., 2006] (i.e., non empty set of states in
Q) have been introduced to account for this. In this con-
text, planning consists in finding a contingent plan that, at
execution time, senses the world via observations and, de-
pending on the its state, can conditionally execute differ-
ent actions. Planning under partial observability in non-
deterministic domain is an extremely hard task, and it is of-
ten the case that strong plans do not exist. However, in many
cases it is possible to express reasonable assumptions over the
expected dynamics of the controlled system, e.g., by iden-
tifying “nominal” behaviors. Us-
ing assumptions to constrain the
search may greatly ease the plan-
ning task, allowing for an efficient
construction of assumption-based
solutions. Thus, assumption-based
plans must be executed within re-
active architectures (e.g., the one of
Fig. 1) where a monitoring compo-
nent traces the status of the domain,

O
bs

Execute &
Monitor

Plant

FDIR

HWPlan

Plan

A
ct

Figure 1: The approach.

2399

in order to abort plan execution and take corrective actions
activating FDIR whenever an unexpected behavior (e.g., a vi-
olation of the assumptions) has compromised the success of
the plan. A safe plan also guarantees that the monitor will not
trigger any plan abortion unless really needed. An example
of assumption-based planning for non-deterministic, partially
observable domains is given in [Albore and Bertoli, 2004;
2006]. In this work we restrict assumptions to be invariants,
i.e., conditions the systems is suppose to obey at each point
during the execution of the plan.

Definition 2 (Plan with Assumptions) A plan with assump-
tions As is a tuple PAs = 〈Sg, Spb, P 〉 where Sg ⊆ Q is
a set of “good” states, Spb ⊆ Q is a set of “possibly bad”
states and sub-plan P is either:

• an empty plan ε;
• a sequence a :: PAs , where a ∈ A;
• a conditional plan ite(o,PAs

1,PAs
2), where o ∈ O.

Sets Sg and Spb are introduced to allow monitoring of the
plan execution and checking if assumptions hold. The intu-
ition is the following. Set Sg consists of those states such that
the assumptions hold in them and their predecessors. Set Spb

includes Sg and may additionally have states indistinguish-
able from Sg , such that the assumptions are violated in these
states or their predecessors. I.e., if during execution the as-
sumptions always holds, then at every step the belief state has
to be a subset of Sg . However, if the assumptions have been
violated and this has not been detected, then the belief state
may only partly intersect Sg but still has to be a subset of Spb.

In the following we assume that contingent plans with as-
sumptions are constructed by the algorithm presented in [Al-
bore and Bertoli, 2006], simplified to deal with assump-
tions of type invariant. We assume that a resource assign-
ment RMIN is given, specifying the minimal amount of re-
sources needed during plan execution; if this limit is violated,
plan execution fails. We give the following definition. Let
PAs = 〈Sg, Spb, P 〉 be a plan with assumptions, and let S ⊆ Q
be a set of states. The sets of states resulting from the execu-
tion of PAs from 〈S, IND(S)〉, written EXEC[PAs](S, IND(S))
can be computed as follows (below we allow EXEC to be ap-
plied to plan PAs as well as to sub-plan P):
• EXEC[〈GS ,BS , P 〉](SG, SPB) = 〈∅, ∅〉 if SG �⊆ GS ∨ SPB �⊆

BS ;
• EXEC[〈GS ,BS , P 〉](SG, SPB) = EXEC[P](SG, SPB) if

SG ⊆ GS ∧ SPB ⊆ BS ;
• EXEC[ε](SG, SPB) = 〈∅, ∅〉 if RMIN �≤R RE(SPB);
• EXEC[ε](SG, SPB) = 〈SG, SPB〉 if RMIN ≤R RE(SPB);
• EXEC[a :: PAs](SG, SPB) = 〈∅, ∅〉 if SPB �⊆ pre(a) ∨

RMIN �≤R RE(SPB);
• EXEC[a :: PAs](SG, SPB) = EXEC[PAs](S′

G, S
′
PB ∩

IND(S′
G)) if SPB ⊆ pre(a) ∧ RMIN ≤R RE(SPB) where

S′
G = {s′ : s ∈ SG ∧ s′ ∈ As ∧ 〈s, a, s′〉 ∈ T } and

S′
PB = {s′ : s ∈ SPB ∧ 〈s, a, s′〉 ∈ T };

• EXEC[ite(o,PAs
1,PAs

2)](SG, SPB) = 〈∅, ∅〉 if
EXEC[PAs

1](SG[o,], SPB [o,]) = 〈∅, ∅〉 ∨
EXEC[PAs

2](SG[o,⊥], SPB [o,⊥]) = 〈∅, ∅〉
• EXEC[ite(o,PAs

1,PAs
2)](SG, SPB) = 〈S�

G ∪ S⊥
G , SPB

� ∪
SPB

⊥〉 if 〈S�
G , SPB

�〉 �= 〈∅, ∅〉 ∧ 〈S⊥
G , SPB

⊥〉 �= 〈∅, ∅〉
where 〈S�

G , SPB
�〉 = EXEC[PAs

1](SG[o,], SPB [o,])
and 〈S⊥

G , SPB
⊥〉 = EXEC[PAs

2](SG[o,⊥], SPB [o,⊥])

This definition is such that after plan execution, if
〈S′

G, S
′
PB〉 = EXEC[PAs](SG, SPB), then S′

G is still a subset
of S′

PB . Intuitively, S′
G consists of those states whose pre-

decessors satisfy the assumption, whereas S′
PB consists of

those states whose predecessors may violate the assumptions
but are indistinguishable from corresponding predecessors in
S′
G. Thus after applying an action, the set S′

G is constrained
to be a subset of the assumptions As , whereas states of S′

PB
may violate the assumptions but have to be indistinguish-
able from S′

G. In the fifth and sixth items above, we check
whether SPB is contained in the precondition of the action
a to execute, since at execution time, we cannot distinguish
the states in SG from the states in SPB because of partial ob-
servability. Moreover, if the action is applicable in SPB it is
also applicable in SG (since SG ⊆ SPB). The distinguish-
able states removed from S′

PB after applying an action (i.e.,
S′
PB \ IND(S′

G)) are those which may be reached only by vi-
olating the assumptions. If such a state is indeed reached at
execution time, then the plan must be terminated. Neverthe-
less, such plan can be considered valid since the cause of the
problem is in the incorrect assumptions, not in the plan. Note
that in the execution of a plan PAs , the resource estimation
function is computed w.r.t. the possibly bad states SPB , since
this is the set of states that can be observed at run-time. This
choice results in considering a more pessimistic approach to
the resource consumption, however more relaxed or stronger
notions of validity may be considered.

The following definitions provide success criteria for plan
execution. Given a resource assignment RMIN and a goal
G ⊆ Q, we say that a plan PAs is applicable in S ⊆ Q iff
SG = S ∩ As and SPB = S ∩ IND(SG) are non empty and
the plan does not fail during execution (i.e., it does not reach
empty sets): EXEC[PAs](SG, SPB) �= 〈∅, ∅〉. Moreover, PAs

is valid in S for G iff it is applicable in S and for 〈S′
G, S

′
PB〉 =

EXEC[P](S ∩ As, S ∩ IND(S ∩ As)):

• S′
PB ⊆ G if we want strong plan solutions;

• S′
G ∩ G �= ∅ if we want weak plan solutions.

That is, for strong plans we check that the progressed set of
possibly bad states S′

PB resulting from the execution is in-
cluded in the set of goal states G. This is because at run-time
we cannot distinguish S′

G to S′
PB because of partial observ-

ability. Thus if S′
PB is included in the goal then we are guar-

anteed that we indeed reached the goal. On the other hand,
for weak solutions we must check for non-empty intersection
with S′

G. Indeed, if this is not the case the assumption was
violated and the goal G has not been reached.

More details about plan generation, execution and moni-
toring can be found in [Bozzano et al., 2009].

2.4 Diagnosis, Diagnosability and FDIR

The formal framework here described allows for the applica-
bility of the techniques for tackling diagnosability, fault de-
tection, isolation and recovery (FDIR). Diagnosis is the pro-
cess of inferring the set of (most plausible) causes for an un-
expected behavior of a system, given a set of observations,
whereas diagnosability is the possibility for an ideal diag-
noser to infer accurate and sufficient run-time information on
the behavior of the observed system. The problem can be

2400

reduced to checking whether a diagnosability condition is vi-
olated, that in turns amounts to looking for critical pairs (i.e.,
pairs of executions that are observationally indistinguishable,
but hide conditions that should be distinguished). The prob-
lem can be solved by model checking a temporal formula rep-
resenting the diagnosability condition over the coupled twin
model [Cimatti et al., 2003a].

Algorithm 1 Fault isolation.
1: function ISOLATEFAULTS(Ass, HW, N)
2: Monitor := BUILDFAULTMONITOR();
3: EM := BUILDPRODUCT(M, Monitor);
4: R := BUILDHVEQFV(M, Monitor);
5: R := R ∩ Ass; i := N - 1;
6: if 0 ≤ i then
7: R := R ∩ GETOBS(HW[i]); i := i - 1;
8: while i ≥ 0 do
9: R := BWDIMAGE(M, R, GETACTION(HW[i]));

10: R := R ∩ GETOBS(HW[i]);
11: R := R ∩ Ass; i := i - 1;
12: end while

13: FS := PROJECT(Monitor, R);
14: return EXTRACTFAULTS(FS);
15: end function

Fault detection and isolation are concerned with detecting
whether a given system is malfunctioning. Fault detection
analysis checks whether an observation can be considered a
fault detection means for a given fault, i.e., every occurrence
of the fault will eventually cause the observable to be true.
Fault isolation analysis is concerned with detecting the spe-
cific cause of malfunctioning. It can be performed by gener-
ating a fault tree that contains the minimal explanations that
are compatible with the observable being true. In case of per-
fect isolation, the fault tree contains a single cut set consist-
ing of one fault, indicating that the fault has been identified as
the cause of the malfunctioning. A fault tree with more than
one cut set indicates that there may be several explanations
for the malfunctioning. In this case probabilistic informa-
tion can be taken into account, in order to consider the most
likely explanation. For reasons of practicality, our implemen-
tation of fault isolation (see algorithm 1) only stores a lim-
ited number of the more recently performed actions and ob-
servations (the history window) [Williams and Nayak, 1996;
Mikaelian et al., 2005]. The algorithm takes the assumptions
Ass under which the plan has been executed and the history
window HW of size N . It starts by building a transition sys-
tem that aims to monitor the value of fault variables. This
monitor is then composed with the system model. Then, a
bounded backward reachability of N steps from states such
that the monitor variables equate the respective monitor fault
variables is performed. Each step of the backward reachabil-
ity is restricted to performed actions (line 9) and to the ob-
servations (line 10) stored in the history window. Finally it
is restricted to the assumptions (line 11). The resulting set is
projected over the monitor variables (line 13) and analyzed
to extract the faults (line 14).

M
 FDIR

Low Level
Actuation
Routines

Plan Execution
and Monitoring

Plan Generation

Plan Validation

Low Level Sensing Information

Information
High Level Sensing

to Actuators
High Level Commands

Commands to Actuators

Ground CommandsMission Goal (MG)Mission Plan (MP)

Low Level
Sensing
Routines

Control

Executive

Deliberative

Figure 2: The ARE architecture.

3 The Autonomous Reasoning Engine

We have integrated the framework described in the previ-
ous sections within a generic autonomy architecture, called
the Autonomous Reasoning Engine (ARE), developed in re-
sponse to an invitation to tender of the European Space
Agency aiming at developing an integrated uniform approach
for model based on board autonomy [OMC-ARE, 2008]. The
ARE is intended to be embedded in a spacecraft, interact-
ing with Ground, providing autonomous reasoning capabili-
ties, receiving information from sensors, and delivering com-
mands to actuators.

From the logical point of view, the ARE is structured ac-
cording to a generic three layers hybrid autonomy architec-
ture (See Fig. 2). The Deliberative Layer is responsible for
generating and validating plans, for re-planning whenever
needed, and includes an FDIR block which is activated in
response to an anomaly (e.g., a fault or an assumption vio-
lation) detected by the Deliberative layer itself or by a lower
layer, to identify the faults and to recover. Several recovery
strategies can be used, depending on the degree of autonomy
and fault tolerance to be achieved. If the anomaly is due to
a change in the environment or in the level of resources, new
assumptions can be computed, and the rest of the plan can be
validated w.r.t. them. If the plan is not valid anymore, re-
planning can be triggered. If no recovery is possible, then a
safe operational mode is entered waiting for intervention from
Ground. The Executive layer is responsible for executing and
monitoring a contingent plan coming from Ground or gener-
ated by the upper layer. The plan execution is performed ac-
cordingly to the rules described in Section 2.3. It collects per-
formed observations and executed commands to provide them
to the FDIR block for fault isolation (algorithm 1) and recov-
ery whenever an anomaly is detected. The Control layer im-
plements the conversion between the model-based level and
the lower level, dealing with, e.g., sensor data acquisition and
estimation of resource consumption. It is tailored to the con-
trol and monitoring of specific physical devices.

We implemented a prototype of the ARE on top of the
NUSMV symbolic model checker [Cimatti et al., 2000],
which provides all the low level routines for the symbolic
manipulation of the discrete model of the system, and the
building blocks necessary for the implementation of the high

2401

level functionalities. In addition, functionalities to upload a
new model of the spacecraft, new assumptions or new mis-
sion goals are provided. We remark that the ARE is largely
independent of the controlled system: the upper layers are
application independent, bound to the application domain
through the system model description; the dependencies re-
lated to the low-level platform interactions are localized in
the Control layer that can be customized through dedicated
APIs. Currently we used a POSIX C interface, which en-
ables easy deployment to different operating systems (e.g.,
RTEMS, Linux, Solaris, Windows).

4 Experimental Evaluation

We developed and validated a prototype implementation of
the ARE according to ESA standards. We deployed the pro-
totype in two industrial (a rover and a satellite) simulators
(developed by Thales Alenia Space), and we run them both
in SIS-ERC32 and in TSIM-LEON3, two realistic industrial
hardware simulators of the ERC32 and LEON3 processors
currently used in ESA.

We considered two different configurations for the plane-
tary rover with different sub-components, each dedicated to
a different space experiment. The full version consists of 20
sub-components, contains 53 state variables (encoded with 85
Boolean variables), 53 fault variables, 57 observations, and
92 commands. The small version consists 3 sub-components,
contains 17 state variables (encoded with 26 Boolean vari-
ables), 15 fault variables, 19 observations, and 19 commands.
The orbiter case study is simpler: is composed of 5 sub-
components, contains 10 state variables (encoded with 23
Boolean variables), 5 faults, 5 observations, and 9 commands.
The state space is in the range 230 to 2200, while the set of
reachable states is in the range 220 to 2190.

The formal model for each case study have been speci-
fied in NUSMV starting from descriptions specified in Mat-
lab/Stateflow/Simulink (MSS). The NUSMV models have
been thoroughly validated against simulations generated from
the MSS models, and against several temporal properties.

In Fig. 3 we report the time to perform the initialization
of the reasoning engine w.r.t. the considered case study (i.e.
the time to build the internal representation of the planning
domain used by all the reasoning algorithms), the time re-
quired to build the internal representation of a mission plan
generated on ground and sent on-board for being executed,
the time to validate the loaded plan, the time to execute the
validated plan, and finally the time required to build a new
plan to achieve the goal in response to an injected fault. These
times have been obtained running the ARE software on the
two standard target hardware platforms used by ESA. For
each of the case studies, we have identified realistic objec-
tives, and instructed the simulator to present both nominal
and anomalous conditions, in particular re-planning after a
fault or an unexpected change in the environment. We have
run several simulations in order to evaluate the suitability of
the approach w.r.t. different metrics (e.g., unpredictable lo-
cal conditions on the planetary surface, limited bandwidth,
intermittent visibility, long round trip delay, rover system op-
erations to perform a measurement cycle that included move-

Rover (seconds) Orbiter (seconds)
Small Full

ERC32 LEON3 ERC32 LEON3 ERC32 LEON3

Initialization 33 13 282 113 9 1

Plan Loading 3 1 6 2 2 0.5

Plan Validation 15 6.5 55 23 1 1

Plan Execution 116 121 125 121 16 16

Plan Generation 87 34 1349 540 6 2

Figure 3: Performance characterization.

ment, sample acquisition and sample preparation and distri-
bution). The constructed plans are strong; they have no loops,
an average length of 20 actions (that depends on the goal to
achieve), and an average branching factor of 1.2.

We have characterized our approach in terms of reliability
(requirements coverage, generated plan compliance with the
goal); availability (reaction time); and performance (process-
ing power and memory required). The prototype was able
to execute on realistic industrial hardware simulator of the
ERC32/LEON3 processors actually used in ESA for space
missions. The software was able to run within realistic mem-
ory limitations (32Mb) of current space applications. The
performance of the approach was judged extremely positively
by the domain experts in Thales Alenia Space and in ESA,
both in terms of quality of the generated solutions and in
terms of performance: the time taken to generate plans is
order of minutes on the considered hardware (quoting ESA,
“significantly smaller than the turnaround Earth/Mars com-
munication time”).

We remark that, the deployment of new technologies in real
missions must always overcome many obstacles, that are not
always of technical nature. Even the validation of traditional
software deployed on-board is an enormous challenge, that
it may also depend on the autonomy level to be achieved.
For instance, the first three autonomy levels (according to the
four-levels ESA classification) do not require onboard plan-
ning capabilities, but do require on-board validation and mon-
itoring. Overall, the study has been considered by ESA as
a successful (albeit small) step towards onboard autonomy.
The results of the project provided inspiration for two subse-
quent ESA studies, one focusing on reactive execution, and
one focusing on onground planning (based on the framework
described here).

Additional details about the ARE software and related ma-
terial are available at [OMC-ARE, 2008].

5 Related work

The first notable approach to model-based autonomy is the
Deep Space One experiment by NASA. It was equipped
with a Remote Agent (RA) (http://ic.arc.nasa.gov/
projects/remote-agent/) module providing model-
based execution, goal-driven planning and scheduling, diag-
nosis and recovery from injected faults. The model-based ex-
ecutive is the Livingstone model [Williams and Nayak, 1996].
Titan [Fesq et al., 2002], the descendant of Livingstone, is
composed of a mode estimation and reconfiguration, that is
responsible for updating the current state by taking into ac-
count the commands that have been issued, and the observa-
tions perceived from the controlled system. This is performed

2402

by considering the most likely possible state that is compat-
ible with the history of executed actions, gathered observa-
tions, and with the system model. This approach is similar in
spirit to ours, but in our case the same formal model is used
in all the phases from the deliberative to the executive levels.

MUROCO-II [Kapellos, 2005] is a support tool for a
generic formal framework for the specification and verifica-
tion of space missions, where actions and tasks of a mis-
sion can be specified and validated. It relies on the Esterel
language, and simple temporal properties can be simulated
and formally proved. Our approach extends MUROCO-II in
two main directions. First, MUROCO-II is a framework for
an off-line activity taking place on ground, while the current
approach focuses on-board autonomy. Second, the system
developed in MUROCO-II is unable to deal with diagnosis;
planning is also out of reach for all those cases where non-
determinism has to be taken into account.

The MMOPS [Woods et al., 2006] approach develops an
on-board system, that takes into account scheduling issues,
and is able to carry out limited amounts of re-planning. The
objective is to try and detect whether the mission time line be-
ing executed is still likely to achieve its goals and not to cause
trouble given that the current conditions may have departed
from the estimated ones, and in case of detected problem sug-
gests possible repairs. The main components are a plan val-
idator, an execution monitor, and a plan repair generator. The
form of planning is very specific, and does not address the
problem of defining a generic automated reasoning system to
be reused in different settings and for different functionali-
ties. Our approach implements functionalities similar to the
ones of MMOPS, but in a unique formal framework within a
three layers hybrid autonomous architecture.

6 Conclusions and future work

We have presented a unified model-based approach to on-
board autonomy, which relies on a symbolic representation
of the system under control, and supports plan generation,
validation, execution, monitoring and FDIR. This approach
enables the use of model checking techniques to validate the
symbolic representation of the system and check for diagnos-
ability. We have implemented our approach in a prototype of
an Autonomous Reasoning Engine based on NUSMV. The
experimental evaluation shows very promising results.

As future work, we plan to experiment with SAT as well as
SMT techniques, to encompass both discrete and continuous
components. Finally, the approach could be extended to deal
with sequential goals and more complex assumptions.

References

[Albore and Bertoli, 2004] A. Albore and P. Bertoli. Generating
Safe Assumption-Based Plans for Partially Observable Nonde-
terministic Domains. In AAAI, pages 495–500. AAAI, 2004.

[Albore and Bertoli, 2006] A. Albore and P. Bertoli. Safe LTL
Assumption-Based Planning. In Proc. International Conference
on Planning and Scheduling, pages 193–202. AAAI, 2006.

[Bertoli et al., 2006] P. Bertoli, A. Cimatti, M. Roveri, and
P. Traverso. Strong planning under partial observability. Artif.
Intell., 170(4-5):337–384, 2006.

[Biere et al., 2003] A. Biere, A. Cimatti, E. M. Clarke, O. Strich-
man, and Y. Zhu. Bounded model checking. Advances in Com-
puters, 58:118–149, 2003.

[Bonet and Geffner, 2000] B. Bonet and H. Geffner. Planning with
Incomplete Information as Heuristic Search in Belief Space.
In Proc. International Conference on Planning and Scheduling,
pages 52–61. AAAI, April 2000.

[Bozzano et al., 2009] M. Bozzano, A. Cimatti, M. Roveri, and
A. Tchaltsev. A Comprehensive Approach to On-Board Auton-
omy Verification and Validation. In Verification & Validation of
Planning and Scheduling Systems, Thessaloniki, Grece, 2009.

[Bryant, 1992] R. E. Bryant. Symbolic Boolean manipulation
with ordered binary-decision diagrams. ACM Comp. Surveys,
24(3):293–318, September 1992.

[Cimatti et al., 2000] A. Cimatti, E. M. Clarke, F. Giunchiglia, and
M. Roveri. NuSMV: A New Symbolic Model Checker. STTT,
2(4):410–425, 2000.

[Cimatti et al., 2003a] A. Cimatti, C. Pecheur, and R. Cavada. For-
mal verification of diagnosability via symbolic model checking.
In G. Gottlob and T. Walsh, editors, IJCAI, pages 363–369, 2003.

[Cimatti et al., 2003b] A. Cimatti, M. Pistore, M. Roveri, and
P. Traverso. Weak, strong, and strong cyclic planning via sym-
bolic model checking. Artif. Intell., 147(1-2):35–84, 2003.

[Clarke et al., 1999] E. M. Clarke, O. Grumberg, and D. A. Peled.
Model Checking. The MIT Press, 1999. ISBN 0-262-03270-7.

[Clarke et al., 2003] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu,
and H. Veith. Counterexample-guided abstraction refinement for
symbolic model checking. J. ACM, 50(5):752–794, 2003.

[Eisner and Fisman, 2006] C. Eisner and D. Fisman. A Practical
Introduction to PSL. Springer-Verlag, 2006.

[Fesq et al., 2002] L. Fesq, M. Ingham, M. Pekala, J. Van Eepoel,
D. Watson, and B. C. Williams. Model-based autonomy for the
next generation of robotic spacecraft, 2002.

[Ghallab et al., 2005] M. Ghallab, D. Nau, and P. Traverso. Auto-
mated Planning: Theory and Practice. Morgan Kaufman, 2005.

[Kapellos, 2005] K. Kapellos. Formal Robotic Mission Inspection
and Debugging (MUROCO II) Executive Summary, Issue 1, ESA
Contract 17987/03/NL/SFe, 2005.

[Lahiri et al., 2006] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras.
SMT techniques for fast predicate abstraction. In CAV 2006, vol-
ume 4144 of LNCS, pages 424–437. Springer, 2006.

[Mikaelian et al., 2005] T. Mikaelian, B. C. Williams, and
M. Sachenbacher. Model-based monitoring and diagnosis of sys-
tems with software-extended behavior. In AAAI, pages 327–333.
AAAI Press, 2005.

[OMC-ARE, 2008] OMC-ARE: On Board Model Checking - Au-
tonomous Reasoning Engine, 2008. http://es.fbk.eu/
projects/esa_omc-are/.

[S. Graf and H. Saidi, 1997] S. Graf and H. Saidi. Construction of
Abstract State Graphs with PVS. In CAV’97, volume 1254 of
LNCS, pages 72–83. Springer, 1997.

[Williams and Nayak, 1996] B. C. Williams and P. Pandurang
Nayak. A model-based approach to reactive self-configuring sys-
tems. In AAAI/IAAI, Vol. 2, pages 971–978, 1996.

[Woods et al., 2006] M. Woods, D. Long, R. Aylett, L. Bald-
win, and G. Wilson. Mars Mission On-Board Planner and
Scheduler (MMOPS) Summary Report, Issue 1, ESA Contract
17987/03/NL/SFe CCN1, 2006.

2403

