
Sketch Recognition Algorithms for
Comparing Complex and Unpredictable Shapes

Martin Field

Texas A&M University
mfield@cse.tamu.edu

Stephanie Valentine

Saint Mary’s
University of Minnesota
slavle07@cse.tamu.edu

Julie Linsey

Texas A&M University
jlinsey@tamu.edu

Tracy Hammond

Texas A&M University
hammond@cse.tamu.edu

Abstract

In an introductory Engineering course with an an-
nual enrollment of over 1000 students, a professor
has little option but to rely on multiple choice exams
for midterms and finals. Furthermore, the teach-
ing assistants are too overloaded to give detailed
feedback on submitted homework assignments. We
introduce Mechanix, a computer-assisted tutoring
system for engineering students. Mechanix uses
recognition of freehand sketches to provide instant,
detailed, and formative feedback as the student pro-
gresses through each homework assignment, quiz,
or exam. Free sketch recognition techniques allow
students to solve free-body diagram and static truss
problems as if they were using a pen and paper.
The same recognition algorithms enable professors
to add new unique problems simply by sketching
out the correct answer. Mechanix is able to ease
the burden of grading so that instructors can assign
more free response questions, which provide a better
measure of student progress than multiple choice
questions do.

1 Introduction
In high-enrollment introductory courses, the professors and
teaching assistants (TAs) often do not have the time or re-
sources to give individual attention to every single student.
ENGR 111 at Texas A&M University is one such course, with
an annual enrollment well over 1000 students. In ENGR 111,
students learn introductory statics including free-body dia-
grams (FBD) and static truss analysis. ENGR 111 is students’
opportunity to gain the fundamental concepts and skills that
are the foundation for more advanced work in engineering.
We developed a software platform called Mechanix that stu-
dents can use to complete homework assignments, quizzes,
and exams. Mechanix applies sketch recognition techniques
to interpret student diagrams, compare them to reference solu-
tions provided by the professor or TA, and provide immediate
feedback about any errors present in the solution.

In addition to the learning benefits, the cognitive overhead
of using Mechanix is minimal. Mechanix allows students to
complete problems in almost the exact same way as they would
using pen and paper. Students draw the diagram naturally, with

very few constraints on their drawing style. As students draw,
Mechanix is able to determine which reaction forces or other
answers the students will be computing, and provides them
with spaces to type in those answers (eg. the magnitude of a
reaction force or the factor of safety). Mechanix provides feed-
back both on the drawn diagram and the computed answers
by comparing the student’s submission to a reference solution
provided by the instructor or TA. Mechanix also saves student
submissions and displays them to the instructor or TA along
with the same feedback, thus facilitating the grading process.

One of the first steps of any problem is to draw the focus
of the diagram: the ‘body’ in a free-body diagram or the truss
in a truss analysis problem. This central component of the
diagram is extremely important; almost every other component
in the diagram is attached to it or related to it in some way.
This paper presents new algorithms for reliably recognizing
arbitrarily shaped ‘bodies’ and complex trusses. The roles of
our new algorithms are twofold: identify ‘bodies’ and trusses,
and compare them to the reference solution.
2 Background
Sketch recognition systems typically fall into one of three cat-
egories: gesture recognition [Rubine, 1991; Wobbrock et al.,
2007], vision-based recognition [Kara and Stahovich, 2005;
Miller et al., 2000], and geometric recognition. For non-truss
shapes like forces and supports, Mechanix uses a geometric
approach very similar to LADDER [Hammond and Davis,
2005], where complex shapes are described as combinations
of simpler shapes that abide by geometric constraints. LAD-
DER implements a domain-specific language for specifying
the relationships between subcomponents in a shape. We de-
fine primitive shapes as shapes that cannot be represented
as a combination of simpler shapes. The PaleoSketch recog-
nizer [Paulson and Hammond, 2008] is a purpose-built recog-
nizer for identifying primitive shapes. PaleoSketch supports
a very broad range of primitive shapes including lines, arcs,
ellipses, spirals, helices, and filled dots. The algorithms we
will present use PaleoSketch as a low-level stroke processing
step before high-level recognition takes place.

Similar to LADDER, nuSketch [Forbus et al., 2004] is a
sketch understanding system focused on the geometric rela-
tionships between shapes. The COGSketch [Forbus et al.,
2008] system was built on top of nuSketch, and provides some
educational facilities for tutoring a user based on the content of
their sketch. COGSketch is not a recognition system, because

2436

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

users are required to label the shapes they draw. However,
COGSketch is able to apply spatial reasoning to understand
the relationships between shapes and determine if something
might be out of place. In order to adequately describe the
“correct answer,” instructors must first learn a complicated pro-
cess to manually specify the geometric relationships of each
diagram component. Mechanix improves on the COGSketch
model by allowing professors and TAs to add new content
simply by drawing the correct solution once.

Kara and Stahovich 2005 introduced a vision-based rec-
ognizer that combined multiple distance metrics to increase
recognition accuracy. The Kara and Stahovich recognizer uses
instance learning: incoming sketches are preprocessed, raster-
ized, and compared to a bank of similarly processed templates.
We are especially interested in the comparison step, where the
authors use a combination of four distance metrics: Hausdorff
distance, modified Hausdorff distance, Tanimoto coefficient,
and Yule coefficient. Our ’body’ recognition algorithm uses
the first three metrics in the same way, though we skip the
rasterization step and apply the metrics directly to the stroke
data.

Newton’s Pen [Lee et al., 2008] is a pen-based tutoring
system for statics. Newton’s Pen runs on the FLY pentop
computer based on the Anoto digital pen and paper technol-
ogy. Newton’s Pen applies vision-based sketch recognition to
recognize a simple free-body diagram (such as one focusing
on a single node of a truss) and provide constructive feedback
about the diagram and the governing equations. The recogni-
tion capability of Newton’s Pen is limited by the hardware in
the FLY pentop computer. Newton’s Pen constrains the user to
draw free-body diagram components in a very specific order.
For example, to specify a force, the user must first draw the
force arrow, then label it, then draw a leader line, then draw
an arc to denote the internal angle of the force and the leader
line, and finally label the angle. If users deviate from the
prescribed order, recognition fails. Newton’s Pen understands
simple, one-node free body diagrams and governing equations,
but is not intended to recognize a full truss problem or free-
body diagram problem. Our new recognition algorithms allow
Mechanix to support more complicated problems that help
students learn larger concepts.

The Andes physics tutoring system [Vanlehn et al., 2005]
and the Free-Body Diagram Assistant [Roselli et al., 2003] are
two existing systems that allow students to create electronic
solutions to homework assignments. Both systems were de-
signed as alternatives to pen-and-paper homework assignments
to make classroom adoption easy for professors. Andes and
the FBD Assistant were both designed to help guide students
through the process of solving free-body diagram problems in
the domain of physics. Both systems have an interface similar
to common diagramming software: students select graphical
objects from a tool palette and place them on the screen using
the mouse. For example, to place a force, the student would
select the force tool from the palette, and click once to place
the end of the arrow. Then, the student could move the mouse
to position the head of the arrow at the proper angle and dis-
tance from the opposite end. A second click locks the head
of the arrow in place. Mechanix provides the same feedback
and guidance over a very similar subject, but improves on

Figure 1: Six ‘body’ shapes taken from problem statements
and used in our user study. Our algorithm can identify any
arbitrary ‘body’ the instructor draws and compare that to the
student’s drawing.

Andes and the FBD Assistant by providing a natural sketch-
based interface that allows students to more easily express
their thoughts. The algorithms presented in this paper are
integral to Mechanix’s ability to recognize the sketches drawn
by students while they solve FBD or truss analysis problems.

3 Overview
In order for Mechanix to automatically correct a student’s
solution and provide immediate feedback, the instructor or TA
must first provide a reference solution for each problem. The
instructor provides the reference solution by drawing it; the
same way the students will provide their solutions. Mechanix
recognizes each component of the reference solution – the
truss or ‘body’, the input forces, the output forces – and builds
an understanding of the solution. Then, when students submit
their work, Mechanix uses the same process to recognize
each component and build an understanding of the student’s
submission so that it can be compared directly to the reference
solution. Recognizing and comparing trusses and freeform
‘bodies’ is an integral step toward recognizing and comparing
entire diagrams.

Mechanix’s recognition process is online: after each stroke
is drawn, it attempts to combine that stroke with others into
a more complex shape or recognize a new shape from that
stroke alone. This process is very similar to [Hammond and
Davis, 2005]; it is unnecessary to check any combinations
that do not include the new stroke, because those would have
already been checked when the last of those strokes was added.
For each new stroke, Mechanix considers four possibilities: it
could be part of a truss or ’body’, a markup stroke, part of a
more complex shape, or it may not be able to be recognized.

Once a truss or ‘body’ has been identified, Mechanix skips
the first possibility, since it is no longer relevant. The singular
nature of this optimization is not required, if there was a
problem with multiple trusses or ’bodies’, then Mechanix
could wait until all of the requirements were satisfied before
skipping the first possibility. The following sections focus on
truss and ’body’ identification and comparison.

4 Free-Body Diagrams
The first subject taught in ENGR 111 is the analysis of input
forces and reactions with free-body diagrams. Such analysis
focuses on an arbitrary object (eg. an escalator, chair, or

2437

(a) a simple ‘body’

(b) note: node E is in the correct location

(c) although it is a simple rotation, this
‘body’ should not match (b)

Figure 2: Three correctly recognized ‘bodies’. A student
knows the ‘body’ was recognized correctly because Mechanix
adds instructor-defined nodes to the shape. Nodes are used
later in the problem-solving process as attachment points for
forces.

box). Recognizing ‘bodies’ is interesting because there is a
large variety of possible shapes that could constitute a ‘body’,
and matching two shapes should be fairly lenient, so that
the student’s sketch does not need to look exactly like the
reference solution (which the student cannot see). We will
describe the steps we have taken to allow the student to draw
freely but ensure that the general structure of the ‘body’ is the
same as the reference solution.

4.1 Body Identification

We consider any stroke or set of strokes that forms a closed
shape as a possible ‘body’. To identify closed shapes, we first
use PaleoSketch [Paulson and Hammond, 2008] to segment
the raw stroke data. To check if a collection of segments forms
a closed shape, we pick a segment and pick one of its end-
points to start from. Considering all of the other segments in
the collection, we find the closest endpoint. If that endpoint is

close enough (within 9% of the total path length of the strokes),
then we move on to that segment and consider its other end-
point. 9% is an emiprically-determined threshold that allows
students to draw ‘bodies’ in multiple strokes withouthaving to
precisely connect every stroke at the endpoints.We repeat this
process until we cannot find an endpoint that is close enough
or if we run out of segments. If the last segment’s second
endpoint is close enough to the first segment’s endpoint, then
the collection of segments forms a closed shape.

If some subset of the segment collection forms a closed
shape, we still reject the original collection. All possible
collections of segments will be considered from the largest
collection to the smallest, so that subset will eventually be
tested. We have tested this brute-force approach extensively
with users and have found that the time requirements are rea-
sonable. Since only unrecognized segments are considered,
the user must have about 12 (depending on hardware) unrec-
ognized segments before recognition time exceeds the two
second timeout. In the few cases where users experienced a
recognition timeout, the notification provided a timely warn-
ing to those users that their diagrams were not being correctly
recognized, which they were not aware of.

4.2 Body Comparison

‘Body’ comparison is similar in nature to instance-based sketch
classification: how do we best compare the user’s sketch to
the template shape? However, most instance-based sketch
classifiers compare the user’s sketch to a number of templates
to determine a classification, but we only have one template
and have to produce a binary match/no match classification.

To compare two ‘bodies’, we apply a combination of the
Hausdorff distance, the modified Hausdorff distance, and the
Tanimoto coefficient to determine the similarity between the
student’s sketch and the reference solution. These distance
metrics are typically applied to images, so we apply some
preprocessing steps to regularize the sketches, though we do
not rasterize them. First, we resample the shapes to have
64 evenly-spaced points each using the method from [Wob-
brock et al., 2007]. This makes the recognizer robust to draw-
ing speed variations, since digitizers sample at a constant
rate slowly-drawn strokes will have more points than quickly-
drawn strokes. Next, the shapes are scaled uniformly so that
the largest dimension spans 40 pixels and the shape is centered
on the origin. Although 40 pixels was chosen arbitrarily, with
double-precision subpixel coordinates, the size of the bound-
ing box only serves to constrain the two shapes to the same
space and would not represent a significant loss of precision
for any bounding box size within a reasonable range.

To calculate the Hausdorff distances between two shapes A
and B, we create two distance vectors DA and DB such that

DA =

{
min
b∈PB

(|a− b|) , a ∈ PA

}

Where PA is a vector of the points in A and PB is a vector of
the points in B, and DB is similarly defined. The Hausdorff
distance is the maximum value from DA and DB . The modi-
fied Hausdorff distance is the average of the averages of DA

2438

and DB . More formally:

Hd (A,B) = max (max (DA) ,max (DB))

Hmod (A,B) =
D̄A + D̄B

2

Note that our definition of Hmod differs from [Kara and Sta-
hovich, 2005].

Because we are not ranking the student’s sketch against a
collection of templates, but instead comparing it to one tem-
plate to make a binary match/no match decision, we convert
the Hausdorff distances into a “match probability” using

P (match) = 1− H

20

The value 20 was chosen as a threshold representing half
of the bounding box size, since the Hausdorff distances are
dependent on the scaling factor. This is not a real probability,
as it is possible (and in fact likely) for two vastly different
shapes to have a negative “match probability” by either or both
of the Hausdorff metrics.

The third metric we apply is a variant of the Tanimoto
coefficient, which measures the overlap between two images.
Traditionally, the Tanimoto coefficient is defined as

T (A,B) =
nAB

nA + nB − nAB

where nab is the number of overlapping pixels, nA and nB are
the total number of pixels in A and B, respectively. Since we
are dealing with points in a sketch (double precision coordi-
nates) instead of pixels in an image (integer coordinates), the
concept of overlapping is not as clearly defined. We use a lax
definition of overlapping, such that a point from A overlaps
with a point from B if the distance between the two points
is less than or equal to 4. Hence nAB may be different from
nBA. We choose 4 as 10% of the bounding box size. We
define our Tanimoto variant as

T (A,B) =
nAB + nBA

nA + nB

which represents the overall percentage of overlap between
two shapes.

We use the same combination approach as [Kara and Sta-
hovich, 2005]: a simple average of all three metrics. We use
0.65 as our acceptance threshold to determine if the student’s
shape matches the reference solution.

5 Trusses
Trusses are an important structure for engineers to learn be-
cause they have so many applications such as bridges, airplane
wings, and buildings (especially supporting roofs). For the pur-
poses of recognition, a truss can be considered as a collection
of convex polygons, each of which shares at least one side with
another polygon in the truss. Usually, the simplest polygons
comprising a truss are all triangles, though squares (without
chords) occur in some of the trusses studied by ENGR 111
students. It is also possible for ENGR 111 students to analyze
trusses with higher-sided polygons, as long as they are convex,
though we have not yet seen any homework assignments that
ask them to.

(a)

(b)

Figure 3: Two different trusses that have been correctly recog-
nized by the algorithm presented in this paper, but may confuse
other recognizers.The two trusses are composed of the same
lines at the same angles – the only difference is whether or not
the two internal beams meet in the middle. Our recognizer is
sensitive to such details.

5.1 Truss Identification

In order to identify a truss out of a complete diagram, we
utilize the shared-edge property of trusses and the additional
property of our domain that no other shapes have such shared
edges. The forces, supports, and other shapes that are drawn
attached to a truss all connect at a single point, instead of
sharing an edge. Thus, if we can find two polygons that share
an edge, then we have found a truss. Additionally, any polygon
that shares an edge with a truss must also be part of that truss.

We first use the PaleoSketch algorithm [Paulson and Ham-
mond, 2008] to preprocess each stroke and identify all of the
line segments. PaleoSketch will segment a ‘polyline’ stroke
into each individual line segment, and we additionally seg-
ment line segments whenever two of them meet, hence all line
segments intersect at their endpoints. We use all of the line
segments in a diagram to build a graph with each segment as a
node, and edges between segments that intersect.

Once we have built the connection graph, we consider each
edge AB as a potentially shared edge. We remove the AB
edge from the graph and run a breadth-first search (BFS) to
search for another path from A to B. If we do not find a path,
then AB is not even part of a polygon, and so can’t be a shared
edge. If we do find a path then AB is part of a polygon, and
we remove all of the edges in that path from the graph and use
BFS to search for a third path from A to B (AB being the first
path). If we do not find a path, then AB is not a shared edge.
If we do find a path, then the two paths we found with BFS
each represent a polygon sharing the AB edge.

Figure 4a shows a shared edge that will be correctly detected

2439

�

�
(a) a shared edge with three distinct paths

�

�
(b) a shared edge with only two distinct paths

Figure 4: Two examples of shared edges. Only (a) will be
detected by our algorithm.

by our algorithm. If we consider a different vertex as B, as
in Figure 4b, then our algorithm will not detect it as a shared
edge. The BFS will find the blue path first and remove all
of its edges from the graph. At that point, the red path will
no longer reach from A to B. We could count the number of
simple paths from A to B in one pass with a depth-first search,
which would also detect the AB edge in Figure 4b. However,
to characterize the structure of a truss, we are more interested
in the square and the triangle, and less interested in the right
trapezoid. The BFS approach helps us to identify and separate
the basic building blocks from which the truss is built.

If we identify one edge as shared, we can use a simple
variant of the mark-sweep algorithm. We first mark all of the
edges in the two paths we found as ’truss’. Then, any polygons
that have an edge inside the marked set can be added to the
marked set. Any extraneous symbols, like forces or supports
attached the the truss, will have edges adjacent to the marked
set but never in the marked set. Once we have considered all
other polygons (cycles in the graph), the marked set represents
a truss.
5.2 Truss Comparison
When comparing a student’s truss to the reference solution,
we consider both the sketch and the adjacency graph. It is
important that the student’s submission has the exact same
graphical structure as the reference solution. For example,
the trusses in Figure 3 look similar and may be considered
the same by many sketch recognizers. However, it is very
significant that Figure 3a has 5 nodes and Figure 3b has 6.

In other aspects, it is very important to look at the sketch
itself in addition to the adjacency graph. For example, our
recognizer is intentionally rotation dependent, since the ori-
entation of the truss and attached forces is important to the
solution of the problem. Also, for an asymmetric truss, re-
flection over any axis will create an isomorphic graph, but
the solution to the problem will change because of this new
orientation. While it is possible for a student to arrive at the

correct solution despite rotating or reflecting the truss, such
transformations represent a deviation from the problem state-
ment and are not desirable from an educational perspective
(although the algorithms we have developed could easily be
relaxed to allow any set of affine transforms while disallowing
others).

6 Experiment and Results
Using SOUSA [Paulson et al., 2008], we collected sketches of
the shapes in Figure 1 from 17 different users, 180 examples
in total. Each user was asked to draw two examples of each
shape in a random order, as prompted by SOUSA. Not all
participants finished the whole data collection process, but the
data is not biased toward any single shape. The six shapes we
selected were taken from FBD problem statements and thus
represent the kinds of shapes that students will be drawing in
Mechanix.

We compared each shape to every other shape and recorded
the match/no match decision for each comparison. In total,
there were 16110 comparisons performed. Out of the 2627
comparisons that should have been matched, we correctly
matched 2602 instances, for a recall of 0.991. Out of the
13483 comparisons that should not have matched, we correctly
rejected 12321 instances, for a precision of 0.691. This gives
us an F-measure of 0.814.

We collected some sketches to test our original (unsuccess-
ful) truss recognition algorithm. We made extensive use of
those sketches for the development and tuning of the truss
recognition algorithm described in this paper. Although we
have not collected any new data since the development of this
algorithm, extensive user testing for the general usability of the
Mechanix platform indicates that the truss recognition algo-
rithm generalizes well beyond the training data. The same user
testing has shown that the precision of the ‘body’ matching
algorithm is sufficient in cases where users intentionally draw
a different shape than presented in the problem statement.

We also tested Mechanix in one honors section of ENGR
111. In one class period, the professor gave a demonstration
of Mechanix and how to use it to solve truss analysis prob-
lems. After the demonstration, students completed a short
in-class assignment consisting of two problems. Later that
week, students were assigned a homework assignment with
six problems and were given the option to complete the same
assignment using Mechanix or using pen-and-paper. A major-
ity of the students chose to use Mechanix. We held two focus
groups with some of the students from the class to assess their
experiences with Mechanix. Every student we interviewed
qualified their experience as positive. Although many identi-
fied areas needing improvement, recognition was not one of
those areas.

7 Discussion
Our ‘body’ comparison algorithm is heavily biased toward
recall. While we might be able to adjust the thresholds to
trade a lower recall for increased precision and find a higher F-
measure, our application requires an especially high recall, but
is not as sensitive to precision. When completing a free-body
diagram homework assignment, students will be transcribing
the ‘body’ shape from the problem statement; the goal of our
recognizer is to make sure the student has drawn a shape that

2440

is close enough to the reference solution for the student to be
able to solve the problem successfully. Based on usability test-
ing, the ‘body’ comparison algorithm achieves that goal, and
very few users are able to intentionally ‘fool’ the comparison
algorithm into accepting a significantly different shape.

The foundation of our ‘body’ comparison algorithm is
a modified version of the template comparison algorithm
in [Kara and Stahovich, 2005], which is generally regarded as
a highly accurate symbol recognizer. Hence, it may be possi-
ble to use our modified comparison algorithm to create a new
general-purpose symbol recognizer. Since our comparison
algorithm uses stroke points instead of rasterized image pixels,
our constants and thresholds could be tuned differently than
those used by the Kara and Stahovich recognizer.

Usability testing indicates that both the ‘body’ and truss al-
gorithms are very robust to different drawing styles and stroke
orders. Our algorithms identify complicated shapes and allow
students and professors to draw them without any constraints
on drawing style. Students have successfully used Mechanix
with a Wacom Cintiq monitor, a tablet PC, and a standard
optical mouse. Sketching with a mouse still represents an
improvement over palette-based systems like Andes and the
FBD Assistant, although it is less fun than sketching directly
on the screen with a stylus.

Our algorithms have been incorporated into the larger
Mechanix system, where they successfully serve two impor-
tant purposes. First, when an instructor or TA is entering a new
problem, identifying a ‘body’ or a truss indicates whether the
problem will be a free-body diagram or a truss analysis prob-
lem. Because the algorithms are so successful, the instructor
or TA does not have to manually specify what type of problem
it will be, they can simply start drawing the reference solution.
The second purpose is to identify when the student has drawn
the ‘body’ or truss and to compare that shape to the reference
solution. Being able to freely draw the diagram during the
problem-solving process lets students focus on learning the
engineering concepts instead of software details and builds
transferable skills that will benefit students even when they
are not using Mechanix.
8 Conclusion
We have presented successful algorithms to identify and com-
pare the ‘body’ shapes of a free-body diagram or the trusses
from static truss analysis problems. It is especially important
to recognize ‘bodies’ and trusses accurately, because they are
the focus of every diagram that students draw for ENGR 111;
students cannot solve the problem until that shape has been
correctly recognized. In our tests, the ‘body’ comparison algo-
rithm achieved a recall of 0.991 with a precision of 0.691. In
user testing, both the ‘body’ and truss algorithms were found
to be successful, and did not hinder students using Mechanix
or increase the difficulty of learning the software.
9 Acknowledgments
We would like to thank the other members of the Sketch Recog-
nition Lab and the I-DREEM Lab. This project is supported
in part through NSF grants 0935219 and 0942400.
References

[Forbus et al., 2004] K. Forbus, K. Lockwood, M. Klenk,
E. Tomai, and J. Usher. Open-domain sketch understand-

ing: The nuSketch approach. In AAAI Fall Symposium
on Making Pen-based Interaction Intelligent and Natural,
pages 58–63. AAAI Press, 2004.

[Forbus et al., 2008] K. Forbus, J. Usher, A. Lovett, K. Lock-
wood, and J. Wetzel. CogSketch: Open-domain sketch
understanding for cognitive science research and for edu-
cation. In SBIM ’08: Proceedings of the 5th Eurographics
workshop on Sketch-based interfaces and modeling, 2008.

[Hammond and Davis, 2005] T. Hammond and R. Davis.
LADDER, a sketching language for user interface develop-
ers. Computers & Graphics, 29(4):518–532, 2005.

[Kara and Stahovich, 2005] Levent Burak Kara and
Thomas F. Stahovich. An image-based, trainable symbol
recognizer for hand-drawn sketches. Computers &
Graphics, 29(4):501–517, 2005.

[Lee et al., 2008] WeeSan Lee, Ruwanee de Silva, Eric J. Pe-
terson, Robert C. Calfee, and Thomas F. Stahovich. New-
ton’s pen: A pen-based tutoring system for statics. Com-
puters & Graphics, 32(5):511–524, 2008.

[Miller et al., 2000] E. G. Miller, N. E. Matsakis, and P. A.
Viola. Learning from one example through shared densities
on transforms. In Proceedings of the 2000 IEEE Conference
on Computer Vision and Pattern Recognition, pages 464–
471, 2000.

[Paulson and Hammond, 2008] B. Paulson and T. Hammond.
PaleoSketch: Accurate primitive sketch recognition and
beautification. In Proceedings of the 13th international
conference on Intelligent user interfaces, pages 1–10, 2008.

[Paulson et al., 2008] Brandon Paulson, Aaron Wolin, Joshua
Johnston, and Tracy Hammond. SOUSA: Sketch-based
Online User Study Applet. In SBIM ’08: Proceedings of
the 5th Eurographics workshop on Sketch-based interfaces
and modeling, pages 81–88, 2008.

[Roselli et al., 2003] R. J. Roselli, L. Howard, B. Cinnamon,
S. Brophy, P. Norris, M. Rothney, and D. Eggers. Integra-
tion of an interactive free body diagram assistant with a
courseware authoring package and an experimental learn-
ing management system. In Proceedings of the American
Society for Engineering Education, 2003.

[Rubine, 1991] Dean Rubine. Specifying gestures by exam-
ple. In SIGGRAPH ’91: Proceedings of the 18th annual
conference on Computer graphics and interactive tech-
niques, pages 329–337, 1991.

[Vanlehn et al., 2005] Kurt Vanlehn, Collin Lynch, Kay
Schulze, Joel A. Shapiro, Robert Shelby, Linwood Tay-
lor, Don Treacy, Anders Weinstein, and Mary Wintersgill.
The Andes physics tutoring system: Lessons learned. Int. J.
Artif. Intell. Ed., 15(3):147–204, 2005.

[Wobbrock et al., 2007] Jacob O. Wobbrock, Andrew D. Wil-
son, and Yang Li. Gestures without libraries, toolkits, or
training: a $1 recognizer for user interface prototypes. In
UIST ’07: Proceedings of the 20th annual ACM sympo-
sium on User Interface Software and Technology, pages
159–168, New York, NY, USA, 2007. ACM.

2441

