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Abstract

In this paper, we propose to extract a compact yet
discriminative visual descriptor directly on the mo-
bile device, which tackles the wireless query trans-
mission latency in mobile landmark search. This
descriptor originates from offline learning the loca-
tion contexts of geo-tagged Web photos from both
Flickr and Panoramio with two phrases: First, we
segment the landmark photo collections into dis-
crete geographical regions using a Gaussian Mix-
ture Model [Stauffer et al., 2000]. Second, a
ranking sensitive vocabulary boosting is introduced
to learn a compact codebook within each region.
To tackle the locally optimal descriptor learning
caused by imprecise geographical segmentation,
we further iterate above phrases incorporating the
feedback of an “entropy” based descriptor com-
pactness into a prior distribution to constrain the
Gaussian mixture modeling. Consequently, when
entering a specific geographical region, the code-
book in the mobile device is downstream adapted,
which ensures efficient extraction of compact de-
scriptors, its low bit rate transmission, as well as
promising discrimination ability. We descriptors
to both HTC and iPhone mobile phones, testing
landmark search over one million images in typi-
cal areas like Beijing, New York, and Barcelona,
etc. Our descriptor outperforms alternative com-
pact descriptors [Chen er al., 2009][Chen et al.,
2010][Chandrasekhar et al., 2009a][Chandrasekhar
et al., 2009b] with a large margin.

1 Introduction

With the popularization of mobile embedded cameras, there
is a great potential for mobile landmark search with a wide
range of applications, such as location recognition, scene re-
trieval, and photographing recommendation. In general, most
existing mobile landmark search systems are deployed under
a client-server architecture: In the server end, a visual search
system is maintained, typically based on scalable BoW mod-
els [Nister et al., 2006][Irschara et al., 2009][Schindler et al.,
20071, where landmark photos, as well as their geographi-
cally tags like GPS, are inverted indexed into a visual vocab-
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ulary. In online search, a landmark query is sent through the
wireless network to the server, where near-duplicated search
is conducted to identify its best matched landmark, and sub-
sequently returns its geographical location and touristic infor-
mation to the mobile user.

In a typical scenario, the query photo transmission is over
a bandwidth-constrained wireless network. With the ever
growing computational power in the mobile devices, while
sending the entire query is often unnecessary and time con-
suming, we propose to perform the visual descriptor extrac-
tion directly on the mobile end. In this scenario, the ex-
pected visual descriptor should be compact, discriminative,
and meanwhile efficient for extraction to tackle the wireless
query transmission latency, which also receives dedicated ef-
forts in industry standards like MPEG [Yuri et al., 2010].

Towards low bit rate mobile landmark search, previous lo-
cal descriptors, €.g. SIFT [Lowe 2004], SURF [Bay et al.,
2006], and PCA-SIFT [Ke et al., 2004] cannot work well
due to their descriptor lengths. We also argue that recent
works in compact visual descriptors [Chen et al., 2009][Chen
et al., 2010][Chandrasekhar et al., 2009a][Chandrasekhar
et al., 2009b] are still not compact enough towards zero-
latency wireless transmission, which is quantitatively proven
later. This paper proposes to achieve descriptor compactness
through “contextual learning”, with additional attentions of
the mobile end extraction efficiency.

Our Contribution: We explore this “contextual learning”
in combination with the visual statistics in each specific land-
mark region to learn a compact descriptor from geo-tagged
reference photo collections: First, we propose a geographi-
cal segmentation scheme based on Gaussian Mixture Model
[Stauffer er al., 2000]; Second, we introduce a vocabulary
boosting scheme to learn a compact descriptor in each spe-
cific region, which simulates a set of landmark queries from
this region and learns a compact codebook to maintain the
ranking precision from an original visual vocabulary [Sivic et
al., 2003][Nister et al., 2006]. With this codebook, a compact
BoW descriptor is generated for a given query. However, due
to imprecise segmentation, learning compact descriptors re-
spectively in each individual region cannot guarantee a global
optimum (as discussed in Section 3). Hence, we propose to
further iterate the content aware geographical segmentation
and the vocabulary boosting to reinforce each other. Figure 2
shows the mobile visual landmark search system, embedded



Figure 1: The developed mobile visual landmark search sys-
tem, which embeds the compact visual descriptor extraction
in HTC Desire G7 mobile phone, testing in typical areas like
Beijing, New York, and Barcelona, efc.

with contextual learning based compact visual descriptors.

Application Scenarios: Once a mobile user enters a given
region, the server transmits a downstream supervision (i.e. a
compact codeword boosting vector) to “feach” the mobile de-
vice by linearly projecting the original high-dim vocabulary
into a compact codebook via this boosting vector. Then, given
a query, instead of high-dimensional codeword histogram, an
extremely compact histogram is redirected to transmit via 3G
or WLAN wireless network.

Paper Outlines: We review related work in visual vocab-
ulary and compact visual descriptors in Section 2. Then, our
contextual learning based descriptor extraction is given in
Section 3. Section 4 introduces our descriptor implementa-
tion in mobile visual search system, covers typical areas like
Beijing, New York City, and Barcelona (see snapshot in Fig-
ure 1), with quantitative comparisons with the state-of-the-
art compact visual descriptors [Chen et al., 2009][Chen et
al., 2010][Chandrasekhar et al., 2009a][Chandrasekhar et al.,
2009b].

2 Related Work

Visual Vocabulary Construction: The standard approach
to building visual vocabulary usually resorts to unsupervised
vector quantization such as K-means [Sivic et al., 2003],
which subdivides local feature space into codeword regions.
An image is then represented as a BoW histogram, where
each bin counts how many local features of this image fall
into its corresponding codeword. In recent years, there are
many vector quantization based vocabularies, such as Vo-
cabulary Tree [Nister et al., 2006], Approximate K-means
[Philbin et al., 2007], Hamming Embedding [Jegou er al.,
20081, and [Jurie et al., 2005][Jiang et al., 2007][Philbin ez
al., 2007][Jegou et al., 2010] et al. Hashing based approach
is another solution, such as Locality Sensitive Hashing and its
kernelized version [Kulis et al., 2009]. The works in [Jiang
et al., 2007][Jegou et al., 2008][Philbin et al., 2007][Gemert
et al., 2009] also handles codeword uncertainty and ambi-
guity, e.g. Hamming Embedding [Jegou et al., 2008], Soft
Assignments [Philbin ef al., 2007], and kernelized codebook
[Gemert et al., 2009]. Recent works in [Moosmann et al.,
2006]1[Mairal et al., 2008][Lazebnik et al., 2009] made use
of semantics or category labels to supervise the vocabulary
construction.

Compact Visual Descriptors for Mobile Visual Search:
Comparing with previous works in compact local descrip-
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tors, e.g. SURF [Bay et al., 2006] and PCA-SIFT [Ke et
al., 2004], more recent works [Chen et al., 2009][Chen et
al., 2010][Chandrasekhar et al., 2009al[Chandrasekhar et al.,
2009b] aimed to achieve desirable compression rates that suf-
fice for 3G wireless transmission in mobile visual search sce-
narios.

The first group comes from direct compression of local
visual descriptors. For instance, Chandrasekhar et al. pro-
posed a Compressed Histogram of Gradient (CHoG) [Chan-
drasekhar et al., 2009a] for compressive local feature descrip-
tion, which adopted both Huffman Tree and Gagie Tree to
describe each interest point using approximate 50 bits. The
work in [Chandrasekhar et al., 2009b] compressed the SIFT
descriptor with Karhunen-Loeve Transform, which yielded
approximate 2 bits per SIFT dimension. Tsai et al. [Tsai et
al., 2010] proposed to transmit the spatial layouts of interest
points to improve the discriminability of CHoG descriptors.
Considering the the successive but order insensitive delivery
among local features, recent work in [Chen ef al., 2011] also
proposed to sort the local features the inter-feature compres-
sion in addition to the intra-feature compression.

The second group transmits the BoW [Chen et al.,
2009][Chen et al., 2010] instead of the original local descrip-
tors to gain much higher compression rate without serious
loss of discriminability. Chen et al. [Chen et al., 2009] pro-
posed to compress the sparse bag-of-features by encoding po-
sition difference of non-zero bins. It produced an approxi-
mate 2KB code per image for a vocabulary with 1M words.
The work in [Chen et al., 2010] further compressed the in-
verted indices of vocabulary tree [Nister e al., 2006] with
arithmetic coding to reduce the memory cost in a mobile de-
vice. Recent work in [Ji et al., 2011] also proposed to com-
press the visual vocabulary within the entire city for city-scale
mobile landmark search.

3 Learning Compact Landmark Descriptor

Problem Formulation: We denote scalars as italic letters,
e.g. v; denote vectors as bold italic letters, e.g. v; denote
instance spaces for n instances as R,,; and denote the inner
product between uand vasu-v = > | u;v;.

Given database images I = {I;}" ,, we offline extract n
Bag-of-Words histograms [Nister et al., 2006][Sivic et al.,
2003] V = {V;}™_,, which are typically high-dimensional,
say 0.1-1 million in state-of-the-art settlings [Nister er al.,
2006]. In addition, all images are bounded with correspond-
ing GPS coordinates as G = {Lat;, Long; }—.

Learning Goal: We aim to (1) learn a geographical seg-
mentation S = {S;}; to partition I = {I;}}'; into m re-
gions, which attempts to represent the local context to achieve
descriptor compactness to an extreme. (2) learn a codebook
U; € Ry, for compact descriptor extraction in each S; from
V € R,, such that k& < n, which is online updated into the
mobile device once the mobile user enters .S;.

Chicken and Egg Problem: On one hand, we expect the
Uj; is as compact as possible in each S;. On the other hand,
under such circumstance, the compactness depends on how
properly an image subset in I is segmented into S;. How-
ever, such segmentation is naturally imprecise, especially in
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Figure 2: The proposed contextual learning based compact visual landmark descriptor extraction framework towards a low bit
rate mobile landmark search, which embeds descriptor extraction into the mobile end.

the context of learning compact visual descriptors. While we
may learn an optimal descriptor in each region, the overall
compactness of all regions may not be guaranteed well. In
other words, the optimization towards descriptor compact-
ness is local in each region, rather than among all the regions
over the entire image database.

Ideally, we aim to learn both the optimal region segmen-
tation and more compact description in each region to mini-
mize:

’

Cost = ZZ |Ui| s.t. Yjem Loss(Ps,) <T (1)
j=1i=1

where |U;| denotes the descriptor length of the ith sampled
query image (in total n’) falling into region S;; the con-
straints denote the retrieval precision loss (Loss(Ps;)) in
each region, which would be revisited in Section 3.2. Ob-
viously, we cannot carry out both geographical segmentation
S = {S;}}JL, and descriptor learning U; € Ry in each Sj
simultaneously. Hence, we expect an iterative learning to op-
timize Equation 1 in the entire city.

3.1 Geographical Map Segmentation

We adopt the Gaussian Mixture Model (GMM) [Stauffer et
al., 2000] to segment I into S. We assume that the geograph-
ical photo distribution is drawn from m landmark regions,
and denote the ith component as w;, with mean vector p;. We
then regard photos belonging to the ith component as gen-
erated from the ith Gaussian with mean y; and covariance
matrix ) ., followed a normalized distribution N (13, ).

Therefore, assigning each photo x into the ith region is to
infer its Bayesian posterior probability:

plely = i)P(y = 1) @)
p(x)

where p(x|y = 4) is the probability that the region label y of

photo x belongs to the ith component, following a normalized

distribution:

ply =ilr) =

T — )

3

plaly = i) = p| 50— m)

1
PPRNTT——
(2m) = |22
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As neither the component parameters nor the region as-
signments is known, we adopt an expectation maximization
to perform segmentation: First, we estimate Gaussian Mix-
ture Model at the tth iteration (denoted by (t)) as:

A = {ul(t), e (£), > (), Y (1), Pa(t), ...Pm(t)}

1 m
“
The Expectation Step computes the “expected” segmen-
tation label for each database image x as:

p(xly =i, A)p(y = i|Ae)
p(al )
_ p(aly =m0, 2,(0)) P(t) )
Srp (ely = 5o (0, 25(0)) Pi(t)

The Maximization Step computes the maximal likelihood
of each component, given the segmentation membership of x:

p(y = i|5L‘, )‘t) =

>k Yk = ilwg, A
(t+1)= . 6
pualt +1) ka(yk = i|Tp, Ar) ©

dt+1)=

> Pk = ilwe, M) wr — pa(t + 1)][ag — pa(t + 1)]7
2o P(Yk = ik, Ar) -

The probability of the ith component P; specifies its priori
in geographical segmentation, which is updated as follows:

H(t+1) — ka(yk 7’|:Z‘1]€7 t) (8)

|{Ik|k € [1,71], Yk = Sm}|
We revisit P; in our iterative co-optimization (Section 3.3)
to learn geographical segmentation and compact descriptors

in a joint manner.

3.2 Descriptor Learning via Vocabulary Boosting

SVT Model for Scalable Search: Towards efficient land-
mark search in a million scale database, the Scalable Vocabu-
lary Tree (SVT) [Nister et al., 2006] is well exploited in pre-
vious works [Chen et al., 2009][Chen et al., 2010][Irschara et



Figure 3: The geographical visualization of the descriptor compactness in Beijing city through iterative co-optimization (1" =
1 to 20). We normalize the min vs. max ratio of descriptor lengths and map the ratio to the saturation of red color. The green
points denote the distribution of geo-tagged photos. In general, less saturated map corresponds to more optimal descriptors.

al., 2009][Schindler et al., 2007]. SVT uses hierarchical K-
means to partition local descriptors into quantized codewords.
An H-depth SVT with B-branch produces M = BH code-
words, and the scalable search typically settles H = 5 and
B =10 [Nister er al., 2006]. Given a query photo I, with J
local descriptors L(q) = [L1(q), ..., Ls(q)], SVT quantizes
L(q) by traversing in the vocabulary hierarchy to find out the
nearest codeword, which converts L(q) to a BoW histogram
V(g) = [Vi(q), ..., Var(¢)]. In search, the optimal ranking
is supposed to minimize the following loss function with re-
spect to the ranking position R(x) of each I, (BoW feature
V(z)):

Lossrank = »_ R(x)W.||V(q), V(2)]|2
x=1
where TF-IDF weighting is calculated in a way similar to its
original form [Salton et al., 1988] in document retrieval:

€))

n nyy n
ey = X log(——
o T log(1 )

ni

nl‘

r =

W =
where n” denotes the number of local descriptors in I,
ny,(x) denotes the number of local descriptors in I, quan-
tized into V;; m denotes the total number of images in
the database; my, denotes the number of images contain-

ing Vi; 2% serves as the term frequency of V; in I; and

log(;2-) serves as the inverted document frequency of V; in

the database.

Simulating User Query for Training: For a given re-
gion containing n’ landmark photos [I1, Io, ..., I,,/], we ran-
domly sample a set of geo-tagged photos [I1, I3, ..., I;mep )

as pseudo queries, which output the following ranking list:

x log( (10)

x

Query(I}) = [Aj, ..., AR]
(11)

Ansample

I/ ) — [A"llsample 5

Nsample

]

where A7 is the ith returning of the jth query. We expect to
maintain the original ranking list [A], A}, ..., A%] for the jth
query using a more compact vocabulary. Therefore, above
queries and results are dealt with as ground truth in our sub-
sequent boosting training.

Query(

PIREESY

2459

Location Aware Vocabulary Boosting: We deal with de-
scriptor learning as an AdaBoost based codeword selection:
The weak learner is each single codeword, and learning is to
minimize the ranking discriminability loss with a minimized
coding length. We first define [wy, ..., wp,,,,,,.] as an er-
ror weighting vector to the ngumpre query images in region
S, which measures the ranking consistency loss in the cur-
rent word selection. We then define the encoded vocabulary
as U; € R for S, which is obtained from V € R/ via
U; = M7V, where M s« is a dimension reduction trans-
form from Ry, to Ry In boosting, MM is a diagonal ma-
trix, where non-zero diagonal position defines a codeword se-
lection. At the rth iteration, we get the current (¢—1) non-zero
diagonal elements in MM, To select the tth discriminative
codeword, we first estimate the ranking preservation of the
current setting of MM :

Loss(I)) =
R .
wih Y R(ADW 4 [[MTTU (1), V(AL |2

r=1

12)

where i € [1, nsampie]; R(AL) is the returning position of
.. . 1 _
the originally rth returning for query I/; [wi™', ..., wfbsalmple]

is the (z-1)th error weighting, measuring the loss of the jth
query. Then, the overall loss in ranking is:

Lossgank =
Nsample R . )
Yo wiTt Y R(ADW MU (L), V(4] o
i=1 r=i

13)
The best new codeword Uy is selected by minimizing:

U; = argmin
J

Nsample

D

[0, ...,p0s(4), .-, 0]as[O, ..., pos(t), ..,0]£]Uj(fl()||m

where [0, ...,p0s(j),..,0]ar is an M x 1 selection vec-
tor to select the jth column to the linear projection; and

R
WS T R(ADW . x [[V(ALD), M4 (14)

r=1



Algorithm 1: Location Aware Vocabulary Boosting

Input: Bag-of-Words V = {V (i )}, 1 for region Sj;
simulated query logs {I;},°#™"'; Boosting threshold ;
initial error weighting vector [wl, w2, .. ] and
boosting iteration ¢ = 0.

Pre-Computing: Calculate LosSgqnk in each region using

Equation 13; Calculate Z sample gt

Q-

1

» Wngample

3 while {37297 wl < 7} do

4 Loss Estimation: Calculate L0ssrqni by Equation 13.
5 Codeword Selection: Select U; by Equation 14.

6 Error Weighting: Update [w1, ..., Wn ,,,...] bY

Equation 15;

7 Transformation Renew: Update M’ ™! by Equation 16.
8 t++;

9 end
10 Output: Compressed codebook U; = MTV for region S;.

[0, ...,pos(t),..,0]k is a K x 1 position vector to map V;
to the new codeword U;. We then update the error weighting
of each wfl

R
R(ALW i [[V(AL), M1+

SR 05
[0, ..., p0s(5), ., 0[O, ..., pos(t), .., 0 JU; (I])|| L2
Also, the M at the tth round is updated as follows:

Mt :Mt—l+
. s (16
[0, ...,p05(j), -, 0] [0, .., pos(t), .., 0]

The codebook boosting is stopped at Zn”’”’lc wi < T

We summarize our Vocabulary Boosting in Algorithm 1.

3.3 Iterative Co-Optimization

Since there is a tradeoff between the downstream vocabu-
lary adaption and the upstream descriptor delivery, we aim to
subdivide the geographical regions, which would yield more
compact descriptors and meanwhile aim to merge nearby re-
gions towards less compact descriptors. We fulfill these two
joint goals by iterative co-optimization, through the process
of geographical segmentation as well as descriptors learnings.

We estimate the necessity of using longer or shorter de-
scriptor length of each region with an uncertainty measure-
ment (like “entropy”), which is dealt with as a feedback to
the prior probability P; in Equation 2 (for the ith region) to
refine geographical segmentation at the T'th iteration:

P = _log(|Ui|/|UmaI|) (17)

Figure 3 further visualizes the city-scale descriptor mini-
mization procedure with the segmentation-learning iteration
(T = 1 to 20). It is intuitive to find out that the overall de-
scriptor length minimization is gradually reduced. In other
words, when the mobile users travel in this city and visit mul-
tiple landmarks, or multiple travelers visit multiple landmark
regions, the overall downstream descriptor adaption and up-
stream wireless query transmission, is minimized in a more
global manner.
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4 Implementations and Quantitative
Comparison Results

Data Collection and Ground Truth Labeling: We collect
over one million geographical tagged photos from both Flickr
and Panoramio photo sharing websites, which cover typi-
cal areas including Beijing, New York City, and Barcelona.
From the geographical map of each city, we choose 30 most
dense regions and 30 random regions. Since manually iden-
tifying all related photos of a landmark is intensive, for each
of these 60 regions, we ask volunteers to manually identify
one or more dominant views. Then, all near-duplicated land-
mark photos to a given view are labeled in its belonging and
nearby regions. We then sample 5 images from each region
as the query, which forms 300 queries in each city.
Parameters and Evaluations: We extract SIFT [Lowe
2004] features from each photo. We build a Scalable Vocab-
ulary Tree [Nister er al., 2006] to generate the initial vocab-
ulary V, which outputs a Bag-of-Words signature V() for



each database photo I;,. We use the identical vocabulary gen-
erated in Beijing to conduct search in other cities. For each
region in a city, the boosting is conducted to offline learn M.
We denote the hierarchical level as H and the branching fac-
tor as B. In a typical settlement, we have I = 5 and B = 10,
producing approximate 0.1 million words. We use mean Av-
erage Precision (mAP) to evaluate performance, which re-
veals its position-sensitive ranking precision in top /0 posi-
tions.

Baselines: (1) Original Bag-of-Words: Transmitting the
entire BoW has the lowest compression rate. However, it pro-
vides the upper bound in mAP. (2) IDF Thresholding: As a
straightforward scheme, we only transmit the IDs of code-
words with the highest IDF values (Figure 5 tests 20% —
100%) as an alternative solution for vocabulary Compression.
(3) Aggregating Local Descriptors [Jegou et al., 2010]: The
work in [Jegou et al., 2010] adopted aggregate quantization
to obtain compact signature. Its output is also a compressed
codeword histogram produced by an initial vocabulary V.
(4) Tree Histogram Coding [Chen et al., 2009]: Chen et al.
used residual coding to compress the BoW histogram, which
is the most related work. (5) Without Co-Optimization: To
quantize our iterative co-optimization, we degenerate our ap-
proach without iterating between geographical segmentation
and descriptor learning.

Efficiency Evaluation: We deployed our compact descrip-
tor extraction into both HTC DESIRE G7 and iPhone4 (the
upstream query transmission rate is given in Figure 5). Fig-
ure 4 gives a typical memory and time requirement in sepa-
rate steps when embedding the complete descriptor extraction
into the mobile phone.

Rate Distortion Analysis: We compare our rate distor-
tion with state-of-the-art works [Nister et al., 2006][Chen et
al., 2009][Chandrasekhar er al., 2009al[Jegou er al., 2010]
in Figure 5. We achieve the highest compression rate with
equalized distortions (horizontal view), or in other words,
maintain the highest search mAP with equalized compression
rates (vertical view).

Insights into Compact Descriptors: Descriptor Robust-
ness and Matching Locations: We empirically collect quite a
few real-world challenging queries happening at night, while
some others occur in different scales (from nearby views or
from distant views). There is also a commonsense that some
queries are blurred due to mobile capturing. We also selected
some suboptimal queries that contain occlusions (objects or
persons), as well as photos of partial landmark views. Fig-
ure 6 shows that, the compact descriptor from our vocabu-
lary boosting can still well preserve the ranking precision,
with comparisons to the Baselines (1)(2)(4). Figure 6 also
investigates where our compact descriptor matches from the
query photo to the reference database images, where the cir-
cles overlapped on the query and the first row of images de-
note the matched words.

mAP with Respect to Different Region: Figure 7 further
shows the mAP variances in different regions, which shows
that we can incrementally optimize the mAP in regions con-
taining larger amounts of photos. It is also interesting that
mAP is higher in the regions with a descriptor length of 100-
200 bits, where indeed the majority of regions fall into this
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Figure 7: mAP variances in different regions, we draw two
dimensional lattices to divided regions with respect to differ-
ent image volumes and descriptor bits, then average the mAP
for regions falling into each lattice.

category of 100-200 bits. Our extensive empirical study has
demonstrated the more optimal performance for landmark
search and returning additional information, with this setting
of 100-200 bits.

What Compact Codewords are Learnt to Transmit: The
learnt codebook is supposed to represent the most discrimi-
native patches for a given query. Figure 8 further investigates
which codewords are transmitted during the query. By visual-
izing the word centroid in Figure 8, we can see that different
queries produce different codewords, where the most discrim-
inant words are determined based on the resulting compact
codebook to represent the query’s visual content.

5 Conclusions and Future Works

In this paper, we propose to learn a compact visual descriptor
by combining both visual content and geographical context,
which has been deployed for mobile landmark search. We
focus on its compactness for a low bit rate wireless trans-
mission, as well as its computational efficiency for embed-
ded feature extraction in mobile devices. We achieve both
goals in an iterative optimization framework between geo-
graphical segmentation and descriptor learning. Our descrip-
tor has been developed in both HTC DESIRE G7 and iPhone4
mobile phones, which outperforms state-of-the-art works in
[Nister ef al., 2006][Chen et al., 2009][Chandrasekhar e al.,
2009allJegou et al., 20101, using one million Web landmark
images covering Beijing, New York City, and Barcelona.

We envision the promising usage of context aware com-
pact descriptors in the state-of-the-art research efforts as well
as the emerging mobile search applications in industry. The
context aware descriptors possibly start more practical sce-
narios to achieve real world extremely low bit rate transmis-
sion in WLAN or 3G s network. In addition, our proposed
compact descriptor would be at the very beginning of a signif-
icant and potentially huge activity in research, development,
and sstandardization of mobile search as well as mobile real-
ity augmentation applications.

In addition, our efforts are closely targeted at the emerging
MPEG Compact Descriptor for Visual Search (CDVS) stan-
dard. We think that this standardization and relevant research
may stand as one of typical examples that integrate intelligent
Al technique into embedded mobile platform. Nowadays,
MPEG CDVS activity has attracted arising industry interests
from quite a few smartphone or imaging chip companies like
Nokia, Qualcomm, Aptina, NEC, etc.
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Figure 6: Descriptor robustness against illumination changes, scale changes, blurred, occlusions, and partial queries. Each left
photo is the query, each line of results corresponds to an approach. Top: Vocabulary Boosting; Middle: Original BoW or Tree
Histogram Coding; Bottom: IDF Thresholding (top 20%). Based on the proposed compact descriptors, the spatial matching
between each query (left photo) and the retrieved images (the top row) are illustrated by color circles (Different colors denote

different codewords. Best view in color.).
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