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Abstract

One drawback with using plan recognition in adver-
sarial games is that often players must commit to
a plan before it is possible to infer the opponent’s
intentions. In such cases, it is valuable to couple
plan recognition with plan repair, particularly in
multi-agent domains where complete replanning is
not computationally feasible. This paper presents
a method for learning plan repair policies in real-
time using Upper Confidence Bounds applied to
Trees (UCT). We demonstrate how these policies
can be coupled with plan recognition in an Amer-
ican football game (Rush 2008) to create an au-
tonomous offensive team capable of responding to
unexpected changes in defensive strategy. Our real-
time version of UCT learns play modifications that
result in a significantly higher average yardage and
fewer interceptions than either the baseline game or
domain-specific heuristics. Although it is possible
to use the actual game simulator to measure reward
offline, to execute UCT in real-time demands a dif-
ferent approach; here we describe two modules for
reusing data from offline UCT searches to learn ac-
curate state and reward estimators.

1 Introduction

Although effective opponent modeling is often identified as
an important prerequisite for building agents in adversar-
ial domains [van den Herik et al., 2005], research efforts
have focused mainly on the problem of fast and accurate
plan recognition [Avrahami-Zilberbrand and Kaminka, 2005;
Kabanza et al., 2010]. Often in continuous-action games the
information from plan recognition is used in an ad-hoc way
to modify the agent’s response, particularly when the agent’s
best response is relatively obvious. In this paper, we propose
that coupling plan recognition with plan repair can be a pow-
erful combination, particularly in multi-agent domains where
replanning from scratch is difficult to do in real-time.

To explore this problem, we chose a popular domain
where planning is crucial and accurate plan recognition is
possible—American football [Intille and Bobick, 1999; Hess
et al., 2007]. Our goal is to produce a challenging and fun

computer player for the Rush 2008 football game developed
by Knexus Research [Molineaux, 2008], capable of respond-
ing to a human player in novel and unexpected ways.1 In
Rush 2008, play instructions are similar to a conditional plan
and include choice points where the players can make in-
dividual decisions as well as pre-defined behaviors that the
player executes to the best of their physical capability. Plan-
ning is accomplished before a play is enacted, and the best
plays are cached in a playbook. Certain defensive plays can
effectively counter specific offenses. Once the play com-
mences, it is possible to recognize the defensive play and to
anticipate the imminent failure of the offensive play.

In such situations, we propose that plan repair can be used
to mitigate poor expected future performance. Paradoxically,
plan repair can easily worsen overall play performance by
causing miscoordinations between players; even minor tim-
ing errors can significantly compromise the efficacy of a play.
Moreover, it is difficult to predict future play performance at
intermediate stages of the play execution since effective and
ineffective plays share many superficial similarities. In this
paper, we introduce an approach for learning effective plan
repairs using a real-time version of Upper Confidence Bounds
applied to Trees (UCT) [Kocsis and Szepesvári, 2006]. Fig-
ure 1 provides an overview of the key elements of our imple-
mentation. Our system is the first autonomous game player
capable of learning team plan repairs in real-time to counter
predicted opponent actions.

Monte Carlo search algorithms have been successfully
used in games that have large search spaces [Chung et al.,
2005; Cazenave and Helmstetter, 2005; Cazenave, 2009;
Ward and Cowling, 2009]. Upper Confidence Bounds ap-
plied to Trees (UCT) is one such method that performs Monte
Carlo rollouts of a complete game from the current state.
Prior work on UCT for multi-agent games has either relied
on hand-coded game simulations [Balla and Fern, 2009] or
the use of the actual game to evaluate rollouts. In this pa-
per, we illustrate how data from offline UCT searches can be
used to learn state and reward estimators capable of making
limited predictions of future actions and play outcomes. Our
UCT search procedure uses these estimators to calculate suc-
cessor states and rewards in real-time. Experiments show that

1Note that we are not attempting to realistically simulate the
thought processes or actions of human players and coaches.
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Figure 1: High-level diagram of our system. To run in real-
time, our variant of UCT uses a successor state estimator
learned from offline traces to calculate the effects of random
rollouts. The reward is estimated from the projected termi-
nal state (just before the quarterback is expected to throw the
ball, designated in the diagram as the goal time.)

the plan repairs learned by our method offer significant im-
provements over the offensive plays executed by the baseline
(non-AI system) and also a heuristic-based repair method.

2 Rush Football

American football is a contest of two teams played on a rect-
angular field. Games like soccer and football pose a different
set of planning problems than are found in static, turn-based
games such as chess or Go which only utilize one agent per
color. Football requires real-time, continuous, multi-agent
search techniques capable of handling a dynamic environ-
ment. Unlike standard American football, Rush teams only
have 8 players simultaneously on the field out of a total roster
of 18 players, and the field is 100 × 63 yards. The game’s
objective is to out-score the opponent, where the offense (i.e.,
the team with possession of the ball), attempts to advance
the ball from the line of scrimmage into their opponent’s end
zone. In a full game, the offensive team has four attempts to
get a first down by moving the ball 10 yards down the field. If
the ball is intercepted or fumbled and claimed by the defense,
ball possession transfers to the defensive team. Stochasticity
exists in many aspects of the game including throwing, catch-
ing, fumbling, blocking, running, and tackling. Our work fo-
cuses on improving offensive team performance in executing
passing plays.

A Rush play is composed of (1) a starting formation and
(2) instructions for each player in that formation. A forma-
tion is a set of (x, y) offsets from the center of the line of
scrimmage. By default, instructions for each player consist
of (a) an offset/destination point on the field to run to, and
(b) a behavior to execute when they get there. Rush includes
three offensive formations and four defensive ones. Each for-
mation has eight different plays that can be executed from that

Figure 2: The Pro formation running play variant 4 against
defensive formation 31 running variant 2.

formation. Offensive plays typically include a handoff to the
running back/fullback or a pass executed by the quarterback
to one of the receivers, along with instructions for a running
pattern to be followed by all the receivers. Learning effective
plays in Rush is hampered by: (1) a large and partly continu-
ous search space, (2) lack of intermediate reward information,
(3) difficulty in identifying action combinations that yield ef-
fective team coordination, and (4) constant threat of actions
being thwarted by adversaries. Figure 2 shows an example
play from the Pro formation:

1. the quarterback passes to an open receiver;
2. the running back and left wide receiver run hook routes;
3. the left and right guards pass block for the ball holder;
4. the other players wait.

3 Method

Our system for learning plan repairs in real-time relies on the
following components.

Play Recognizer We treat the problem of intention recogni-
tion as a multi-class classification problem to identify
the formation and play variant currently being executed
by the defense. Although recognizing the static forma-
tion is straightforward, early recognition of play variants
is challenging. We achieve 90% accuracy at time t = 3
using a multi-class support vector machine (SVM).

Next State Estimator To execute UCT rollouts in real-time
our system must predict how defensive players will react
as the offense adjusts its play. We train state/reward es-
timators using offline data from previous UCT searches
and employ them in real-time.

Reward Estimator To calculate UCT Q-values in the
predicted future state, the system estimates reward
(yardage) based on relative positions of the players. Be-
cause of the inherent stochasticity of the domain, it is
difficult to learn a reward estimator early in the play. We
focus on estimating yardage at a later stage of the play—
just before we expect the quarterback to throw the ball.

UCT Search Using the state and reward estimators, we use
the UCT search algorithm to generate a sparse tree to
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select actions for the key offensive players, a three player
subset of the team automatically determined in advance.
The search procedure is re-executed at every time step
to account for unexpected actions taken by the defense.

Rush Simulator The selected player actions are issued to
the Rush simulator via network sockets. The simulator
returns the new locations of all offensive and defensive
players to be used by the estimators.

3.1 UCT Search

After recognizing the play, we use UCT to search for the
best action available to each of the key players. Key players
are a subset of three offensive players identified offline for
a specific formation. UCT maximizes the upper-confidence
bound by preferentially exploring regions with the best prob-
ability of producing a high reward. Search continues for a
predetermined number of rollouts; our implementation uses
N = 500, which produced the best results while still allow-
ing real-time execution. As suggested by the original UCT
algorithm, unexplored nodes are always sampled first and at
random. When no nodes from the current node are left unex-
plored, action selection is determined using a variant of the
UCT formulation, π(s) = argmaxa(Q

+(s, a)), where π is
the policy. The state s includes the locations of all players as
well as the location of the ball. The action a contains the com-
bination of actions for key players, a = {a1, a2, a3}, where
a1,2,3 ∈ {Left, upLeft, . . . , downLeft}. Sampling continues
until the predetermined number of samples N is reached. Fi-
nally, the action leading to the most frequently sampled child
of the root node is selected as the next action.

Using a similar modification to that suggested in [Balla
and Fern, 2009], we adjust the upper confidence calculation

Q+(s, a) = Q(s, a) + c
√

log n(s)
n(s,a) to employ c = Q(s, a).

Typically c is a constant used to tune the biasing sequence to
adjust exploration/exploitation of the search space. We used
a modification proposed by [Balla and Fern, 2009] which al-
lows the amount of exploration to scale proportionally to the
quality function Q(s, a), which ranges from 0 to 1. After
a node is sampled, both Q(s, a), the mean observed reward,
and n(s, a), the number of times the node is sampled are up-
dated. This update occurs recursively from the leaf node to
the root node:

n(s, a) ← n(s, a) + 1,

Q(s, a) ← Q(s, a) +
1

n(s, a)
(R′ −Q(s, a)) ,

where R′ is the reward given by the reward estimator.
For this spatial search problem, if actions are explored ran-

domly, players will remain within a small radius of their start-
ing positions. Even in conjunction with UCT, it is unlikely to
find a good path. To eliminate circular travel, the system uses
an attractive potential field [Arkin, 1989] in the direction of
the goal that guides exploration toward the correct end zone.

To improve the efficiency of the search process, we con-
strain the Monte Carlo rollouts in the following ways. First,
we only consider movement actions in the general direction
of the player’s potential field. Also, for every offensive for-
mation, plan repairs are limited to a small subgroup of key

Figure 3: A comparison between the actual and predicted
paths. Actual paths made by the defensive players are shown
as red lines. Blue circles show the estimated path of the de-
fensive players. The estimated motions are very close to the
actual paths except in the case of the right CB, where the es-
timated path crosses but does not follow the true path.

players; the remaining players continue executing the original
offensive play. The initial configuration of the players gov-
erns the players that are most likely to have a decisive impact
on the play’s success; by focusing search on a key subgroup
of these three players (out of the total team of eight) we speed
the search process significantly and concentrate the rollouts
on higher expected reward regions. In the results section, we
separately evaluate the contribution of these heuristics toward
selecting effective plan repairs.

3.2 Successor State Estimation

To predict successor states in real-time, we perform an incre-
mental determination of where each player on the field could
be at the next time-step. To accomplish this update, play-
ers are split into three groups: (1) defensive players, (2) of-
fensive key players, and (3) offensive non-key players. The
real-time UCT algorithm explores actions by the key play-
ers, and the successor state estimator seeks to predict how the
defensive players will react to potential plan repairs. Loca-
tions of non-key offensive players are determined using the
historical observation database to determine the most likely
position each non key offensive player will occupy, given the
play variant and time-step. Rather than executing individual
movement stride commands, these players are actually per-
forming high-level behaviors built into the Rush simulator;
thus even though these players are technically under our con-
trol, we cannot predict with absolute certainty where they will
be in the future.

Formally, the game state at time t can be expressed as the
vector s(t) = (xo1, . . . ,xo8,xd1, . . . ,xd8,xb), where xoi,
xdj , and xb denote the (x, y) positions of the offensive play-
ers, defensive players, and the ball, respectively. Similarly,
we denote by aoi and adj the actions taken by the offensive
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player oi and defensive player dj, respectively and ab denotes
the movement of the ball.

We predict the actions for the non-key offensive players
from the historical archive of previously observed games; we
simply advance the play according to the most likely action
for each player and adjust the ball state accordingly. How-
ever, to determine the actions for the key offensive players
(those whose actions will dramatically alter the current play),
we identify promising actions from the UCT tree using the
Monte-Carlo rollout. The goal is to alter the current play in a
way that improves the expected yardage.

Predicting the opponent’s response to the altered play is
more difficult. For this, we train a classifier to predict the
next action of each defensive player dj based on its position
and that of its closest offensive player,

oϕ = argmin
oi

||xdj − xoi||2.
In other words, the classifier learns the mapping:

(xdj(t),xoϕ(t)) �→ adj(t+ 1),

where a ∈ A is selected from the discrete set of actions de-
scribed above. We employ the K∗ classifier [Wang et al.,
2006] for this purpose. Applying adj to the defensive player’s
position enables us to predict its future position. The classi-
fier is trained off-line using a set of observed plays and is
executed on-line in real-time to predict actions of defensive
players.

We predict the play state forward up to the time τ where
we expect the quarterback to throw the ball. If by t = τ , the
quarterback has not thrown the ball, we continue predicting
for five more time steps.

We evaluated the successor state estimator using 1177 test
instances and found that it accurately predicts the next state
for each defensive player 88.63% of the time. Note that this is
an example of an unbalanced dataset in which certain actions
are extremely rare. Figure 3 shows the trajectories generated
using the successor state estimator compared to the actual po-
sitions of the defensive players.

3.3 Reward Estimation

The reward estimator is trained using examples of player con-
figurations immediately preceding the quarterback throw. At
this stage of the play, there is significantly less variability in
the outcome than if we attempted to train a reward estimator
based on earlier points in the play execution.

The reward estimator uses an input vector derived from the
game state at the end of the prediction s(τ) consisting of a
concatenation of the following three attributes: 1) distance of
the ball to each key offensive player; 2) distance from each
key offensive player to the end zone; 3) distance from each
key offensive player to his closest opponent.

The output is the expected yardage, quantized into 6
equally-sized bins. Our preliminary evaluations indicated that
learning a continuous regression model for the yardage was
much slower and did not improve accuracy. Therefore, we
use a K∗ classifier with the expected yardage treated as a dis-
crete class (1–6).

We performed a 10-fold cross validation to validate the ef-
fectiveness of the reward estimator. The estimator was correct

Figure 4: Our Rush Analyzer and Test Environment (RATE)
is designed to facilitate reproducible research on planning and
learning in the Rush 2008 football game. RATE consists of
over 40,000 lines of code and has support for separate debug-
ging of AI subsystems, parallel search, and point-and-click
configuration.

in 54.7% of the instances. Since different executions from
the same player positions can result in drastically different
outcomes, accurately estimating reward is a non-trivial prob-
lem. Improving the classification accuracy could potentially
improve the effectiveness of our system but even with our
current reward estimator, the focused UCT search is able to
identify promising plan repairs.

4 Results

To demonstrate the effectiveness of the overall system,
we compared the plans generated by the proposed method
against the unmodified Rush 2008 engine (termed “baseline”)
and against a heuristic plan repair system that selects a legal
repair action (with uniform probability) from the available
set, using potential field and key player heuristics. Experi-
ments were conducted using our Rush Analyzer and Test En-
vironment (RATE) system, shown in Figure 4, which we con-
structed to support experimentation on planning and learning
in Rush 2008. Because of the time requirements to connect
sockets and perform file operations RATE operates as a multi-
threaded application. Results in Figure 5 are shown for
the fourth play variant of the Pro formation (a passing play)
against 3 randomly selected defenses which gain fewer than
6.5 yards on average. Three defensive variants from different
formations (31-2, 2222-2, and 2231-2) were arbitrarily cho-
sen for testing. A two-tailed student t-test reveals that our
approach (real-time UCT) outperforms both the baseline and
heuristic approaches (p < 0.01) on total yardage gained.

In American football one of the worst outcomes is that the
team in possession of the ball inadvertently passes it to the
opposing team. These changes in ball possession have a sig-
nificant impact on the future course of the game that is not
reflected in single play matchups. Thus, we separately eval-
uated how frequently the defense succeeded at intercepting
the ball independent of yardage gains (Figure 6). Our ap-
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Figure 5: The proposed system with learned successor and re-
ward state estimators results in a performance gain of almost
5 yards (67% improvement) over uniformly-drawn repair ac-
tions guided by the key player and potential field heuristics.
Compared to the baseline (Rush 2008 using built-in play li-
brary) there is a 2 yard or 30% performance improvement.
The error bars mark the 95% confidence interval.

proach significantly reduces the number of interceptions over
both the baseline Rush simulator and the uniformly-drawn
plan repair actions, showing that coupling plan recognition
with effective plan repair dramatically improves the offense’s
chance of maintaining possession of the ball. However, it ap-
pears that even the heuristically-guided plan repair reduces
the number of interceptions, revealing that even imperfect
plan repair can decisively impact the course of the game in
a way not well-reflected by the yardage metric.

5 Related Work

Like Robocup, Rush 2008 was developed as a general plat-
form for evaluating game-playing agents. Interestingly, one
of the first mentions of opponent modeling in the AI litera-
ture pertains to predicting movements in football [McCarthy
and Hayes, 1969]. In our work, we treat opponent modeling
as a specialized version of online team behavior recognition
in which our system solves a multi-class classification prob-
lem to identify the currently executing play. There has been
prior work on offline play generation for Rush Football us-
ing techniques such as learning by demonstration (e.g., [Li
et al., 2009]). None of the previous approaches included a
real-time planning component; plays were generated offline
and loaded into the simulator. Accurate supervised and unsu-
pervised plan recognition techniques have also been demon-
strated within Rush 2008 [Molineaux et al., 2009], where the
authors showed the benefits of combining plan recognition
with reinforcement learning. The defensive play information
is directly included into the state space representation used
by the reinforcement learner. Unlike our work, their method
focuses exclusively on the quarterback, and all learning takes
place offline. [Laviers et al., 2009] present a non-learning
plan adaptation method for Rush 2008, in which key players
switch to a new play based on historical yardage gains. The
effectiveness of this method is limited by the initial play li-

Figure 6: A key metric in American football is how frequently
the opposing team is able to intercept the ball (lower is bet-
ter). The proposed system improves significantly over both
the baseline and heuristic approaches.

brary since there is no mechanism for discovering new repair
sequences.

Within the Robocup domain, which shares some similar-
ities with Rush 2008, the bulk of related work has been in
the context of the Coach Agent competition (e.g., [Riley and
Veloso, 2002]). Outside of the coach competition, most of
the work on behavior recognition on Robocup has been the-
oretical in nature (e.g., [Avrahami-Zilberbrand and Kaminka,
2005]) and not usable in actual play; in contrast, our work
conclusively demonstrates that play recognition can be used
effectively in real-time.

Recently, UCT has enjoyed great success at learning poli-
cies in a wide-variety of games. Most relevant to our efforts,
UCT has been demonstrated in WARGUS, a multi-agent real-
time strategy game (RTS) by [Balla and Fern, 2009]. In gen-
eral, our work differs from prior work using UCT in that it
focuses on learning plan repairs rather than learning plans.

6 Conclusion

A missing ingredient in effective opponent modeling for
games is the ability to couple plan recognition with plan re-
pair. In this paper, we propose a real-time method for learning
plan repair policies and show that it is possible to learn suc-
cessor state and reward estimators from previous searches to
do online multi-agent Monte Carlo rollouts. Simultaneously
predicting the movement trajectories, future reward, and play
strategies of multiple players in real-time is a daunting task
but we illustrate how it is possible to divide and conquer this
problem with an assortment of data-driven game models. Our
learned plan repair policies outperform both the baseline sys-
tem and a simple heuristics-based plan repair method at im-
proving yardage gained on each play execution. More impor-
tantly, our method results in a dramatic drop in the number of
interceptions, which is likely to result in significantly longer
ball possession periods within the context of a full game. Al-
though the details of the learning process may differ, we be-
lieve that our techniques will generalize to other real-time,
continuous, multi-agent games that lack intermediate reward
information such as squad-based shooter games.
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In future work, we plan to incorporate information about
classifier error rates directly into our plan repair to enable the
calculation of “risk-sensitive” plan repair policies that con-
sider the impact of prediction failures. In this particular do-
main, our play recognizer classifies plays with a > 90% accu-
racy so this feature was not a priority. An unanswered ques-
tion is the long-term effect of plan repair in computer op-
ponents on player enjoyability. Our hypothesis is that adding
plan repair increases the variability of the game execution and
results in an overall increase in player satisfaction based on
the theory espoused by [Wray and Laird, 2003]. However, it
is possible that the plan repair algorithm needs to be tuned to
provide play at the correct difficulty level rather than simply
optimized to be maximally effective; studying the question of
adaptive difficulty is an area of future research.
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[Kocsis and Szepesvári, 2006] L. Kocsis and C. Szepesvári.
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