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Abstract

In Bayesian machine learning, conjugate priors are
popular, mostly due to mathematical convenience.
In this paper, we show that there are deeper reasons
for choosing a conjugate prior. Specifically, we for-
mulate the conjugate prior in the form of Bregman
divergence and show that it is the inherent geome-
try of conjugate priors that makes them appropriate
and intuitive. This geometric interpretation allows
one to view the hyperparameters of conjugate pri-
ors as the effective sample points, thus providing
additional intuition. We use this geometric under-
standing of conjugate priors to derive the hyperpa-
rameters and expression of the prior used to couple
the generative and discriminative components of a
hybrid model for semi-supervised learning.

1 Introduction

In probabilistic modeling, a practitioner typically chooses a
likelihood function (model) based on her knowledge of the
problem domain. With limited training data, a simple max-
imum likelihood estimation (MLE) of the parameters of this
model will lead to overfitting and poor generalization. One
can regularize the model by adding a prior, but the fundamen-
tal question is: which prior? We give a turn-key answer to this
problem by analyzing the underlying geometry of the likeli-
hood model, and suggest choosing the unique prior with the
same geometry as the likelihood. This unique prior turns out
to be the conjugate prior, in the case of the exponential fam-
ily. This provides justification beyond “computational conve-
nience” for using the conjugate prior in machine learning and
data mining applications.

In this work, we give a geometric understanding of the
maximum likelihood estimation method and a geometric ar-
gument in the favor of using conjugate priors. Empirical evi-
dence showing the effectiveness of the conjugate priors can be
found in our earlier work [1]. In Section 4.1, first we formu-
late the MLE problem into a completely geometric problem
with no explicit mention of probability distributions. We then
show that this geometric problem carries a geometry that is
inherent to the structure of the likelihood model. For reasons
given in Sections 4.3 and 4.4, when considering the prior, it
is important that one uses the same geometry as likelihood.

Using the same geometry also gives the closed-form solution
for the maximum-a-posteriori (MAP) problem. We then ana-
lyze the prior using concepts borrowed from the information
geometry. We show that this geometry induces the Fisher
information metric and 1-connection, which are respectively,
the natural metric and connection for the exponential family
(Section 5). One important outcome of this analysis is that it
allows us to treat the hyperparameters of the conjugate prior
as the effective sample points drawn from the distribution un-
der consideration. We finally extend this geometric interpre-
tation of conjugate priors to analyze the hybrid model given
by [7] in a purely geometric setting, and justify the argument
presented in [1] (i.e. a coupling prior should be conjugate)
using a much simpler analysis (Section 6). Our analysis cou-
ples the discriminative and generative components of hybrid
model using the Bregman divergence which reduces to the
coupling prior given in [1]. This analysis avoids the explicit
derivation of the hyperparameters, rather automatically gives
the hyperparameters of the conjugate prior along with the ex-
pression.

2 Motivation

Our analysis is driven by the desire to understand the geom-
etry of the conjugate priors for the exponential families. We
motivate our analysis by asking ourselves the following ques-
tion: Given a parametric model p(x; θ) for the data likeli-
hood, and a prior on its parameters θ, p(θ;α, β); what should
the hyperparameters α and β of the prior encode? We know
that θ in the likelihood model is the estimation of the param-
eter using the given data points. In other words, the estimated
parameter fits the model according to the given data while the
prior on the parameter provides the generalization. This gen-
eralization is enforced by some prior belief encoded in the
hyperparameters. Unfortunately, one does not know what is
the likely value of the parameters; rather one might have some
belief in what data points are likely to be sampled from the
model. Now the question is: Do the hyperparameters encode
this belief in the parameters in terms of the sampling points?
Our analysis shows that the hyperparameters of the conjugate
prior is nothing but the effective sampling points. In case of
non-conjugate priors, the interpretation of hyperparameters is
not clear.

A second motivation is the following geometric analysis.
Before we go into the problem, consider two points in the
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Figure 1: Interpolation of two points a and b using (a) Eu-
clidean geometry, and (b) non-Euclidean geometry. Here ge-
ometry is defined by the respective distance/divergence func-
tions de and dg. It is important to notice that the divergence
is a generalized notion of the distance in the non-Euclidean
spaces, in particular, in the spaces of the exponential fam-
ily statistical manifolds. In these spaces, it is the divergence
function that define the geometry.

Euclidean space which one would like to interpolate using a
parameter γ ∈ [0, 1]. A natural way to do so is to interpolate
them linearly i.e., connect two points using a straight line, and
then find the interpolating point at the desired γ, as shown in
Figure 1(a). This interpolation scheme does not change if
we move to a non-Euclidean space. In other words, if we
were to interpolate two points in a non-Euclidean space, we
would find the interpolating point by connecting two points
by a geodesic (an equivalent to the straight line in the non-
Euclidean space) and then finding the point at the desired γ,
shown in Figure 1(b).

This situation arises when one has two models, and wants
to build a better model by interpolating them. This exact sit-
uation is encountered in [7] where the objective is to build
a hybrid model by interpolating (or coupling) discriminative
and generative models. Agarwal et.al. [1] couples these two
models using the conjugate prior, and empirically shows us-
ing a conjugate prior for the coupling outperforms the original
choice [7] of a Gaussian prior. In this work, we find the hy-
brid model by interpolating the two models using the inherent
geometry1 of the space (interpolate along the geodesic in the
space defined by the inherent geometry) which automatically
results in the conjugate prior along with its hyperparameters.
Our analysis and the analysis of Agarwal et al. lead to the
same result, but ours is much simpler and naturally extends
to the cases where one wants to couple more than two mod-
els. One big advantage of our analysis is that unlike prior
approaches [1], we need not know the expression and the hy-
perparameters of the prior in advance. They are automatically
derived by the analysis. Our analysis only requires the inher-
ent geometry of the models under consideration and the inter-
polation parameters. No explicit expression of the coupling
prior is needed.

3 Exponential Family

In this section, we review the exponential family. The ex-
ponential family is a set of distributions, whose probability

1In exponential family statistical manifold, inherent geometry is
defined by the divergence function because it is the divergence func-
tion that induces the metric structure and connection of the manifold.
Refer [2] for more details.
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Figure 2: Duality between mean parameters and natural pa-
rameters.

density function can be expressed in the following form:

p(x; θ) = po(x)exp(〈θ, φ(x)〉 −G(θ)) (1)

here φ(x) : Xm → R
d is a vector potentials or suffi-

cient statistics and G(θ) is a normalization constant or log-
partition function. With the potential functions φ(x) fixed,
every θ induces a particular member p(x; θ) of the family.
In our framework, we deal with exponential families that are
regular and have the minimal representation[9].

One important property of the exponential family is the ex-
istence of conjugate priors. Given any member of the expo-
nential family in (1), the conjugate prior is a distribution over
its parameters with the following form:

p(θ|α, β) = m(α, β) exp(〈θ, α〉 − βG(θ)) (2)

here α and β are hyperparameters of the conjugate prior. Im-
portantly, the function G(·) is the same between the exponen-
tial family member and its conjugate prior.

A second important property of exponential family mem-
ber is that log-partition function G is convex and defined over
the convex set Θ := {θ ∈ R

d : G(θ) < ∞}; and since it is
convex over this set, it induces a Bregman divergence [3] 2 on
the space Θ.

Another important property of the exponential family is the
one-to-one mapping between the canonical parameters θ and
the so-called “mean parameters” which we denote by μ. For
each canonical parameter θ ∈ Θ, there exists a mean param-
eter μ, which belongs to the space M defined as:

M :=
{
μ ∈ R

d : μ =

∫
φ(x)p(x; θ) dx ∀θ ∈ Θ

}
(3)

It is easy to see that Θ and M are dual spaces, in the sense
of Legendre (conjugate) duality because of the following re-
lationship between the log-partition function G(θ) and the
expected value of the sufficient statistics φ(x): ∇G(θ) =
E(φ(x)) = μ. In Legendre duality, we know that two spaces
Θ and M are dual of each other if for each θ ∈ Θ, ∇G(θ) =
μ ∈ M. We call the function in the dual space M to be F i.e.,
F = G∗. A pictorial representation of the duality between
canonical parameter space Θ and mean parameter space M is
given in Figure 2.

2Two important points to note about Bregman divergence are: 1)
For dual spaces F and G, BF (p‖q) = BG(q

∗‖p∗), where p∗ and
q∗ are the conjugate duals of p and q respectively. 2) Bregman di-
vergence is not symmetric i.e., in general, BF (p‖q) �= BF (q‖p),
therefore it is important what directions these divergences are mea-
sured in.
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In our analysis, we will need the Bregman divergence over
φ(x) which can be obtained by showing that an augmented
M contains all possible φ(x). In order to define the Breg-
man divergence over all φ(x), we define a new set of mean
parameters w.r.t. all probability distributions (not only w.r.t.
exponential family distributions): M+ := {μ ∈ R

d : μ =∫
φ(x)p(x) dx s.t.

∫
p(x) dx = 1}.

Note that M+ is the convex hull of φ(x) thus contains all
φ(x). We know from (see Theorem 3.3, [10]) that M is the
interior of M+. Now we augment M with the boundary of
M+ and Θ with the canonical parameters (limiting distribu-
tions) that will generate the mean parameters corresponding
to this boundary. We know (see Theorem 2, [9]) that such pa-
rameters exist. Call these new sets M+ and Θ+ respectively.
We also know [9] that Θ+ and M+ are conjugate dual of each
other (for boundary, duality exists in the limiting sense) i.e.,
Bregman divergence is defined over the entire M+.

In the following discussion, M and Θ will denote the
closed sets i.e. M+ and Θ+ respectively.

4 Likelihood, Prior and Geometry

In this section, we first formulate the ML problem into a Breg-
man median problem (Section 4.1) and then show that corre-
sponding MAP (maximum-a-posteriori) problem can also be
converted into a Bregman median problem (Section 4.3). The
MAP Bregman median problem consists of two parts: a like-
lihood model and a prior. We argue (Sections 4.3 and 4.4) that
a Bregman median problem makes sense only when both of
these parts have the same geometry. Having the same geome-
try amounts to having the same log-partition function leading
to the property of conjugate priors.

4.1 Likelihood in the form of Bregman Divergence

Following [5], we can write the distributions belonging to the
exponential family (1) in terms of Bregman divergence 3:

log p(x; θ) = log po(x) + F (x)−BF (x‖∇G(θ)) (4)
This representation of likelihood in the form of Bregman di-
vergence gives insight in the geometry of the likelihood func-
tion. Gaining the insight into the exponential family distri-
butions, and establishing a meaningful relationship between
likelihood and prior is the primary objective of this work.

In learning problems, one is interested in estimating the
parameters θ of the model which results in low generaliza-
tion error. Perhaps the most standard estimation method
is maximum likelihood (ML). The ML estimate, θ̂ML, of
a set of n i.i.d. training data points X = {x1, . . . xn}
drawn from the exponential family is obtained by solving
the following problem: θ̂ML = maxθ∈Θ log p(X; θ) =
maxθ∈Θ

∑n
i=1 log p(xi; θ).

Theorem 1. Let X be a set of n i.i.d. training data points
drawn from the exponential family distribution with the log
partition function G, F be the dual function of G, then dual
of ML estimate (θ̂ML) of X under the assumed exponential
family model solves the following Bregman median problem:
μ̂ML = minμ∈M

∑n
i=1 BF (xi‖μ).

3For the simplicity of the notations we will use x instead of φ(x)
assuming that x ∈ R

d. This does not change the analysis

Proof. Proof is straightforward. Using (4) in MLE problem
maxθ∈Θ

∑n
i=1 log p(xi; θ), and ignoring terms that do not

depend on θ:

θ̂ML = min
θ∈Θ

n∑
i=1

BF (xi‖∇G(θ)) (5)

which using the expression ∇G(θ) = μ gives the desired
result.

The above theorem converts the problem of maximizing
the log likelihood log p(X; θ) into an equivalent problem of
minimizing the corresponding Bregman divergences which
is nothing but a Bregman median problem, the solution to
which is given by μ̂ML =

∑n
i=1 xi. ML estimate θ̂ML

can now be computed using the expression ∇G(θ) = μ,
θ̂ML = (∇G)−1(μ̂ML).
Lemma 1. If x is the sufficient statistics of the exponential
family with the log partition function G, and F is the dual
function of G defined over the mean parameter space M then
(1) x ∈ M; (2) there exists a θ ∈ Θ, such that x∗ = θ.

Proof. (1) By construction of M, we know x ∈ M. (2) From
duality of M and Θ, for every μ ∈ M, there exists a θ ∈ Θ
such that θ = μ∗, and since x ∈ M, which implies x∗ =
θ.

Corollary 1 (ML as Bregman Median). Let G and X be
defined as earlier, θi be the dual of xi, then ML estimation,
θ̂ML of X solves the following optimization problem:

θ̂ML = min
θ∈Θ

n∑
i=1

BG(θ‖θi) (6)

Proof. Proof directly follows from Lemma 1 and Theorem 1.
From Lemma 1, we know that x∗

i = θi. Using Theorem 1
and expression BF (xi‖μ) = BG(θ‖x∗

i ) = BG(θ‖θi) gives
the desired result.

The above expression requires us to find a θ so that di-
vergence from θ to other θi is minimized. Now note that G
is what defines this divergence and hence the geometry of
the Θ space (as discussed earlier in Section 2). since G is
the log partition function of an exponential family, it is the
log-partition function that determines the geometry of the
space. We emphasize that divergence is measured from the
parameter being estimated to other parameters θi(s), as shown
in Figure 3.

4.2 Conjugate Prior in the form of Bregman
Divergence

We now give an expression similar to the likelihood for the
conjugate prior (ignoring the term log m(α, β)):

log p(θ|α, β) = β(〈θ, α
β
〉 −G(θ)) (7)

which can be written in the form of Bregman divergence by
a direct comparison to (1), replacing x with α/β.

log p(θ|α, β) = β

(
F

(
α

β

)
−BF

(
α

β
‖∇G(θ)

))
(8)
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The expression for the joint probability of data and parame-
ters (combining all terms that do not depend on θ in const) is
given by:

log p(x, θ|α, β) = const−BF (x‖μ)− βBF

(
α

β
‖μ

)
(9)

4.3 Geometric Interpretation of Conjugate Prior

In this section we give a geometric interpretation of the term
BF (x‖μ) + βBF (

α
β ‖μ) from (9).

Theorem 2 (MAP as Bregman median). Given a set X of n
i.i.d examples drawn from the exponential family distribution
with the log partition function G and a conjugate prior as in
(8), MAP estimation of parameters is θ̂MAP = μ̂∗

MAP where
μ̂MAP solves the following problem:

μ̂MAP = min
μ∈M

n∑
i=1

BF (xi‖μ) + βBF

(
α

β
‖μ

)
(10)

which admits the following solution: μ̂MAP =
∑n

i=1 xi+α

n+β .

Proof. Proof is a direct result of applying the definition of
Bregman divergence on (9) for all n points.

The above solution gives a natural interpretation of MAP
estimation. One can think of prior as β number of extra points
at position α/β. β works as the effective sample size of the
prior which is clear from the following expression of the dual
of the θ̂MAP :

μ̂MAP =

∑n
i=1 xi +

∑β
i=1

α
β

n+ β
(11)

The expression (10) is analogous to (5) in the sense that both
are defined in the dual space M. One can convert (10) into
an expression similar to (6) in the dual space which is again a
Bregman median problem in the parameter space.

θ̂MAP = min
θ∈Θ

n∑
i=1

BG(θ‖θi) +
β∑

i=1

BG

(
θ‖(α

β
)∗
)

(12)

here (αβ )
∗ ∈ Θ is dual of α

β . The above prob-
lem is a Bregman median problem of n + β points,
{θ1, . . . θn, (α/β)∗, . . . , (α/β)∗︸ ︷︷ ︸

β times

}, as shown in Figure 3 (left).

A geometric interpretation is also shown in Figure 3. When
the prior is conjugate to the likelihood, they both have the
same log-partition function (Figure 3, left). Therefore they
induce the same Bregman divergence. Having the same diver-
gence means that distances from θ to θi (in likelihood) and the
distances from θ to (α/β)∗ are measured with the same diver-
gence function, yielding the same geometry for both spaces.

It is easier to see using the median formulation of the MAP
estimation problem that one must choose a prior that is con-
jugate. If one chooses a conjugate prior, then the distances
among all points are measured using the same function. It is
also clear from (11) that in the conjugate prior case, the point
induced by the conjugate prior behaves as a sample point
(α/β)∗. A median problem over a space that have different
geometries is an ill-formed problem, as discussed further in
the next section.

θ1

θ2 θ̂

{(αβ)∗}β

Rd θ1

θ2
θ̂

RdConjugate
Non-conjugate

{(αβ)∗}β
BG(θ

‖θ1)

B
G
(θ‖θ

2 ) B
G (θ‖( α

β ) ∗) BG
(θ‖θ1

)

B
G (θ‖θ

2 )

B
Q(θ‖( α

β ) ∗)

Figure 3: Prior in the conjugate case has the same geometry
as the likelihood while in the non-conjugate case, they have
different geometries.

4.4 Geometric Interpretation of Non-conjugate
Prior

We derived expression (12) because we considered the prior
conjugate to the likelihood function. Had we chosen a non-
conjugate prior with log-partition function Q, we would have
obtained:

θ̂ML = min
θ∈Θ

n∑
i=1

BG(θ‖θi) +
β∑

i=1

BQ

(
θ ‖

(
α

β

)∗)
. (13)

Here G and Q are different functions defined over Θ. Since
these are the functions that define the geometry of the space
parameter, having G �= Q is equivalent to consider them as
being defined over different (metric) spaces. Here, it should
be noted that distance between the sample point (θi) and the
parameter θ is measured using the Bregman divergence BG.
On the other hand, the distance between the point induced by
the prior (α/β)∗ and θ is measured using the divergence func-
tion BQ. This means that (α/β)∗ can not be treated as one
of the sample points. This tells us that, unlike the conjugate
case, belief in the non-conjugate prior can not be encoded in
the form of the sample points.

Another problem with considering a non-conjugate prior
is that the dual space of Θ under different functions would
be different. Thus, one will not be able to find the alternate
expression for (13) equivalent to (10), and therefore not be
able to find the closed-form expression similar to (11). This
tells us why non-conjugate does not give us a closed form
solution for θ̂MAP . A pictorial representation of this is also
shown in Figure 3. Note that, unlike the conjugate case, in
the non-conjugate case, the data likelihood and the prior both
belong to different spaces. We emphasize that it is possible
to find the solution of (13) that is, in practice, there is nothing
that prohibits the use of non-conjugate prior, however, using
the conjugate prior is intuitive, and allows one to treat the
hyper-parameters as pseudo data points.

5 Information Geometric View

In this section, we show the appropriateness of the conjugate
prior from the information geometric angle. In information
geometry, Θ is a statistical manifold such that each θ ∈ Θ de-
fines a probability distribution. This statistical manifold has
an inherent geometry, given by a metric and an affine connec-
tion. One natural metric is the Fisher information metric be-
cause of its many attractive properties: it is Riemannian and
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is invariant under reparameterization (for more details refer
[2]).

In exponential family distributions, the Fisher metric M(θ)
is induced by the KL-divergence KL(·‖θ), which is equiva-
lent to the Bregman divergence defined by the log-partition
function. Thus, it is the log-partition function G that induces
the Fisher metric, and therefore determines the natural geom-
etry of the space. It justifies our earlier argument of choosing
the log-partition function to define the geometry. Now if we
were to treat the prior as a point on the statistical manifold de-
fined by the likelihood model, the Fisher information metric
on the point given by the prior must be same as the one de-
fined on likelihood manifold. This means that the prior must
have the same log-partition function as the likelihood i.e., it
must be conjugate.

6 Hybrid model
In this section, we show an application of our analysis to
a common supervised and semi-supervised learning frame-
work. In particular, we consider a generative/discriminative
hybrid model [1; 6; 7] that has been shown to be success-
ful in many application. The hybrid model is a mixture of
discriminative and generative models, each of which has its
own separate set of parameters. These two sets of parameters
(hence two models) are combined using a prior called the cou-
pling prior. Let p(y|x, θd) be the discriminative component,
p(x, y|θg) be the generative component and p(θd, θg) be the
coupling prior, the joint likelihood of the data and parameters
can be written as (combining all three):

p(x, y, θd, θg) = p(θg, θd)p(y|x, θd)
∑
y′

p(x, y′|θg) (14)

The most important aspect of this model is the coupling prior
p(θg, θd), which interpolates the hybrid model between two
extremes: fully generative when the prior forces θd = θg ,
and fully discriminative when the prior renders θd and θg
independent. In non-extreme cases, the goal of the cou-
pling prior is to encourage the generative model and the dis-
criminative model to have similar parameters. It is easy to
see that this effect can be induced by many functions. One
obvious way is to linearly interpolate them as done by [7;
6] using a Gaussian prior (or the Euclidean distance) of the
following form:

p(θg, θd) ∝ exp
(−λ ||θg − θd||2

)
(15)

where, when λ = 0, model is purely discriminative while
for λ = ∞, model is purely generative. Thus λ in the above
expression is the interpolating parameter, and is same as the
γ in Section 2. Note that the log of the prior is nothing but the
squared Euclidean distance between two sets of parameters.

It has been noted multiple times [4; 1] that a Gaussian prior
is not always appropriate, and the prior should instead be cho-
sen according to models being considered. Agarwal et al. [1]
suggested using a prior that is conjugate to the generative
model. Their main argument for choosing the conjugate prior
came from the fact that this provides a closed form solution
for the generative parameters and therefore is mathematically
convenient. We will show that it is more than convenience
that makes conjugate prior appropriate. Moreover, our anal-
ysis does not assume anything about the expression and the
hyperparameters of the prior beforehand, rather derive them
automatically.

θd

θg

Θd Θg

BG(θg
‖θd)

λ

Figure 4: Parameters θd and θg are interpolated using the
Bregman divergence

6.1 Generalized Hybrid Model

In order to see the effect of the geometry, we present the dis-
criminative and generative models associated with the hybrid
model in the Bregman divergence form and obtain their ge-
ometry. Following the expression used in [1], the generative
model can be written as:

p(x, y|θg) = h(x, y)exp(〈θg, T (x, y)〉 −G(θg)) (16)

where T (·) is the potential function similar to φ in (1),
now only defined on (x, y). Let G∗ be the dual function
of G; the corresponding Bregman divergence is given by
BG∗ ((x, y)‖∇G(θg)). Solving the generative model inde-
pendently reduces to choosing a θg from the space of all gen-
erative parameters Θg which has a geometry defined by the
log-partition function G. Similarly to the generative model,
the exponential form of the discriminative model is given as:

p(y|x, θd) = exp(〈θd, T (x, y)〉 −M(θd,x)) (17)
Importantly, the sufficient statistics T are the same in
the generative and discriminative models; such genera-
tive/discriminative pairs occur naturally: logistic regres-
sion/naive Bayes and hidden Markov models/conditional ran-
dom fields are examples. However, observe that in the dis-
criminative case, the log partition function M depends on
both x and θd which makes the analysis of the discrimina-
tive model (and hence of hybrid model) harder.

6.2 Geometry of the Hybrid Model

We simplify the analysis of the hybrid model by rewriting
the discriminative model in a a form that makes its underly-
ing geometry obvious. Note that the only difference between
the two models is that discriminative model models the con-
ditional distribution while the generative model models the
joint distribution. We can use this observation to write the
discriminative model in the following alternate form using
the expression p(y|x, θ) = p(y,x|θ)∑

y′ p(y′x|θ) and (16):

p(y|x, θd) = h(x, y)exp(〈θd, T (x, y)〉 −G(θd))∑
y′ h(x, y′)exp(〈θd, T (x, y′)〉 −G(θd))

(18)

Denote the space of parameters of the discriminative model
by Θd. It is easy to see that geometry of Θd is defined by
G since function G is defined over θd. This is same as the
geometry of the parameter space of the generative model Θg .
Now let us define a new space ΘH which is the affine combi-
nation of Θd and Θg . Now, ΘH will have the same geometry
as Θd and Θg i.e., geometry defined by G. Now the goal of
the hybrid model is to find a θ ∈ ΘH that maximizes the like-
lihood of the data under the hybrid model. These two spaces
are shown pictorially in Figure 4.
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6.3 Prior Selection

As mentioned earlier, the coupling prior is the most impor-
tant part of the hybrid model, which controls the amount of
coupling between the generative and discriminative models.
There are many ways to do this, one of which is given by [7;
6]. By their choice of Gaussian prior as coupling prior, they
implicitly couple the discriminative and generative parame-
ters by the squared Euclidean distance. We suggest coupling
these two models by a general prior, of which the Gaussian
prior is a special case.

Bregman Divergence and Coupling Prior:

Let a general coupling be given by BS(θg‖θd). Notice the
direction of the divergence. We have chosen this direction
because the prior is induced on the generative parameters, and
it is clear from (12) that parameters on which prior is induced,
are placed in the first argument in the divergence function.
The direction of the divergence is also shown in Figure 4.

Now we rewrite (8) replacing ∇G(θ) by θ∗:

log p(θg|α, β) = β(F (
α

β
)−BF (

α

β
‖θ∗g)) (19)

Now taking the α = λθ∗d and β = λ, we get:

p(θg|λθ∗d, λ) = exp(λ(F (θ∗d))) exp(−λBF (θ
∗
d‖θ∗g)) (20)

For the general coupling divergence function BS(θg‖θd), the
corresponding coupling prior is given by:

exp(−λBS∗(θ∗d‖θ∗g)) = exp(−λ(F (θ∗d))) p(θg|λθ∗d, λ) (21)

The above relationship between the divergence function (left
side of the expression) and coupling prior (right side of the
expression) allows one to define a Bregman divergence for a
given coupling prior and vise versa.

Coupling Prior for the Hybrid Model:
We now use (21) to derive the expression for the coupling
prior using the geometry of the hybrid model which is given
by the log partition function G of the generative model. This
argument suggests to couple the hybrid model by the diver-
gence BG(θg‖θd) which gives the coupling prior as:

exp(−λBG(θg‖θd)) = p(θg|λθd∗, λ) exp(−λF (θ∗d)) (22)

where λ = [0,∞] is the interpolation parameter, interpolat-
ing between the discriminative and generative extremes. In
dual form, the above expression can be written as:

exp(−λBG(θg‖θd)) = p(θg|λθd∗, λ) exp(−λG(θd)). (23)

Here exp(−λG(θd)) can be thought of as a prior on the
discriminative parameters p(θd). In the above expression,
exp(−λBG(θg‖θd)) = p(θg|θg)p(θd) behaves as a joint cou-
pling prior P (θd, θg) as originally expected in the model (14).
Note that hyperparameters of the prior α and β are naturally
derived from the geometric view of the conjugate prior. Here
α = λθ∗d and β = λ.

Relation with Agarwal et al.:

The prior we derived in the previous section turns out to be
the exactly same as that proposed by Agarwal et al. [1], even
though theirs was not formally justified. In that work, the
authors break the coupled prior p(θg, θd) into two parts: p(θd)

and p(θg|θd). They then derive an expression for the p(θg|θd)
based on the intuition that the mode of p(θg|θd) should be
θd. Our analysis takes a different approach by coupling two
models with the Bregman divergence rather than prior, and
results in the expression and hyperparameters for the prior
same as in [1].

7 Related Work and Conclusion

To our knowledge, there have been no previous attempts to
understand Bayesian priors from a geometric perspective.
One related piece of work [8] uses the Bayesian framework to
find the best prior for a given distribution. It is noted that, in
that work, the authors use the δ-geometry for the data space
and the α-geometry for the prior space, and then show the
different cases for different values (δ, α). We emphasize that
even though it is possible to use different geometry for the
both spaces, it always makes more sense to use the same ge-
ometry. As mentioned in remark 1 in [8], useful cases are
obtained only when we consider the same geometry.

We have shown that by considering the geometry induced
by a likelihood function, the natural prior that results is ex-
actly the conjugate prior. We have used this geometric under-
standing of conjugate prior to derive the coupling prior for the
discriminative/generative hybrid model. Our derivation natu-
rally gives us the expression and the hyperparameters of this
coupling prior.
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[1] Agarwal, A., Daumé III, H.: Exponential family hybrid semi-

supervised learning. In: In IJCAI. Pasadena, CA (2009)
[2] Amari, S.I., Nagaoka, H.: Methods of Information Geometry

(Translations of Mathematical Monographs). American Math-
ematical Society (April 2001)

[3] Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering
with bregman divergences. Journal of Machine Learning Re-
search 6 (October 2005)

[4] Bouchard, G.: Bias-variance tradeoff in hybrid generative-
discriminative models. In: ICMLA ’07. pp. 124–129. IEEE
Computer Society, Washington, DC, USA (2007)

[5] Collins, M., Dasgupta, S., Schapire, R.E.: A generalization of
principal component analysis to the exponential family. In: In
NIPS 14. MIT Press (2001)

[6] Druck, G., Pal, C., McCallum, A., Zhu, X.: Semi-supervised
classification with hybrid generative/discriminative methods.
In: KDD ’07. pp. 280–289. ACM, New York, NY, USA (2007)

[7] Lasserre, J.A., Bishop, C.M., Minka, T.P.: Principled hybrids
of generative and discriminative models. In: CVPR ’06. pp.
87–94. IEEE Computer Society, Washington, DC, USA (2006)

[8] Snoussi, H., Mohammad-Djafari, A.: Information geometry
and prior selection (2002)

[9] Wainwright, M., Jordan, M.: Graphical models, exponential
families, and variational inference. Tech. rep., University of
California, Berkeley (2003)

[10] Wainwright, M.J., Jordan, M.I.: Graphical models, exponen-
tial families, and variational inference. Found. Trends Mach.
Learn. 1(1-2), 1–305 (2008)

2563




