
An Algorithm for Adapting Cases Represented in ALC

Julien Cojan and Jean Lieber

UHP-Nancy 1 – LORIA (UMR 7503 CNRS-INPL-INRIA-Nancy 2-UHP)
BP 239, 54506 Vandœuvre-lès-Nancy, France
{Julien.Cojan, Jean.Lieber}@loria.fr

Abstract

This paper presents an algorithm of adaptation for
a case-based reasoning system with cases and do-
main knowledge represented in the expressive de-
scription logic ALC. The principle is to first pre-
tend that the source case to be adapted solves the
current target case. This may raise some contradic-
tions with the specification of the target case and
with the domain knowledge. The adaptation con-
sists then in repairing these contradictions. This
adaptation algorithm is based on an extension of
the classical tableau method used for deductive in-
ferences in ALC.

1 Introduction

Case-based reasoning (CBR [Riesbeck and Schank, 1989])
consists in reusing past experiences, called source cases, in
order to solve a new problem, the target case. The CBR in-
ference is made of a retrieval step, consisting is selecting a
source case in a case base and an adaptation step, that con-
sists in modifying the retrieved source case to solve the target
case.

An approach to adaptation consists in using a belief revi-
sion operator, i.e., an operator that modifies minimally a set
of beliefs in order to be consistent with some actual knowl-
edge [Alchourrón et al., 1985]. The idea is to consider the
belief “The source case solves the target case” and then to
revise it with the constraints given by the target case and the
domain knowledge. This has been studied for cases repre-
sented in propositional logic in [Lieber, 2007]. Then, it has
been studied in a more expressive formalism, including nu-
merical constraints and after that extended to the combination
of cases (i.e., adaptation of several retrieval cases to solve a
single target case) in this formalism [Cojan and Lieber, 2009].
In this paper, this approach to adaptation is studied for

cases represented in ALC, an expressive description logic
(DL). The choice of DLs as formalisms for CBR can be
motivated in several ways. First, they extend the clas-
sical attribute-value formalisms, often used in CBR (see,
e.g., [Kolodner, 1993]) and they are similar to the formal-
ism of memory organization packets (MOPs) used in early
CBR applications [Riesbeck and Schank, 1989]. More gen-
erally, they are designed as trade-offs between expressibility

and practical tractability. Second, they have a well-defined
semantics and have been systematically investigated for sev-
eral decades, now. Third, many efficient implementations are
freely available, offering services that can be used for CBR
systems, in particular for case retrieval and case base organi-
zation.

The rest of the paper is organized as follows. Section 2
presents the DL ALC, together with the tableau algorithm,
at the basis of its deductive inferences for most current im-
plementations. An example is presented in this section, for
illustrating notions that are rather complex for a reader not
familiar with DLs. This tableau algorithm is extended for
performing an adaptation process, as shown in section 3. Sec-
tion 4 discusses our contribution and relates it to other studies
on the use of DLs for CBR. Section 5 concludes the paper
and presents some future work.

2 The Description Logic ALC
Description logics [Baader et al., 2003] form a family of clas-
sical logics that are equivalent to decidable fragments of first-
order logic (FOL). They have a growing importance in the
field of knowledge representation. ALC is the simplest of
expressive DLs, i.e., DLs extending propositional logic.

Syntax. Representation entities ofALC are concepts, roles,
instances, and formulas.

A concept, intuitively, represents a subset of the interpre-
tation domain. A concept is either an atomic concept (i.e.,
a concept name), or a conceptual expression of one of the
forms ¬C, C � D, C � D, ∃r.C, and ∀r.C, where C and D are
concepts (either atomic or not) and r is a role. A concept can
be mapped into a FOL formula with one free variable x. For
example, the concept

Pie � ∃ing.Apple � ∃ing.Pastry � ∀ing.¬Cinnamon
(1)

can be mapped to the first-order logic formula

Pie(x) ∧ (∃y ing(x, y) ∧ Apple(y))
∧ (∃y ing(x, y) ∧ Pastry(y))
∧ (∀y ing(x, y) ⇒ ¬Cinnamon(y))

The concept �, which represents the whole interpretation
domain is an abbreviation of A � ¬A, where A is an atomic
concept.

2582

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

A role, intuitively, represents a binary relation on the inter-
pretation domain. Roles in ALC are atomic: i.e., role names.
Their counterpart in FOL are binary predicates. The role ap-
pearing in (1) is ing.
An instance, intuitively, represents an element of the inter-

pretation domain. Instances inALC are atomic: i.e., instance
names. Their counterpart in FOL are constants.

There are four types of formulas in ALC (1) C 	 D (C
is more specific than D), (2) C ≡ D (C and D are equivalent
concepts), (3) C(a) (a is an instance of C), and (4) r(a, b)
(r relates a to b), where C and D are concepts, a and b are
instances, and r is a role. Formulas of types (1) and (2) are
called terminological formulas. Formulas of types (3) and (4)
are called assertional formulas, or assertions.

AnALC knowledge base KB is a set ofALC formulas. The
terminological box (or TBox) of KB is the set of its termino-
logical formulas. The assertional box (or ABox) of KB is the
set of its assertions.

For example, the following TBox represents the domain
knowledge (DK) of our example:

DK = {PomeFruit ≡ Apple � Pear} (2)

meaning that the pome fruits are apples and pears. This is
a simplification as actually there are other pome fruits than
apples and pears.
In our running example, the only cases considered are the

source and target cases. They are represented in the ABox:

{Source(σ), Target(θ)} (3)

with
{
Source = Pie � ∃ing.Pastry � ∃ing.Apple
Target = Pie � ∀ing.¬Apple (4)

Thus, the source case is represented by the instance σ,
which is a pie with the types of ingredients pastry and apple.
The target case is represented by the instance θ specifying
that a pie without apple is requested.
Reusing the source case without adaptation for the target

case amounts to add the assertion Source(θ). However this
may lead to contradictions like here between ∃ing.Apple(θ)
and ∀ing.¬Apple(θ): the source case needs to be adapted
before being applied to the target case.

Semantics. An interpretation is a pair I = (ΔI , ·I) where
ΔI is a non empty set (the interpretation domain) and where
·I maps a concept C into a subset CI of ΔI , a role r into a
binary relation rI over ΔI (for x, y ∈ ΔI , x is related to y
by rI is denoted by (x, y) ∈ rI), and an instance a into an
element aI of ΔI .

Given an interpretation I, the different types of conceptual
expressions are interpreted as follows:

(¬C)I = ΔI \ CI

(C � D)I = CI ∩ DI (C � D)I = CI ∪ DI

(∃r.C)I = {x ∈ ΔI | ∃y, (x, y) ∈ rI and y ∈ CI}
(∀r.C)I = {x ∈ ΔI | ∀y, if (x, y) ∈ rI then y ∈ CI}

This entails that �I = (A � ¬A)I = ΔI .

For example, if PieI , AppleI , PastryI , and CinnamonI
denote the sets of tarts, apples, pastries, and cinnamon, and
if ingI denotes the relation “has the ingredient”, then the
concept of equation (1) denotes the set of the tarts with apples
and pastries, but without cinnamon.

Given a formula f and an interpretation I, “I satisfies f”
is denoted by I |= f . A model of f is an interpretation I
satisfying f . The semantics of the four types of formulas is
as follows: I |= C 	 D if CI ⊆ DI , I |= C ≡ D if CI = DI ,
I |= C(a) if aI ∈ CI , and I |= r(a, b) if (aI , bI) ∈ rI .
Given a knowledge base KB and an interpretation I, I sat-

isfies KB –I |= KB– if I |= f for each f ∈ KB. A model of
KB is an interpretation satisfying KB. A knowledge base KB
entails a formula f –denoted by KB |= f– if every model of
KB is a model of f . A tautology is a formula f satisfied by
any interpretation. “f is a tautology” is denoted by |= f . Two
knowledge bases are said to be equivalent if every model of
one of them is a model of the other one and vice-versa.

Inferences. Let KB be a knowledge base. Some classical
inferences on ALC consist in checking if KB |= f , for some
formula f . For instance, checking if KB |= C 	 D is called the
subsumption test: it tests whether, according to the knowl-
edge base, the concept C is more specific than the concept D,
and thus is useful for organizing concepts in hierarchies (e.g.,
index hierarchies of CBR systems).

The concept classification consists, given a concept C,
in finding the atomic concepts A appearing in KB such that
KB |= C 	 A (the subsumers of C) and the atomic concepts
B appearing in KB such that KB |= B 	 C (the subsumees of
C). The instance classification consists, given an instance a,
in finding the atomic concepts A appearing in KB such that
KB |= A(a). These two inferences can be used during the case
retrieval in a CBR system.

The ABox satisfiability consists in checking, given an
ABox, whether there exists a model of this ABox, given a
knowledge base KB. Some other important inferences can be
reduced to it, for instance:

KB |= C 	 D iff {(C � ¬D)(a)} is not satisfiable, given KB

where a is a new instance (not appearing neither in C, nor
in KB). ABox satisfiability is also used to detect contradic-
tions. It can be computed thanks to the most popular infer-
ence mechanism for ALC presented below.

A classical deduction procedure in ALC: the tableau
method. The following presentation of this procedure is in-
spired from [Baader et al., 2003], with some modifications
that do not alter its results, but make it easier to extend into
the adaptation algorithm.

Let KB be a knowledge base, T0, be the TBox of KB andA0,
be the ABox of KB. The procedure aims at testing whetherA0

is satisfiable or not, given KB.

Preprocessing. The first step of the preprocessing con-
sists in substituting T0 by an equivalent T ′

0 of the form {� 	
K}, for some concept K. This can be done by first, substituting
each formula C ≡ D by two formulas C 	 D and D 	 C. The

2583

resulting TBox is of the form {Ci 	 Di}1 ≤ i ≤ n
and it can

be shown that it is equivalent to {� 	 K}, with

K = (¬C1 � D1) � . . . � (¬Cn � Dn)

The second step of the preprocessing is to put T0 and A0

under negative normal form (NNF), i.e., by substituting each
concept appearing in them by an equivalent concept such that
the negation sign ¬ appears only in front of atomic concepts.
It is always possible to do so, by applying, as long as possible,
the following equivalences (from left to right): ¬¬C ≡ C,
¬(C � D) ≡ ¬C � ¬D, ¬(C � D) ≡ ¬C � ¬D, ¬∃r.C ≡
∀r.¬C, and ¬∀r.C ≡ ∃r.¬C.

For example, the concept ¬(∀r.(¬A � ∃s.B)) is equivalent
to the following concept under NNF: ∃r.(A � ∀s.¬B).

The TBox of DK given in equation (2) is equivalent to
{� 	 K} under NNF with

K =((¬Apple � ¬Pear) � PomeFruit)
� (¬PomeFruit � Apple � Pear)

Main process. Given T0 = {� 	 K} a TBox and A0 an
ABox, both under NNF, the tableau method handles sets of
ABoxes, starting with the singleton D0 = {AK

0}, with

AK
0 = A0 ∪ {K(a) | a is an instance appearing in A0}

Such a set of ABoxes D is to be interpreted as a disjunction:
D is satisfiable iff at least one A ∈ D is satisfiable.
Each further step consists in transforming the current set

of ABoxes D into another one D′, applying some trans-
formation rules on ABoxes: when a rule �, applicable on
an ABox A ∈ D, is selected by the process, then D′ =
(D \ {A}) ∪ {A1, . . . ,Ap} where the Ai are obtained by
applying � onA (see further, for the description of the rules).

The process ends when no rule is applicable.
An ABox is closed when it contains a clash, i.e. an obvious

contradiction given by two assertions of the form A(a) and
(¬A)(a). Therefore, a closed ABox is unsatisfiable. An open
ABox is a non-closed ABox. An ABox is complete if no
transformation rule can be applied on it.

Let Dend be the set of ABoxes at the end of the process,
i.e. when each A ∈ D is complete. It has been proven (see,
e.g, [Baader et al., 2003]) that with some adequate transfor-
mation rules, the process always terminates, and that A0 is
satisfiable given T0 iff Dend contains at least one open ABox.

The transformation rules. There are four transforma-
tions rules for the tableau method applied to ALC: −→�,
−→�, −→∀, and −→K

∃. None of these rules are applicable
on a closed ABox. The order of these rules affects only the
performance of the system, with the exception of rule −→K

∃
that must be applied only when no other rule is applicable on
the current set of ABoxes (to ensure termination). These rules
roughly corresponds to deduction steps: they add assertions
deduced from existing assertions.1

1To be more precise, each of them transforms a disjunction of
ABoxes D into another disjunction of ABoxes D′ such that, given
T0, D is satisfiable iff D′ is satisfiable.

The rule −→� is applicable on an ABox A if this latter
contains an assertion of the form (C1 � . . . � Cp)(a), and is
such that at least one assertion Ck(a) (1 ≤ k ≤ p) is not an
element of A. The application of this rule returns the ABox
A′ defined by

A′ = A ∪ {Ck(a) | 1 ≤ k ≤ p}
The rule −→� is applicable on an ABox A if this latter

contains an assertion of the form (C1 � . . . � Cp)(a) but no
assertion Ck(a) (1 ≤ k ≤ p). The application of this rule
returns the ABoxes A1, . . . , Ap defined, for 1 ≤ k ≤ p, by:

Ak = A ∪ {Ck(a)}
The rule −→∀ is applicable on an ABox A if this latter

contains two assertions, of respective forms (∀r.C)(a) and
r(a, b) (with the same r and a), and ifA does not contain the
assertion C(b). The application of this rule returns the ABox
A′ defined by

A′ = A ∪ {C(b)}
The rule −→K

∃ is applicable on an ABox if
(i) A contains an assertion of the form (∃r.C)(a);
(ii) A does not contain both an assertion of the form r(a, b)

and an assertion of the form C(b) (with the same b, and
with the same C and a as in previous condition);

(iii) There is no instance c such that {C | C(a) ∈ A} ⊆
{C | C(c) ∈ A}.2

If these conditions are applicable, let b be a new instance. The
application of this rule returns the ABox A′ defined by

A′ = A ∪ {r(a, b), C(b)} ∪ {K(b)}
Note that the TBox T0 = {� 	 K} is used here: since a new
instance b is introduced, this instance must satisfy the TBox,
which corresponds to the assertion K(b).
Remark 1 After the application of any of these rules on an
ABox of D, the resulting D′ is equivalent to D.

Example. Let us consider the example given previously.
Pretending that the source case represented by the instance
σ can be applied to the target case represented by the
instance θ amounts to identify these two instances, e.g.,
by substituting σ by θ. This leads to the ABox A0 =
{Source(θ), Target(θ)} (with Source and Target defined
in (4)). The figure 1 represents this process. The entire
tree represents the final set of ABoxes Dend: each of the
two branches represents a complete ABox A ∈ Dend. At
the beginning of the process, the only nodes of this tree
are Source(θ), Target(θ), and K(θ): this corresponds to
D0 = {AK

0}. Then, the transformation rules are applied.
Note that only the rule −→� leads to branching. When a
clash is detected in a branch (e.g. {Apple(a), (¬Apple)(a)})
the branch represents a closed ABox (the clash is symbolized
with �). Note that the two final ABoxes are closed, meaning
that {Source(θ), Target(θ)} is not satisfiable: the source
case needs to be adapted for being reused in the context of
the target case.

2This third condition is called the set-blocking condition and is
introduced to ensure the termination of the algorithm.

2584

(¬Apple � ¬Pear)(a)
−→�

�
¬Apple(a)
¬Pear(a)

PomeFruit(a)

¬Apple(a)
�

Source(θ)

Target(θ)

K(θ)

Pie(θ)

(∃ing.Pastry)(θ)
(∃ing.Apple)(θ)
(∀ing.¬Apple)(θ)

ing(θ, a)

Apple(a)

K(a)

−→K
∃

−→�

−→�

−→�

((¬Apple � ¬Pear) � PomeFruit)(a)
(¬PomeFruit � Apple � Pear)(a) −→∀

−→�

Figure 1: Application of the tableau method proving that the
ABox {Source(θ), Target(θ)} is not satisfiable, given the
TBox {� 	 K} (the order of application of rules has been
chosen to make the example illustrative).

3 An Algorithm of Adaptation in ALC
As seen above, the reuse of the source case without adap-
tation may lead to a contradiction between Source(θ) and
Target(θ). The adaptation algorithm presented in this sec-
tion aims at solving this contradiction by weakening (gener-
alizing) Source(θ) so as to restore consistency, to apply to
the target case θ what can be kept from Source.

3.1 Parameters and Result of the Algorithm

The parameters of the algorithm are DK, Aσ
srce, Aθ

tgt, and
cost. Its result is D.
DK is a knowledge base in ALC representing the domain

knowledge. In the running example, its ABox is empty, but
in general, it may contain assertions.

The source and target cases are represented by two ABoxes
that are satisfiable given DK: Aσ

srce and Aθ
tgt, respectively.

More precisely, the source case is reified by an instance σ
and Aσ

srce contains assertions about it. In the example above,
Aσ

srce contains only one assertion, Source(σ). Similarly, the
target case is represented by an instance θ and Aθ

tgt con-
tains assertions about θ (only one assertion in the example:
Target(θ)).

The parameter cost is a function associating to a literal �
a numerical value cost(�) > 0, where a literal is either an
atomic concept (positive literal) or a concept of the form ¬A
where A is atomic (negative literal). Intuitively, the greater
cost(�) is, the more difficult it is to give up the truth of an
assertion �(a).

The algorithm returnsD, a set of ABoxesA solving the tar-
get case by adapting the source case: A |= Aθ

tgt andA reuses
“as much as possible” Aσ

srce. It may occur that D contains

several ABoxes; in this situation, the knowledge of the sys-
tem, in particular the cost function, is not complete enough
to make a choice, thus it it up to the user to select an A ∈ D

3.2 Steps of the Algorithm

The algorithm is composed of the following steps:

Preprocessing. Let TDK and ADK be the TBox and ABox of
DK. Let K be a concept under NNF such that TDK is equivalent
to {� 	 K}. ADK is simply added to the ABoxes:

Aσ
srce ← Aσ

srce ∪ ADK Aθ
tgt ← Aθ

tgt ∪ ADK

Then, Aσ
srce and Aθ

tgt are put under NNF.

Pretending that the source case solves the target prob-
lem. Reusing Aσ

srce for the instance θ reifying the target
case is done by assimilating the two instances σ and θ. This
leads to the ABox Aθ

srce, obtained by substituting σ by θ in
Aσ

srce. Let Aθ
srce,tgt = Aθ

srce ∪ Aθ
tgt. If Aθ

srce,tgt is satis-
fiable given DK, then the straightforward reuse of the source
case does not lead to any contradiction with the specification
of the target case, so it just adds information about it. For
example, let Aσ

srce = {Source(σ)} given by equation (3),
let Aθ

tgt = {Pie(θ), ing(θ, p), FlakyPastry(p)} (i.e., “I
want a pie with flaky pastry”), and the domain knowledge
be DK′ = DK ∪ {FlakyPastry 	 Pastry}, with DK defined
in (2). With this example, it can be shown that Aθ

srce,tgt is
satisfiable given DK′ and it corresponds to an apple pie with
flaky pastry.

In many situations, however, Aθ
srce,tgt is not satisfiable

given DK. This holds for the running example. The principle
of the adaptation algorithm consists in repairing Aθ

srce,tgt.
“Repairing” Aθ

srce,tgt means modifying it so as to make
it complete and clash-free, and thus consistent. Removing
clashes is not enough for that, the formulas from which they
were generated should be removed too. This motivates the
introduction of the AGraphs that extend ABoxes by keeping
track of the application of rules (see below). Moreover, to
have a more fine-grained adaptation,Aθ

srce andAθ
tgt are com-

pleted by tableau before being combined.

Applying the tableau method on Aθ
srce and on Aθ

tgt, with
memorization of the transformation rule applications.
In order to implement this step and the next ones, the notion
of assertional graph (or AGraph) is introduced. An AGraph
G = (Nod (G), Edg (G)) is a simple graph whose set of nodes,
Nod (G), is an ABox, and whose edges are labeled by trans-
formation rules: if (α, β) ∈ Edg (G), then λG(α, β) = �
indicates that β has been obtained by applying � on α and,
possibly, on other assertions (λG is the labeling function of
the graph G). The tableau method on AGraphs is based on
the transformation rules =⇒�, =⇒�, =⇒∀, and =⇒K

∃. They
are similar to the transformation rules on ALC ABoxes, with
some differences.

2585

The rule =⇒� is applicable on an AGraph G if
(i) G contains a node α of the form (C1 � . . . � Cp)(a);
(ii) G �= G′ (i.e., Nod (G) �= Nod (G′) or Edg (G) �=

Edg (G′)) with G′ defined by

Nod (G′) = Nod (G) ∪ {Ck(a) | 1 ≤ k ≤ p}
Edg (G′) = Edg (G) ∪ {(α, Ck(a)) | 1 ≤ k ≤ p}

λG′(α, Ck(a)) = =⇒� for 1 ≤ k ≤ p

λG′(e) = λG(e) for e ∈ Edg (G)

Under these conditions, the application of the rule returns G′.
The main difference between rule −→� on ABoxes and

rule =⇒� on AGraphs is that the latter may be applicable to
α = (C1 � . . . � Cp)(a) even when Ck(a) ∈ Nod (G) for
each k, 1 ≤ k ≤ p. In this situation, Nod (G′) = Nod (G)
but Edg (G′) �= Edg (G): a new edge (α, Ck) indicates here
that α |= Ck(a) and thus, if Ck(a) has to be removed, then
α has also to be removed (see further, the repair step of the
algorithm).

The rules =⇒�, =⇒∀, and =⇒K
∃ are modified respectively

from −→�, −→∀, and −→K
∃ similarly. They are detailed in

figure 2.
The tableau method presented in section 2 can be applied,

given the TBox {� 	 K} and an ABox A0. The only dif-
ference is that AGraphs are manipulated instead of ABoxes,
which involves that (1) an initial AGraph G0 has to be built
from A0 (it is such that Nod (G0) = A0 and Edg (G0) = ∅),
(2) the rules =⇒· are used instead of the rules −→·, and
(3) the result is a set of open and complete AGraphs (which
is empty iff G0 is not satisfiable given {� 	 K}).

Let {Gi}1 ≤ i ≤ m
and {Hj}1 ≤ j ≤ n

be the sets of open
and complete AGraphs obtained by applying the tableau
method respectively on A0 = Aθ

srce and A0 = Aθ
tgt. If

Aθ
srce and Aθ

tgt are satisfiable, then m �= 0 and n �= 0. If
m = 0 or n = 0, the algorithm stops and returns the value
D = {Aθ

tgt}.

Generating explicit clashes from Gi and Hj . A new kind
of assertion, reifying the notion of clash, is considered: the
clash assertion �±A(a) reifies the clash {A(a), (¬A)(a)}.
The rule =⇒� generates them. It is applicable on an AGraph
G if
(i) G contains two nodes A(a) and (¬A)(a) (with the same

A and the same a);
(ii) G �= G′ with G′ defined by

Nod (G′) = Nod (G) ∪ {�±A(a)}

Edg (G′) = Edg (G) ∪
{
(A(a),�±A(a)),
((¬A)(a),�±A(a))

}

λG′(A(a),�±A(a)) = λG′((¬A)(a),�±A(a)) = =⇒�
λG′(e) = λG(e) for e ∈ Edg (G)

Under these conditions, the application of the rule returns G′.
The next step of the algorithm is to apply the tableau

method on each Gi ∪ Hj , for each i and j, 1 ≤ i ≤ m,
1 ≤ j ≤ n, using the transformation rules=⇒�,=⇒�,=⇒∀,

A necessary condition for =⇒� to be applicable on an
AGraph G is that G contains a node α of the form (C1 �
. . . � Cp)(a). If this is the case, then two situations can be
considered:
(a) G contains no assertion Ck(a) (1 ≤ k ≤ p). Under

these conditions, the application of the rule returns the
AGraphs G1, . . . , Gp defined, for 1 ≤ k ≤ p, by

Nod (Gk) = Nod (G) ∪ {Ck(a)}
Edg (Gk) = Edg (G) ∪ {(α, Ck(a))}

λGk(α, Ck(a)) = =⇒�
λGk(e) = λG(e) for e ∈ Edg (G)

(b) G contains one or several assertions βk = Ck(a) such
that (α, βk) �∈ Edg (G). In this condition, =⇒� re-
turns the AGraph G′ obtained by adding to G these
edges (α, βk), with λG′(α, βk) = =⇒�.

The rule =⇒∀ is applicable on an AGraph G if
(i) G contains a node α1 of the form (∀r.C)(a) and a

node α2 of the form r(a, b);
(ii) G �= G′ with G′ defined by

Nod (G′) = Nod (G) ∪ {C(b)}
Edg (G′) = Edg (G) ∪ {(α1, C(b)), (α2, C(b))}

λG′(α1, C(b)) = λG′(α2, C(b)) = =⇒∀
λG′(e) = λG(e) for e ∈ Edg (G)

Under these conditions, the application of the rule returns
G′.

The rule =⇒K
∃ is applicable on an AGraph G if

(i) G contains a node α of the form (∃r.C)(a);
(ii) (a) Either G does not contain both r(a, b) and C(b),

for any instance b;
(b) Or G contains two assertions β1 = r(a, b) and

β2 = C(b), such that (α, β1) �∈ Edg (G) or
(α, β2) �∈ Edg (G);

(iii) There is no instance c such that {C | C(a) ∈
Nod (G)} ⊆ {C | C(c) ∈ Nod (G)} (set-blocking con-
dition, introduced for ensuring termination of the al-
gorithm).

If condition (ii-a) holds, let b be a new instance. The ap-
plication of the rule returns G′ defined by

Nod (G′) = Nod (G) ∪ {r(a, b), C(b), K(b)}
Edg (G′) = Edg (G) ∪ {(α, r(a, b)), (α, C(b))}

λG′(α, r(a, b)) = λG′(α, C(b)) = =⇒K
∃

λG′(e) = λG(e) for e ∈ Edg (G)

Under condition (ii-b), the application of the rule returns
G′ defined by

Nod (G′) = Nod (G)
Edg (G′) = Edg (G) ∪ {(α, β1), (α, β2)}

λG′(α, β1) = λG′(α, β2) = =⇒K
∃

λG′(e) = λG(e) for e ∈ Edg (G)

Figure 2: The transformation rules =⇒�, =⇒∀, and =⇒K
∃.

2586

=⇒K
∃, and =⇒�. A difference with the tableau method pre-

sented above is that it was useless to apply rules on closed
ABoxes (or closed AGraphs). Here, when a rule is applica-
ble to an AGraph containing an assertion clash, it is applied,
which may lead to several clashes in the same AGraph.

Remark 2 If an assertion clash �±A(a) is generated, then
this clash is the consequence of assertions of both Gi and Hj ,
otherwise, it would have been a clash generated at the previ-
ous step of the algorithm (since these two AGraphs are com-
plete and open).

Repairing the assertion clashes. The previous step has
produced a non-empty set Sij of AGraphs, for each Gi ∪Hj .
The repair step consists in repairing each of these AGraphs
Γ ∈ Sij and keeping only the ones that minimize the repair
cost.3 Let Γ ∈ Sij . If Γ contains no assertion clash, this
involves that Gi ∪ Hj is satisfiable and so is Aθ

srce,tgt: no
adaptation is needed. If Γ contains δ ≥ 1 assertion clashes,
then one of them is chosen and the repair according to this
clash gives a set of repaired AGraphs Γ′ containing δ − 1
clashes. Then, the repair is resumed on Γ′, until there is no
more clash.4 The cost of the global repair is the sum of the
costs of each repair. In the following, it is shown how one
clash of Γ is repaired.

The principle of the clash repair is to remove assertions of
Γ in order to avoid this assertion clash to be re-generated by
re-application of the rules. Therefore, the repair of all the
assertion clashes must lead to satisfiable AGraphs (this is a
consequence of the completeness of the tableau algorithm on
ALC). For this purpose, the following principle, expressed as
an inference rule, is used:

ϕ |= β β has to be removed
ϕ has to be removed

(5)

where β is an assertion and ϕ is a minimal set of assertions
such that ϕ |= β (ϕ is to be understood as the conjunction
of its formulas). Removing ϕ amounts to forget one of the
assertions α ∈ ϕ: when card(ϕ) ≥ 2, there are several ways
to remove ϕ, and thus, there may be several AGraphs Γ′ ob-
tained from Γ. The relation |= linking ϕ and β is materialized
by the edges of Γ. Thus, on the basis of (5), the removal will
be propagated by following these edges (α, β), from β to α.

3In our prototypical implementation of this algorithm, this has
been improved by pruning the repair tasks when their costs exceed
the current minimum.

4Some additional nodes may have to be removed as some clashes
may have been “hidden” by the set-blocking condition (=⇒K

∃, con-
dition (iii)). Set-blocking prevents the application of the rule =⇒K

∃
on a node (∃r.C)(a) in an AGraph G if there exists some instance
c such that {C | C(a) ∈ Nod (G)} ⊆ {C | C(c) ∈ Nod (G)}. This
condition, that is needed to ensure termination, stands on the fact
that, up to the renaming of instances, the set of nodesNa that would
be generated from {C(a) | C(a) ∈ Nod (G)} in included in the set of
nodes Nc generated from {C(c) | C(c) ∈ Nod (G)}. Thus, if Nc is
clash-free, Na is also clash-free and needs no repair. Otherwise, Na
needs to be computed to check if it contains clashes and make the
appropriate repairs. This can be done by keeping track of the nodes
ofNc that correspond to nodes ofNa, the repairs overNc must then
be propagated to {C(a) | C(a) ∈ Nod (G)}.

Let β = �±A(a), the assertion clash of Γ to be removed.
Let α+ = A(a) and α− = ¬A(a). At least one of α+ and α−
has to be removed. Hj being an open and complete AGraph,
either α+ /∈ Hj or α− /∈ Hj (see remark 2). Three types of
situation remain:

• If α+ ∈ Hj then α+ cannot be removed: it is an asser-
tion generated from Aθ

tgt. Then, α
− has to be removed.

• If α− ∈ Hj then α+ has to be removed.
• If α+ �∈ Hj and α− �∈ Hj , then the choice of re-
moval is based on the minimization of the cost. If
cost(A) < cost(¬A) then α+ has to be removed. If
cost(A) > cost(¬A) then α− has to be removed. If
cost(A) = cost(¬A), then two AGraphs are generated:
one by removing α+, the other one, by removing α−.

If an assertion β has to be removed, the propagation
of the removal for an edge (α, β) such that λG(α, β) ∈
{=⇒�,=⇒�,=⇒K

∃} consists in removing α (and propagat-
ing the removal from α).

Let β be an assertion to be removed that has been inferred
by the rule =⇒∀. This means that there exist two assertions
such that λG(α1, β) = λG′(α2, β) = =⇒∀. In this situation,
two AGraphs are generated, one based on the removal of α1,
the other one, on the removal of α2 (when α1 or α2 is in Hj ,
only one AGraph is generated).

At the end of the repair process, a non empty set
{Γk}1 ≤ k ≤ p

of AGraphs without clashes has been built.
Only the ones that are the result of a repair with a minimal
cost are kept. Let Ak = Nod (Γk). The result of the repair is
D = {Ak}1 ≤ k ≤ p

.

Transforming the disjunction of ABoxes D. If A,B ∈ D
are such that A |= B, then the ABoxes disjunctions D and
D \ {A} are equivalent. This is used to simplify D by re-
moving such A.5 After this simplifying test, each A ∈ D
is rewritten to remove the instances i introduced during a
tableau process. First, the i’s not related, neither directly,
nor indirectly, to any non introduced instance by assertions
r(a, b) are removed, meaning that the assertions with such i’s
are removed (this may occur because of the repair step that
may “disconnect” i from non-introduced instances). Then,
a “de-skolemization” process is done by replacing the intro-
duced instances i by assertions of the form (∃r.C)(a). For
instance, the set {r(a, i1), A(i1), s(i1, i2),¬B(i2)} is re-
placed by {(∃r.(A � ∃s.¬B))(a)}. The final value of D is
returned by the algorithm.

Example. Consider the example given at the end of sec-
tion 2. Giving all the steps of the algorithm is tedious, thus
only the repairs will be considered.

Several AGraphs are generated and have to be repaired
but they all share the same clash �±Apple(a). Two repairs

5In our tests, we have used necessary conditions ofA |= B based
on set inclusions, with or without the renaming of one introduced
instance. This has led to a dramatic reduction of the size ofD, which
suggests that the algorithm presented above can be greatly improved,
by pruning unnecessary ABox generation.

2587

are possible and the resulting D depends only on the costs
cost(Apple) and cost(¬Apple).
If cost(Apple) < cost(¬Apple), then D = {A} with A

equivalent to (Pie�∃ing.Pear)(θ). The proposed adaptation
is a pear pie.

If cost(Apple) ≥ cost(¬Apple), then D = {A}, with
A equivalent toAθ

tgt. Nothing is learned from the source case
for the target case.

3.3 Properties of the Algorithm

The adaptation algorithm terminates. This can be
proven using the termination of the tableau algorithm on
ABoxes [Baader et al., 2003]. Repair removes at least one
node from finite AGraphs at each step, thus it terminates too.

Every A ∈ D satisfies Target constraints: A |= Aθ
tgt.

And thus, D consists in the addition of some information to
the target case.

Provided that Aθ
tgt is satisfiable, every A ∈ D is satisfi-

able. In other words, unless the target case is in contradiction
with the domain knowledge, the adaptation provides a consis-
tent result. When Aθ

srce is not satisfiable, D is equivalent to
{Aθ

tgt}. This means that when a meaningless Aθ
srce is given,

Aθ
tgt is not altered.
If the source case is applicable under the target case con-

straints (Aθ
srce,tgt = Aθ

srce ∪Aθ
tgt is satisfiable) then D con-

tains a sole ABox which is equivalent toAθ
srce,tgt: the source

case is reused without modification to solve the target case.
The adaptation presented here can be considered as a gen-

eralization and specialization approach to adaptation. The
ABoxes A ∈ D are obtained by “generalizing” Aθ

srce into
A′: some formulas of Aθ

srce are dropped for weaker conse-
quences to obtain A′ thus A |= A′, then A′ is “specialized”
into A = A′ ∪ Aθ

tgt. Indeed, A |= B can be read as “A is
generalized into B” since the set of models of A is included
in the set of models of B.

4 Discussion and related work

Beyond matching-based adaptation processes? There are
two types of algorithms for the classical deductive inferences
in DLs: the tableau algorithm presented above and the struc-
tural algorithms. The former is used for expressive DLs (i.e.,
for ALC and all the DLs extending ALC). The latters are
used for the other DLs (for which at least some of the deduc-
tive inferences are polynomial).

A structural algorithm for the subsumption test KB |= C 	
D consists, after a preprocessing step, in matching descriptors
of D with some descriptors of C.

This matching procedure is rather close to the matching
procedures used by most of the adaptation procedures, explic-
itly or not (if the cases have a fixed attribute-value structure,
usually, the source and target cases are matched attribute by
attribute, and the matching process does not need to be made
explicit).

Structural algorithms appear to be ill-suited for expressive
DLs and tableau algorithms are used instead. The adaptation
algorithm presented in this paper, based on tableau method
principles, has no matching step (even if one can a posteri-
ori match descriptors of source case and adapted target case).

From those observations, we hypothesize that beyond a cer-
tain level of expressivity of the representation language, it
becomes hardly possible to use matching techniques for an
adaptation taking into account domain knowledge.

Other work on CBR and description logics. Despite the
advantages of using DLs in CBR, as motivated in the intro-
duction, there are rather few research on CBR and DLs.

In [Koehler, 1996], concepts of a DL are used as indexes
for retrieving plans of a case-based planner, and adaptation is
performed in another formalism.

In [Salotti and Ventos, 1998], a non expressive DL is used
for retrieval and for case base organization. This work uses
in particular the notion of least common subsumer (LCS) to
reify similarity of the concepts representing the source and
target cases: the LCS of concepts C and D is the most specific
concept that is more general than both C and D and thus points
out their common features. Therefore the LCS inference can
be seen as a matching process (that might be used by some
adaptation process). In an expressive DL, the LCS of C and D
is C � D (or an equivalent concept), which does not express
anything about similar features of C and D.
To our knowledge, the only attempts to define an adap-

tation process for DLs are [Gómez-Albarrán et al., 1999]
and [d’Aquin et al., 2005]. [Gómez-Albarrán et al., 1999]
presents a modeling of the CBR life cycle using DLs. In par-
ticular, it presents a substitution approach to adaptation which
consists in matching source and target case items by chains of
roles (similar to chains of assertions r(a1, a2), r(a2, a3), etc.)
in order to point out what substitutions can be done.

[d’Aquin et al., 2005] uses adaptation rules (reformula-
tions) and multi-viewpoint representation for CBR, includ-
ing a complex adaptation step. By contrast, the algorithm
presented in this paper uses mainly the domain knowledge to
perform adaptation: a direction of work will be to see how
these approaches can be combined.

Other work on ontology change. Several studies on se-
mantic web and ontology management focus on the prob-
lem of repairing ontologies and merging ontologies that may
be contradictory. A review can be found in [Flouris et al.,
2008]. In particular, [Kalyanpur et al., 2007] gives a “glass
box” algorithm to compute the formulas to be removed in
the purpose of ontology debugging [Kalyanpur et al., 2006].
This algorithm is similar to the tableau on AGraphs since
it uses a tableau algorithm that keeps traces of the deduc-
tions. It would be interesting to compare precisely the two ap-
proaches. Note however that, unlike the approach presented
in this paper, [Kalyanpur et al., 2006] only provides a subset
of the initial knowledge base, ignoring the consequences that
could be kept.

5 Conclusion and Future Work

This paper presents an algorithm for adaptation dedicated
to case-based reasoning systems whose cases and domain
knowledge are represented in the expressive DL ALC. The
first question raised by an adaptation problem is: “What has

2588

to be adapted?” The way this question is addressed by the al-
gorithm consists in first pretending that the source case solves
the target problem and then pointing out logical inconsisten-
cies: these latters correspond to the parts of the source case to
be modified in order to suit the target case. These principles
are then applied toALC, for which logical inconsistencies are
reified by the clashes generated by the tableau method. The
second question raised by an adaptation problem is: “How
will the source case be adapted?” The idea of the algorithm is
to repair the inconsistencies by removing (temporarily) some
knowledge from the source case, until the consistency is re-
stored. This adaptation approach can be classified as a trans-
formational one since it does not use explanations or justifica-
tions associated with the source case, as would a derivational
(or generative) approach do [Carbonell, 1986].

Currently, only a basic prototype of this adaptation algo-
rithm has been implemented, and it is not very efficient. A
future work will aim at implementing it efficiently and in an
extendable way, taking into account the future extensions pre-
sented below. This might be done by reusing available DL
inference engines, provided their optimization techniques do
not interfere with the extension into an adaptation procedure.
It can be noted that the research on improving the tableau
method for DLs has led to dramatic gains in term of comput-
ing time (see, in particular, [Horrocks, 1997]).

The second direction of work will be to extend the algo-
rithm to other expressive DLs. In particular, we plan to ex-
tend it to ALC(D), where D is the concrete domain of real
number tuples with linear constraint predicates. This means
that cases may have numerical features (integer or real num-
bers) and domain knowledge may contain linear constraints
on these features. This future work will also extend [Cojan
and Lieber, 2009].
The algorithm of adaptation presented above can be con-

sidered as a generalization and specialization approach to
adaptation (cf. section 3.3). By contrast, the algorithm
of [d’Aquin et al., 2005] is a rule-based adaptation, a rule
specifying a relevant substitution to a given class of source
case. A lead to integrate these two approaches is to use the
adaptation rules during the repair process: instead of remov-
ing assertions leading to a clash, such a rule, when available,
could be used to propose substitutes.

As written in the introduction, this algorithm follows work
on adaptation based on belief revision, though it cannot be
claimed that this algorithm, as such, implements a revision
operator for ALC (e.g., it does not enable the revision of a
TBox by an ABox). In [Cojan and Lieber, 2009], revision-
based adaptation is generalized in merging-based case com-
bination. Such a generalization should be applicable to the al-
gorithm defined in this paper: the ABox Aθ

srce is replaced by
several ABoxes and the repairs are applied on these ABoxes.
Defining precisely this algorithm and studying its properties
is another future work.

References
[Alchourrón et al., 1985] C. E. Alchourrón, P. Gärdenfors, and

D. Makinson. On the Logic of Theory Change: partial meet func-
tions for contraction and revision. Journal of Symbolic Logic,
50:510–530, 1985.

[Baader et al., 2003] F. Baader, D. Calvanese, D. McGuinness,
D. Nardi, and P. Patel-Schneider, editors. The Description Logic
Handbook. Cambridge University Press, cambridge, UK, 2003.

[Carbonell, 1986] J. G. Carbonell. Derivational analogy: A Theory
of Reconstructive Problem Solving and Expertise Acquisition. In
Machine Learning, volume 2, chapter 14, pages 371–392. Mor-
gan Kaufmann, Inc., 1986.

[Cojan and Lieber, 2009] J. Cojan and J. Lieber. Belief Merging-
based Case Combination. In Case-Based Reasoning Research
and Development (ICCBR 2009), pages 105–119, 2009.

[d’Aquin et al., 2005] M. d’Aquin, J. Lieber, and A. Napoli. De-
centralized Case-Based Reasoning for the Semantic Web. In
Yolanda Gil and Enrico Motta, editors, Proceedings of the 4th In-
ternational Semantic Web Conference (ISWC 2005), LNCS 3729,
pages 142–155. Springer, November 2005.

[Flouris et al., 2008] Giorgos Flouris, Dimitris Manakanatas,
Haridimos Kondylakis, Dimitris Plexousakis, and Grigoris An-
toniou. Ontology change: classification and survey. Knowledge
Eng. Review, 23(2):117–152, 2008.

[Gómez-Albarrán et al., 1999] M. Gómez-Albarrán, P. A.
González-Calero, B. Díaz-Agudo, and C. Fernández-Conde.
Modelling the CBR Life Cycle Using Description Logics. In
Klaus-Dieter Althoff and Ralph Bergmann and L. Karl Branting,
editor, Proceedings of the 3rd International Conference on
Case-Based Reasoning Research and Development (ICCBR-99),
LNAI 1650, pages 147–161, Berlin, 1999. Springer.

[Horrocks, 1997] Ian Horrocks. Optimising Tableaux Decision Pro-
cedures for Description Logics. PhD thesis, University ofManch-
ester, 1997.

[Kalyanpur et al., 2006] Aditya Kalyanpur, Bijan Parsia, Evren
Sirin, and Bernardo Cuenca Grau. Repairing unsatisfiable con-
cepts in owl ontologies. In York Sure and John Domingue, edi-
tors, ESWC, volume 4011 of Lecture Notes in Computer Science,
pages 170–184. Springer, 2006.

[Kalyanpur et al., 2007] Aditya Kalyanpur, Bijan Parsia, Matthew
Horridge, and Evren Sirin. Finding all justifications of owl dl en-
tailments. In Karl Aberer, Key-Sun Choi, Natasha Fridman Noy,
Dean Allemang, Kyung-Il Lee, Lyndon J. B. Nixon, Jennifer Gol-
beck, Peter Mika, Diana Maynard, Riichiro Mizoguchi, Guus
Schreiber, and Philippe Cudré-Mauroux, editors, ISWC/ASWC,
volume 4825 of Lecture Notes in Computer Science, pages 267–
280. Springer, 2007.

[Koehler, 1996] J. Koehler. Planning from Second Principles. Arti-
ficial Intelligence, 87:145–186, 1996.

[Kolodner, 1993] J. Kolodner. Case-Based Reasoning. Morgan
Kaufmann, Inc., 1993.

[Lieber, 2007] J. Lieber. Application of the Revision Theory to
Adaptation in Case-Based Reasoning: the Conservative Adap-
tation. In Proceedings of the 7th International Conference on
Case-Based Reasoning (ICCBR-07), Lecture Notes in Artificial
Intelligence 4626, pages 239–253. Springer, Belfast, 2007.

[Riesbeck and Schank, 1989] C. K. Riesbeck and R. C. Schank. In-
side Case-Based Reasoning. Lawrence Erlbaum Associates, Inc.,
Hillsdale, New Jersey, 1989.

[Salotti and Ventos, 1998] S. Salotti and V. Ventos. Study and
Formalization of a Case-Based Reasoning System Using a De-
scription Logic. In B. Smyth and P. Cunningham, editors,
Fourth European Workshop on Case-Based Reasoning, EWCBR-
98, Lecture Notes in Artificial Intelligence 1488, pages 286–297.
Springer, 1998.

2589

