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Abstract

We solve constraint satisfaction problems through
translation to answer set programming (ASP).
Our reformulations have the property that unit-
propagation in the ASP solver achieves well de-
fined local consistency properties like arc, bound
and range consistency. Experiments demonstrate
the computational value of this approach.

1 Introduction

Several formalisms have been proposed for representing and
solving combinatorial problems: constraint programming
(CP; [Rossi et al., 2006]), answer set programming (ASP;
[Baral, 2003]), propositional satisfiability checking (SAT;
[Biere et al., 2009]), its extension to satisfiability modulo
theories (SMT; [Nieuwenhuis et al., 2006]), and many more.
Each has its particular strengths: for example, CP systems
support global constraints, SAT often exploits very efficient
implementations, whilst ASP systems permit recursive defi-
nitions and offer default negation. As a non-monotonic rea-
soning paradigm, ASP is particularly adequate for common-
sense reasoning and modelling of dynamic and incomplete
knowledge, and was put forward as a powerful paradigm
to solve constraint satisfaction problems (CSP) in [Niemelä,
1999]. Moreover, modern ASP solvers have experienced
dramatic improvements in their performance [Gebser et al.,
2007] and compete with the best SAT solvers. Empirical
comparisons with CP have shown that, whilst ASP encodings
are often highly competitive and more elaboration tolerant,
non-propositional constructs like global constraints are more
efficiently handled by CP systems [Dovier et al., 2005].

This led to the integration of CP with ASP in hybrid
frameworks, most notably constraint answer set program-
ming (CASP; [Gebser et al., 2009b]). Similar to SMT, the
key idea of a hybrid approach is that theory-specific solvers
interact in order to compute solutions to the whole constraint
model. However, the elaboration of constraint interdepen-
dencies from different solver types is limited by the restricted
interface between the ASP and the CP solver.

This paper puts forward a translation-based approach
rather than a hybrid one. In this approach, all parts of the
CSP model are mapped into ASP for which highly efficient

solvers are available. We make several contributions to the
study of translation into ASP [Drescher and Walsh, 2010]:

- We consider four different but generic encodings: the
direct, support, bound and range encoding. Each repre-
sents constraints in a different way.

- We provide theoretical results on their propagation
strength, i.e., what type of local consistency is achieved
by the unit-propagation of an ASP solver.

- We illustrate our approach on the popular ALL-
DIFFERENT constraint. This ensures that a set of vari-
ables take all different values. Unit-propagation on our
encodings can simulate complex propagation algorithms
with a similar overall runtime complexity.

- We conduct experiments on CSPLib [Gent and Walsh,
1999], a large problem library widely used for bench-
marking by the CP community. Our results demonstrate
the competitiveness of this approach.

2 Background

Answer Set Programming As a form of logic program-
ming oriented towards solving CSP, ASP comes with an ex-
pressive but simple modelling language. Formally, a logic
program over a set of primitive propositions A, ⊥ ∈ A, is a
finite set of rules r of the form

h← a1, . . . , am, not am+1, . . . , not an
where h, ai ∈ A are atoms, 1 ≤ i ≤ n. A
literal is an atom a or its default negation not a.
The special atom ⊥ denotes a proposition that is al-
ways false. For a rule r, define head(r) = h and
body(r) = {a1, . . . , am, not am+1, . . . , not an}. Fur-
thermore, let body(r)+ = {a1, . . . , am} and body(r)− =
{am+1, . . . , an}. A rule r with head(r) = ⊥ is widely re-
ferred to as an integrity constraint. The semantics of a logic
program is given by its answer sets, which are the key objects
of interest in this paradigm. Given a logic program P overA,
a set X ⊆ A is an answer set of P iff X is the ⊆-minimal
model of the reduct [Gelfond and Lifschitz, 1988]
PX = {head(r)← body(r)+ | r ∈ P, body(r)−∩X = ∅}.
Intuitively, a rule r of the form above can be seen as a con-
dition on the answer sets of a logic program, stating that if
a1, . . . , am are in the answer set and none of am+1, . . . , an is
included, then h must be in the set. We also consider exten-
sions to logic programs, such as choice rules and cardinality
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rules. A choice rule of the form
{h1, . . . , hk} ← a1, . . . , am, not am+1, . . . , not an

allows for the nondeterministic choice over atoms in
{h1, . . . , hk}. A cardinality rule of the form

h← k{a1, . . . , am, not am+1, . . . , not an}
infers h if k or more literals in the set {a1, . . . , am,
not am+1, . . . , not an} are satisfied. The semantics of choice
rules and cardinality rules is given through program transfor-
mations (cf. [Simons et al., 2002]). Note that aggregations
and other forms of set constructions are also common in ASP.
However, we will limit ourselves to the above concepts as
they are expressive enough for what follows. Also note that,
although answer set semantics is propositional, atoms in A
can be constructed from a first-order signature. The logic
program over A is then obtained by a grounding process,
systematically substituting all occurrences of first-order vari-
ables with terms formed by function symbols and constants
given through the signature. The task of ASP systems is to
compute answer sets for logic programs. A successful frame-
work is conflict-driven nogood learning (CDNL;[Gebser et
al., 2007]). It reflects conditions from program rules in a set
of nogoods, and describes ASP inference as unit-propagation
on nogoods to determine logical consequences.

Constraint Satisfaction and Consistency We want to use
ASP to model and solve CSP. Formally, a CSP is a triple
(V,D,C) where V is a finite set of variables, each v ∈ V
has an associated finite domain dom(v) ∈ D, and C is a set
of constraints. A constraint c is a pair (RS , S) where RS is a
k-ary relation, denoted range(c), on the variables in S ∈ V k,
denoted scope(c). Given a (constraint variable) assignment
A : V → ⋃

v∈V dom(v), for a constraint c with scope(c) =
S = (v1, . . . , vk) define A(S) = (A(v1), . . . , A(vk)) and
call c satisfied if A(S) ∈ range(c). Define the set of con-
straints satisfied by A as satC(A) = {c | A(scope(c)) ∈
range(c), c ∈ C}. A binary constraint c has |scope(c)| = 2.
For instance, the constraint v1 
= v2 ensures that v1 and v2
take different values. An n-ary constraint c has parametrised
scope. For instance, ALL-DIFFERENT ensures that a set of
variables, |scope(c)| = n, take all different values. As any
non-binary constraint, this can be decomposed into binary
constraints, i.e., O(n2) constraints vi 
= vj for i < j. How-
ever, as we shall see in the following, such reformulation can
hinder inference.

An assignment A is a solution to a CSP iff it satisfies all
constraints in C. Typically, CP systems use backtracking
search to explore assignments in a search tree. In a search
tree, each node represents an assignment to some variables,
child nodes are obtained by selecting an unassigned variable
and having a child node for each possible value for this vari-
able, and the root node is empty. Every time a variable is
assigned a value, constraint propagation is executed, prun-
ing the set of values for the other variables, i.e., enforcing a
certain type of local consistency such as arc, bound, range,
or domain consistency. A binary constraint c is arc consis-
tent iff a variable v1 ∈ scope(c) is assigned any value d1 ∈
dom(v1), there exists a compatible value d2 ∈ dom(v2)

for the other variable v2. An n-ary constraint c is domain
consistent iff a variable vi ∈ scope(c) = {v1, . . . , vn}
is assigned any value di ∈ dom(vi), there exist compati-
ble values in the domains of all the other variables dj ∈
dom(vj), 1 ≤ j ≤ n, j 
= i. Bound and range con-
sistency are defined for constraints over finite intervals. A
constraint c is bound consistent iff a variable vi is assigned
di ∈ {min(dom(vi)),max(dom(vi))} there exist consistent
values between the minimum and maximum domain value for
all the other variables in the scope of the constraint, called a
bound support. A constraint is range consistent iff a vari-
able is assigned any value in its domain, there exists a bound
support. Range consistency is in between domain and bound
consistency, where domain consistency is the strongest of the
three local consistency properties.

Constraint Answer Set Programming Constraint logic
programming naturally merges CP and logic programming,
while preserving the advantages of either approach to mod-
elling and solving CSP. Formally, a constraint logic program
is a logic program P over an alphabet distinguishing regular
atoms A and constraint atoms C, such that head(r) ∈ A for
each r ∈ P [Gebser et al., 2009b]. A function γ : C → C as-
sociates constraint atoms with constraints. (The set C stems
from the definition of CSP.) For sets of constraints C ′ ⊆ C
define γ(C ′) = {γ(c) | c ∈ C ′}. Given a constraint logic
program P over A and C, and an assignment A, a set X ⊆ A
is a constraint answer set of P with respect to A iff X is an
answer set of the constraint reduct [Gebser et al., 2009b]:
PA = {head(r)← body(r)|A | r ∈ P,

γ(body(r)+|C) ⊆ satC(A),
γ(body(r)−|C) ∩ satC(A) = ∅}.

The idea in our translation-based approach to constraint an-
swer set solving is to compile a constraint logic program into
a (normal) logic program by adding an ASP reformulation of
constraint variables and all constraints that appear in the con-
straint logic program. This allows us to apply CDNL to com-
pute constraint answer sets. A key advantage is that nogood
learning techniques can exploit constraint interdependencies
since all variables will be shared between constraints. This
can improve propagation between constraints. Our reformu-
lations also provides a propagator for the negation of a con-
straint.

3 Reformulating CASP into ASP

We now present four ASP encodings for variables and con-
straints over finite domains. All constraints c are reified via
atoms sat(c), and violate(c), indicating whether c is satisfied
or violated, respectively. To ensure consistency, i.e., either
sat(c) or violate(c) is in an answer set, we post

sat(c)← not violate(c)
violate(c)← not sat(c)

for every constraint c. Other representations, e.g., using
choice rules, are also possible. To save the reader from multi-
ple superscripts, in the following, we will assume dom(v) =
[1, d] for all v ∈ V .
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Direct Encoding A straightforward encoding is the direct
encoding in which an atom e(v, i) is introduced for each con-
straint variable v and each value i from their domain, repre-
senting v = i. Intuitively, e(v, i) is in an answer set if v takes
the value i, and it is not if v takes a value different from i. For
each v, possible assignments are encoded by a choice rule (1).
Furthermore, we specify that v takes at least one value (2) and
that it takes at most one value (3).
{e(v, 1), . . . , e(v, d)} ← (1)

⊥ ← not e(v, 1), . . . , not e(v, d) (2)
⊥ ← 2 {e(v, 1), . . . , e(v, d)} (3)

A constraint c is encoded as forbidden combination of values,
i.e., if v1 = d1, v2 = d2, . . . , vn = dn is such a forbidden
combination then we encode

violate(c)← e(v1, d1), e(v2, d2), . . . , e(vn, dn).

Unfortunately, the direct encoding hinders propagation:

Theorem 1 Enforcing arc consistency on the binary decom-
position of a constraint prunes more values from the variables
domain than unit-propagation on its direct encoding.

The support encoding has been proposed in the domain of
SAT to tackle this weakness [Gent, 2002].

Support Encoding We now encode support information
for assignments rather than the encoding of conflicts. For
each possible assignment to a variable one of its supports
must hold, that is, the set of values for the other variable
which allow this assignment. Formally, a support for a con-
straint variable v to take the value i across a constraint c is
the set of values {i1, . . . , im} ⊆ dom(v′) of another variable
in v′ ∈ scope(c)\{v}which allow v = i, and can be encoded
in the following rule, based on (1–3):

violate(c)← e(v, i), not e(v′, i1), . . . , not e(v′, im).

It can be read as whenever v = i, then at least one of its sup-
ports must hold, otherwise the constraint is violated. In the
support encoding, for each constraint c there is one support
for each pair of distinct variables v, v′ ∈ scope(c), and for
each value i.

Theorem 2 Unit-propagation on the support encoding en-
forces arc consistency on the binary decomposition of the
original constraint.

We have used program transformation [Simons et al.,
2002] in [Drescher and Walsh, 2010] to reformulate ALL-
DIFFERENT straightforwardly according to our support en-
coding into O(d) cardinality rules:

violate(c)← 2 {e(v1, i), . . . , e(vn, i)} (4)

Corollary 1 Unit-propagation on (1–4) enforces arc consis-
tency on the binary decomposition of ALL-DIFFERENT in
O(nd2) down any branch of the search tree.

Range Encoding In the range encoding, we represent that
a variable can take values from an interval v ∈ [l, u], i.e.,
a value between l and u (inclusive). An atom r(v, l, u) is
introduced for each v and [l, u] ⊆ [1, d]. For each range [l, u],
the following O(nd2) rules encode v ∈ [l, u] whenever v 
∈

[1, l − 1] and v 
∈ [u + 1, d], and enforce a consistent set of
ranges, i.e., v ∈ [l, u] implies v ∈ [l−1, u] and v ∈ [l, u+1]:

r(v, l, u)← not r(v, 1, l − 1), not r(v, u+ 1, d) (5)
⊥ ← r(v, l − 1, u), not r(v, l, u) (6)
⊥ ← r(v, l, u+ 1), not r(v, l, u) (7)

Constraints are encoded into integrity constraints represent-
ing conflict regions v1 ∈ [l1, u1], . . . , vn ∈ [ln, un]:

violate(c)← r(v1, l1, u1), . . . , r(vn, ln, un)

Theorem 3 Unit-propagation on the range encoding en-
forces range consistency on the original constraint.
An efficient propagator for ALL-DIFFERENT enforces range
consistency by pruning Hall intervals [Leconte, 1996]. A Hall
interval of size k completely contains the domains of k vari-
ables, formally, |{v | dom(v) ⊆ [l, u]}| = u− l+1. Observe
that in any bound support, the variables whose domains are
contained in the Hall interval consume all values within the
Hall interval, whilst any other variable must find their support
outside the Hall interval (cf. [Bessière et al., 2009a]). We en-
code ALL-DIFFERENT such that no interval [l, u] can contain
more variables than its size:
violate(c)← u− l + 2 {r(v1, l, u), . . . , r(vn, l, u)}. (8)

This simple reformulation can simulate a complex propaga-
tion algorithm like the one in [Leconte, 1996] with a similar
overall complexity.
Corollary 2 Unit-propagation on (5–8) enforces range con-
sistency on ALL-DIFFERENT in O(nd3) down any branch of
the search tree.

Bound Encoding In our bound encoding, similar to the or-
der encoding [Tamura et al., 2006], an atom b(v, i) is intro-
duced for each variable v and value i to represent that v is
bounded by i, i.e., v ≤ i. For each v, possible assignments
are encoded by a choice rule (9). To ensure a consistent set of
bounds, (10) encodes that v ≤ i implies v ≤ i + 1. Finally,
(11) encodes v ≤ d, i.e., some value must be assigned to v.
{b(v, 1), . . . , b(v, d)} ← (9)

⊥ ← b(v, i), not b(v, i+ 1) (10)
⊥ ← not b(v, d) (11)

Similar to the range encoding, we represent conflict regions
l1 < v1 ≤ u1, . . . , ln < vn ≤ un as below

violate(c)← b(v1, u1), . . . , b(vn, un),
not b(v1, l1), . . . , not b(vn, ln).

Theorem 4 Unit-propagation on the bound encoding en-
forces bound consistency on the original constraint.
In order to achieve a reformulation of ALL-DIFFERENT that
can only prune bounds, the bound encoding for variables is
linked to (8) as follows:

r(v, l, u)← not b(v, l − 1), b(v, u) (12)
⊥ ← r(v, l, u), b(v, l − 1) (13)
⊥ ← r(v, l, u), not b(v, u) (14)

Corollary 3 Unit-propagation on (8–14) enforces bound
consistency on ALL-DIFFERENT inO(nd2) down any branch
of the search tree.
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n S B1 B3 B R3 R ezcsp clingcon gecode
10 5.4 0.7 0.1 0.0 0.2 0.0 1.8 1.4 0.9
11 46.5 3.5 1.0 0.0 1.9 0.0 16.7 15.2 9.0
12 105.0 14.8 3.9 0.0 2.6 0.1 183.9 172.5 104.1
13 — 91.4 25.4 0.1 30.4 0.0 — — —
14 — — 125.0 0.0 196.9 0.1 — — —
15 — — — 0.1 — 0.1 — — —

Table 1: Runtime results in seconds for pigeon hole problems.

4 Experiments

We have conducted experiments on hard combinatorial prob-
lems modelled with ALL-DIFFERENT constraints that stem
from CSPLib [Gent and Walsh, 1999]. Experiments con-
sider different options in our translation-based approach to
constraint answer set solving. We denote the support encod-
ing by S, the bound encoding by B, and the range encod-
ing by R. To explore the impact of small Hall intervals, we
also tried Bk and Rk, an encoding with only those cardi-
nality rules (8) for which u − l + 1 ≤ k. The consistency
achieved by Bk and Rk may be weaker than bound and range
consistency, respectively, when k < n. We also include the
hybrid CASP systems clingcon (0.1.2), and ezcsp (1.6.9) in
our empirical analysis. While clingcon extends the ASP sys-
tem clingo (2.0.2) with the CP solver gecode (2.2.0), ezcsp
combines the grounder gringo (2.0.3) and ASP solver clasp
(1.3.0) with sicstus (4.0.8) as CP solver. (Note that the system
clingo combines the grounder gringo and ASP solver clasp
in a monolithic way.) To provide a representative compari-
son with clingcon and ezcsp, we have applied clingo (2.0.3)
to the encodings in our translation-based approach. To com-
pare the performance of constraint answer set solvers against
traditional CP, we also report results of gecode (3.2.0). Its
heuristic for variable selection was set to a smallest domain
as in clingcon. All experiments were run on a 2.00 GHz PC
under Linux. We report results in seconds, where each run
was limited to 600 s time and 1 GB RAM.

Pigeon Hole Problems The famous pigeon hole problem is
to show that it is not possible to assign n pigeons to n−1 holes
if each pigeon must be assigned a distinct hole. As can be
seen from the results shown in Table 1, our bound and range
encodings perform significantly faster compared to weaker
encodings and the other options using filtering algorithms for
the ALL-DIFFERENT constraint that achieve arc consistency
on its binary decomposition. However, as can be expected on
such problems, detecting large Hall intervals is essential.

Quasigroup Completion A quasigroup is an algebraic
structure over n elements and can be represented by an n×n-
multiplication table such that each element in the structure
occurs exactly once in each row and each column of the ta-
ble. The quasigroup completion problem is to show whether
a partially filled table can be completed to a multiplication ta-
ble of a quasigroup. We have included models for gecode that
enforce bound and domain consistency on ALL-DIFFERENT,
denoted gecodeB and gecodeD, respectively, in our experi-
ments. Table 2 gives the runtime for solving QCP of size

% S B R ezcsp clingcon gecode gecodeB
10 2.6 8.2 7.3 29.6 (7) 9.7 (4) 2.2 (4) 0.5 (1)
20 2.4 8.0 7.2 21.3 (20) 6.2 (5) 5.0 (4) 0.9 (3)
30 2.3 7.9 7.1 10.3 (30) 12.9 (13) 2.9 (13) 1.1 (5)
35 2.3 7.9 7.0 21.6 (24) 11.2 (17) 14.1 (13) 6.2 (7)
40 2.3 7.8 6.9 51.6 (29) 23.1 (22) 11.7 (20) 5.7 (9)
45 2.3 7.8 6.8 36.3 (35) 14.7 (28) 17.7 (25) 6.3 (13)
50 2.3 7.7 6.8 36.1 (50) 21.2 (37) 25.1 (32) 6.3 (18)
55 2.3 7.6 6.7 61.4 (51) 24.4 (44) 19.6 (41) 30.9 (29)
60 2.2 7.5 6.6 60.2 (63) 31.4 (56) 36.0 (51) 27.2 (35)
70 2.2 7.1 6.0 70.0 (66) 30.2 (50) 28.0 (45) 17.0 (27)
80 2.1 6.7 5.5 16.2 (18) 4.2 (18) 17.2 (13) 7.0 (7)
90 2.1 6.7 5.5 1.4 2.6 (1) 0.4 (1) 3.2

Table 2: Average times over 100 runs on quasigroup com-
pletion problems. Timeouts, if any, are given in parenthesis.

n = 20. The left-most column gives the ratio of preassigned
entries. The results demonstrate phase transition behaviour in
the systems ezcsp, clingcon, gecode, and gecodeB , while our
ASP encodings and gecodeD (not shown) solve all problems
within seconds. We conclude that learning constraint inter-
dependencies as in our approach (using CDNL) is sufficient
to tackle quasigroup completion, i.e., specialised algorithms
that enforce domain consistency are not necessary.

Quasigroup Existence The quasigroup existence problem
is to determine the existence of certain interesting classes of
quasigroups with some additional properties ([Fujita et al.,
1993]). The properties are represented by axioms #1 – #7
in the direct encoding. In ezcsp and gecode, we additionally
use constructive disjunction. Their logic programming equiv-
alent are integrity constraints, exploited in the options S, Bk,
Rk and clingcon. As for ezcsp and clingcon on benchmark
classes #1 to #4, our resuls presented in Table 3 suggest that
both constructive disjunction and integrity constraints have
a similar behaviour. However, our encodings benefit again
from learning constraint interdependencies, resulting in run-
times that outperform all other systems including gecode on
the hardest problems.

Graceful Graphs A labelling of the nodes in a
graph (V,E) is graceful if it assigns a unique label
from the integers in [0, |E|] such that, when each edge is
labelled with the distance between its nodes’ labels, the
resulting edge labels are all different. The graceful graph
problem is to determine the existence of such a labelling.
We use auxiliary variables for edge labels. Their relation
to node labels is represented in the direct encoding which
weakens the overall consistency. Table 4 shows our results
for double wheel graphs, i.e., graphs composed of two copies
of a cycle with n nodes, each connected to a central hub.
Our encodings compete with ezcsp and outperform the other
systems, whilst the support encoding performs better than
bound and range encodings. We observe some variability in
the results for Bk and Rk, e.g., for n = 8 the options B1

and B solve the problem within the time limit but B3 does
not, although B3 contains B1. We explain this variability by
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# n S B1 B3 B R ezcsp clingcon gecode
1 7 1.7 1.7 1.7 1.7 1.6 65.0 189.8 0.6
1 8 19.0 5.9 4.7 19.8 4.7 — — —
1 9 — 139.4 152.0 234.6 466.9 — — —
2 7 1.7 1.7 1.7 1.8 1.8 46.1 1.5 1.2
2 8 46.6 9.6 10.6 37.7 14.8 — — —
2 9 — 246.0 55.7 88.3 213.4 — — —
3 7 0.2 0.2 0.2 0.3 0.3 3.2 1.0 0.0
3 8 0.4 0.4 0.5 0.5 0.5 4.3 9.0 0.2
3 9 10.2 7.4 9.5 16.5 12.8 — — 18.2
4 7 0.2 0.2 0.2 0.3 0.3 2.8 0.7 0.1
4 8 0.5 0.6 0.7 0.9 0.7 27.9 36.8 0.3
4 9 1.3 1.0 2.1 3.0 0.9 442.1 288.8 3.7
5 10 1.6 1.5 1.6 1.9 1.6 — — 0.2
5 11 2.1 2.2 2.4 3.4 2.4 — — 0.8
5 12 27.0 6.2 9.1 12.4 10.4 — — 16.4
6 10 1.2 1.4 1.5 1.8 1.5 10.5 — 0.1
6 11 2.7 2.8 4.0 4.2 4.8 125.5 — 1.2
6 12 32.0 12.9 25.6 36.4 50.6 — — 24.6
7 8 0.4 0.4 0.4 0.6 0.5 1.1 — 0.1
7 9 0.7 1.0 1.2 1.7 1.4 9.1 — 0.9
7 10 6.7 3.2 5.2 8.0 4.6 — — 22.0

Table 3: Results in seconds for quasigroup existence.

n S B1 B3 B R ezcsp clingcon gecode
4 1.3 2.0 1.5 3.2 2.5 0.6 0.1 0.1
5 4.5 5.0 4.5 13.5 31.4 1.0 2.0 0.1
6 7.2 11.0 17.6 47.7 110.2 1.2 — 7.2
7 23.8 28.3 67.9 227.9 432.9 18.0 — —
8 48.4 68.4 — 207.8 356.8 4.3 — —
9 82.8 106.5 200.4 486.6 227.4 390.5 — —

Table 4: Results in seconds for graceful graph problems.

the lookback-based branching heuristic used by clingo being
misled by the extra variables introduced in Bk and Rk. This
is inherent to a growing size of the encoding.

5 Related Work

Most previous work integrates CP techniques into ASP to
avoid huge ground instantiations given through logic pro-
grams with first-order variables over large domains. An ASP
system was extended in [Baselice et al., 2005; Mellarkod
and Gelfond, 2008; Mellarkod et al., 2008] such that it does
not require full grounding, since variables and limitations on
their domains can be handled in the CP solver. A similar
approach presented in [Dal Palù et al., 2009] employs the CP
solver to compute also the answer sets. Although these hybrid
strategies potentially eliminate the bottleneck that is inher-
ent to the translation-based approach, they view ASP and CP
solvers as blackboxes which do not match the performance
of state-of-the-art SMT solvers. In particular, they do not
make use of conflict-driven learning and back-jumping tech-
niques. This gap was closed by the approach taken in [Geb-
ser et al., 2009b] following the one by SMT solvers in letting
the ASP solver deal with the propositional structure of the

logic program, while a CP solver addresses the constraints.
Apart from extending the unit-propagation of an ASP solver
through constraint propagation, it deals with the elaboration
of reasons for atoms derived by constraint propagation within
conflict resolution. The elaboration of conflict information
from constraint propagators, however, is limited since con-
straint propagators lack support for this feature (they would
have to keep an implication graph to record reasons for each
propagation step). Hence, the conflict resolution process can-
not exploit constraint interdependencies. A different hybrid
approach to solving CASP is presented in [Balduccini, 2009],
where an answer set of a logic program with constraint atoms
encodes a desired CSP which, in turn, is handled by a CP
system. A more general framework using multiple declara-
tive paradigms to specify CSP is proposed in [Järvisalo et al.,
2009]. Either approach, however, restricts communication
between different solver types in order to compute solutions
to the whole CASP model, e.g., they also do not incorporate
conflict-driven learning and back-jumping techniques.

In a translation-based approach, all parts of the model are
mapped into a single constraint language for which highly
efficient off-the-shelf solvers are available. Hence, related
work has mostly focussed on the translation of constraints
to SAT (cf. [Walsh, 2000; Gent, 2002]). Translation into
ASP, however, can be more general than translation into SAT:
Every nogood can be syntactically represented by a clause,
but other ASP constructs are also possible, such as cardinal-
ity and weight constraints [Simons et al., 2002]. ASP was
put forward as a novel paradigm for modelling and solving
CSP in [Niemelä, 1999], where straightforward encodings to
represent generic constraints via either allowed or forbidden
combination of values has been presented. Preliminary work
on translating CASP into ASP was conducted in [Gebser et
al., 2009a], but they did not consider what level of consis-
tency was achieved by their translation.

Decompositions of ALL-DIFFERENT into simple arithmetic
constraints such that bound and range consistency can be
achieved were proposed in [Bessière et al., 2009a]. There
is no polynomial-sized decomposition that achieves domain
consistency [Bessière et al., 2009b].

6 Conclusions

We have shown that constraint answer set programming is
a promising approach to representing and solving combina-
torial problems that naturally merges CP and ASP, while pre-
serving the advantages of both paradigms. We have presented
a translation-based approach to constraint answer set solv-
ing. In particular, we have proposed various generic ASP en-
codings for constraints on finite domains such that the unit-
propagation of an ASP solver achieves a certain type of local
consistency. We have formulated our techniques as a prepro-
cessor that can be applied to existing ASP systems without
changing their source code. This allows for programmers to
select the solver that best fit their needs. An empirical eval-
uation of the computational impact on benchmarks from CP
has shown our approach outperforming CP and hybrid CASP
systems on most instances. As a key advantage we have iden-
tified that CDNL exploits constraint interdependencies which
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can improve propagation between constraints.
Future work concerns the combination of our translation-

based approach with a hybrid CASP system centred around
lazy nogood generation (cf. lazy clause generation in [Ohri-
menko et al., 2009]) to combine the advantages of either ap-
proach. We will also explore the different choices that arise
from this combination.
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