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Abstract

Consider a combinatorial state space S, such as the
set of all truth assignments to N Boolean variables.
Given a partition of S, we consider the problem of
estimating the size of all the subsets in which S is
divided. This problem, also known as computing
the density of states, is quite general and has many
applications. For instance, if we consider a Boolean
formula in CNF and we partition according to the
number of violated constraints, computing the den-
sity of states is a generalization of both SAT, MAX-
SAT and model counting.

We propose a novel Markov Chain Monte Carlo al-
gorithm to compute the density of states of Boolean
formulas that is based on a flat histogram approach.
Our method represents a new approach to a variety
of inference, learning, and counting problems. We
demonstrate its practical effectiveness by showing
that the method converges quickly to an accurate
solution on a range of synthetic and real-world in-
stances.

1 Introduction

Consider a combinatorial state space S, such as the set
{0, 1}N of all possible truth assignments to N Boolean vari-
ables. Given a partition of S into subsets, we consider the
problem of estimating the size of all the subsets in the parti-
tion. This problem is also known as computing the density
of states. For instance, given a Boolean formula in CNF with
m clauses, we can define an “energy” function in terms of
the number of violated constraints and partition the set of all
possible truth assignments accordingly. In this case, the den-
sity of states gives the size of all the subsets defined by the
number of violated constraints, i.e., the number of truth as-
signments that violate exactly k clauses, for 0 ≤ k ≤ m. The
problem of computing the density of states is a generalization
of SAT, MAX-SAT and model counting. The term density of
states name is borrowed from statistical physics, where given
an energy function the density of states (DOS) for a physical
system describes the number of microstates at each energy
level that are available to be occupied. In this paper, we will

∗This paper is a condensed version of [4].

extend this concept to the case of any energy function that
defines an interesting partition of the state space.

The information provided by the full density of states dis-
tribution is especially useful in the context of probabilis-
tic models defined through combinatorial constraints such as
Markov Logic Theories [12]. In fact, the description of the
state space can be used to efficiently compute not only the
normalization constant of the underlying probabilistic model
(also known as the partition function), but also its parameter-
ized version. This level of abstraction is a fundamental advan-
tage for learning methods because it allows us to reason about
the system more abstractly. For example, as we will discuss
below, in the case of a Markov Logic Theory, we can parame-
terize the partition function Z(w1, . . . , wK) according to the
weights w1, . . . , wK of its K first order formulas that define
the theory. Upon defining an appropriate energy function and
obtaining the corresponding density of states, we can use the
information about the partition function to directly compute
the model parameters that best fit the training data.

To compute the DOS, we will consider a novel MCMC
sampling strategy, inspired by the Wang-Landau method [16],
which is a flat histogram method from statistical physics.
Given a combinatorial space and an energy function, a flat
histogram method is a sampling strategy based on a Markov
Chain that adaptively changes its transition probabilities un-
til it converges to a steady state where it will spend approx-
imately the same amount of time in areas with low-density
configurations (usually, low energy states) as in high-density
areas of the search space. This condition leads to a flat his-
togram of the energy levels visited (hence the name of the
method).

We empirically demonstrate that our method converges
quickly and accurately on a range of instances. Our results
are very promising and we expect to see other applications
both to counting, learning, and inference problems.

2 Density of states: problem definition

We consider a state space {0, 1}N defined as the set of all pos-
sible truth assignments to N Boolean variables x1, . . . , xN .
Given such a space and an energy functionE : {0, 1}N → N,
the density of states (DOS) n is a function n : range(E) →
N that maps energy levels to the number of truth assignments
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(configurations) with that energy, i.e.,

n(k) = |{σ ∈ {0, 1}N |E(σ) = k}|.
So, we are interested in computing the number truth assign-
ments (also called possible worlds in probabilistic reasoning
contexts) that satisfy certain properties that are specified us-
ing an energy function. For instance, given a Boolean formula
in CNF, we might define the energy of a configuration E(σ)
to be the number of constraints that are unsatisfied by σ (this
is known as the density of states for unweighted Boolean for-
mulas [4]).

The MCMC algorithm we will use to compute the density
of states does not make any assumption about the actual val-
ues of the energy. In principle, the only thing we need is a
partitioning of the state space, where the energy is just pro-
viding an index over the subsets that compose the partition.

Probabilistic reasoning. The notion of the density of
states idea finds many natural applications in the context of
probabilistic reasoning and Markov Logic Networks (MLNs)
[12]. MLNs are used to define complex probability distri-
butions over a set of possible worlds which are truth assign-
ments to a set of N Boolean variables. The probability is
specified through weighted constraints that are represented as
(CNF) formulas over the Boolean variables. Such constraints
can be either hard or soft. Hard constraints are such that if
a truth assignment σ ∈ {0, 1}N violates one of them, it gets
assigned probability 0. Otherwise, when σ satisfies all hard
constraints, its probability is given by

P (σ) =
1

Z(w)
exp

(
−
∑
i∈C

wiχi(σ)

)
(1)

where C is the set of soft constraints, wi is the weight corre-
sponding to the i-th soft constraint and χi(σ) = 1 if and only
if σ violates the i-th constraint, and Z(w) is the normalization
constant also referred to as the partition function.

In such a framework, many inference (e.g., comput-
ing the probability of σ) and learning (e.g., finding the
weights that maximize the likelihood of x) tasks require
the computation of the normalization constant Z(w). This
is in general an intractable problem because Z(w) =∑

σ exp
(−∑i∈C wiχi(σ)

)
is defined as a sum over expo-

nentially many states.
A key advantage of the density of states idea is that it can

be used to efficiently compute not only the partition func-
tion, but also its parameterized version. For example, in the
case of a Markov Logic Theory, we can parameterize the
partition function Z(w1, . . . , wK) according to the weights
w1, . . . , wK of its K first order formulas. We can use this pa-
rameterized version of Z(w) to directly compute the optimal
set of weights that provide the best fit to the training data.

3 Preliminaries on MCMC methods

Sampling from a combinatorial space refers to the process of
generating samples from a probability distribution π defined
over a large (but finite) set Σ, such as the set of possible con-
figurations of a physical system or the set of all possible truth
assignments to a Boolean formula.

Sampling from a combinatorial space has applications to
probabilistic inference, learning, and counting. In a counting
problem, the goal is to estimate the cardinality of a set Σ or a
weighted sum of the form

∑
σ∈Σ w(σ), where w is a weight

assigned to the elements of Σ. The general idea is that we can
often obtain an approximate solution to a counting problem
by looking at the statistical properties of a sequence of inde-
pendent random samples from a distribution π defined over
Σ (see [7] for details). The close connection between count-
ing and sampling has been formally studied in a complexity
theoretical sense in [8].

The Markov Chain Monte Carlo (MCMC) method is a gen-
eral approach to combinatorial sampling that has received in-
creasing attention over the past ten years, leading to major
results for counting problems in graphs (matchings, indepen-
dent sets, colorings, and homomorphisms) [7].

The Markov Chain Monte Carlo method solves the sam-
pling problem by constructing a Markov Chain with state
space Σ and stationary distribution π. The transition prob-
abilities pσ→σ′ for σ, σ′ ∈ Σ are designed so that the Markov
Chain asymptotically converges to the stationary distribution
π, regardless of the initial state [10]. Typically, this is ac-
complished by enforcing a condition known as detailed bal-
ance, which defines a reversible Markov Chain such that
π(σ)pσ→σ′ = π(σ′)pσ′→σ for all σ, σ′ ∈ Σ (a probability
distribution π that satisfies the detailed balance condition can
be proved to be stationary). Moreover, transitions correspond
to simple modifications of the elements of Σ (such as variable
flipping), so that the chain can be efficiently simulated, such
as a random walk on a graph.

Given such a Markov Chain, the sampling process works as
follows. Given an arbitrary initial state σ ∈ Σ, we run (sim-
ulate) the chain for a finite number T of steps, and we output
the final state. The probability distribution of the output can
be made arbitrarily close to π by taking a large enough T .

4 The flat histogram method

We propose a Markov Chain Monte Carlo method to compute
the density of states based on the flat histogram idea inspired
by recent developments of statistical physics [16] as an alter-
native to Metropolis sampling.

The idea behind the method is as follows. The goal is to
construct a reversible Markov Chain on the space of all truth
assignments {0, 1}N such that the steady state probability of
a truth assignment σ is inversely proportional to the density
of states n(E(σ)). In this way, the stationary distribution is
such that all the energy levels are visited equally often (i.e.,
when we count the visits to each energy level, we see a flat
visit histogram). Specifically, we define a Markov Chain with
the following transition probability

pσ→σ′ =

{
1
N
min

{
1, n(E(σ))

n(E(σ′))

}
dH(σ, σ′) = 1

0 dH(σ, σ′) > 1
(2)

where dH(σ, σ′) is the Hamming distance between σ and σ′.
The probability of a self-loop pσ→σ is defined by the normal-
ization constraint pσ→σ +

∑
σ′|dH(σ,σ′)=1 pσ→σ′ = 1. The

detailed balance equation P (σ)pσ→σ′ = P (σ′)pσ′→σ is sat-
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isfied by P (σ) ∝ 1/n(E(σ)). This means1 that the Markov
Chain will reach a stationary probability distribution P (re-
gardless of the initial state) such that the probability of a truth
assignment σ with energy E = E(σ) is inversely propor-
tional to the total number of truth assignments with energy E.
This leads to an asymptotically flat histogram of the energies
of the states visited because P (E) =

∑
σ:E(σ)=E P (σ) ∝

n(E) 1
n(E) = 1 (i.e., independent of E).

Algorithm 1 MCMC-FlatSAT

Start with a guess g(E) = 1 for all E = 1, . . . ,m
Initialize H(E) = 0 for all E = 1, . . . ,m
Start with a modification factor F = F0

repeat
Randomly pick a truth assignment σ
repeat

Generate a new assignment σ′ (by flipping a variable)
Let E = E(σ) and E′ = E(σ′)

Set σ = σ′ with probability min
{
1, g(E)

g(E′)

}
Let Ec = E(σ) be the current energy level
Adjust the density g(Ec) = g(Ec)× F
Update visit histogram H(Ec) = H(Ec) + 1

until until H is flat
Reduce F
Reset the visit histogram H

until F is close enough to 1
Normalize g
return g as estimate of n

Since the density of states is unknown a priori, and computing
it is precisely the goal of the algorithm, it is not possible to
directly set up a Markov Chain with transition probability (2).
However it is possible to start from an initial guess of the
DOS and keep changing the current estimate g in a systematic
way using a modification factor F (used as a multiplier to
adapt the density estimate g) to produce a flat histogram of the
energy levels visited and simultaneously make the estimated
density of states converge to the true value n(E).

The modification factor F plays a critical role because it
controls the trade-off between the convergence rate of the al-
gorithm and its accuracy. Large initial values of F imply a
substantial diffusion rate and therefore fast convergence to a
rather inaccurate solution. This rough initial estimate is sub-
sequently refined as the value of F decreases until F ≈ 1,
at which point when a flat histogram is produced g(E) has
converged to the true density n(E).

While in [4] we generated new states by randomly flipping
a variable, greedier strategies can lead to faster convergence
rates [3]. In particular, we have shown that introducing a ran-
dom walk component (i.e., flipping variables from violated
clauses with a higher probability) can significantly improve
the convergence rates [3].

Due to statistical fluctuations, a perfectly flat histogram oc-
curs with an extremely low probability. Therefore in our im-
plementation we use a flatness parameter; in our experiments

1The chain is finite, irreducible, and aperiodic, therefore ergodic.

it is set so that an histogram is considered flat when all the
values are between 90% and 100% of the maximum value,
independently of F . The value of F is reduced according to

the schedule F ← √
F , with an initial value F0 = 1.5. By

construction the DOS is obtained only up to a constant fac-
tor: we therefore normalize g to ensure that

∑
E g(E) = 2N ,

where N is the number of variables in the formula.

Technically, MCMCFlatSAT is an example of an Adaptive
Markov Chain Monte Carlo method. In an Adaptive MCMC
scheme, the transition probabilities are adjusted over time in
order to achieve some optimality condition, learning the pa-
rameters while the chain runs [13]. This approach is closely
related to Simulated Annealing [9; 15], Simulated Tempering
[11], and Multicanonical Sampling [2]. The main contribu-
tion of the flat histogram idea is that it can simultaneously
learn the optimal weights and at the same time sample from
the re-weighted distribution. However, even though Adap-
tive MCMC algorithms can significantly improve the perfor-
mance over standard MCMC methods, it is usually harder to
rigorously prove convergence properties.

5 Effectiveness and validation of

MCMC-FlatSat

Despite the increasing popularity in statistical physics appli-
cations, the asymptotic properties of flat histogram methods
are not yet fully understood [1]. Under some regularity as-
sumptions (which are generally hard to verify) it is possible to
prove certain formal results on the consistency of the method
[1; 17], but little is known about the rate of convergence and
the efficiency of the method. The goal of this section is to
verify the convergence of MCMC-FlatSat and to empiri-
cally evaluate the accuracy of the solution obtained for energy
functions defined through combinatorial constraints.

For all our experiments, we consider formulas F in CNF
over a set V of variables with m clauses. We say that a vari-
able assignment σ satisfies a clause C if at least one literal
of C is TRUE. A literal is a variable or its negation. We de-
fine the energy of a configuration E(σ) to be the number of
clauses that are unsatisfied when F is evaluated under σ. If
E(σ) = 0, then σ satisfies F and σ is called a model, solu-
tion, a ground state or satisfying assignment for F .

We first empirically check the accuracy of the results ob-
tained for small structured formulas, for which we can com-
pute the true density by exact enumeration of the entire (ex-
ponentially large) state space. We also test MCMC-FlatSat
on larger synthetic formulas for which we derive an analytical
expression for the true density of states, as well as on random
3-SAT formulas. For larger structured instances, for which
no known method can be used to compute the true DOS, we
make use of partial consistency checks to validate the results.

When the true DOS is known, we employ several metrics to
evaluate the accuracy of the results. We consider the relative
error for each data point and two global measures represented
by the Kullback-Leibler (K-L) divergence and the Total Vari-
ation distance. The Kullback-Leibler divergence is a standard
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Instance variables clauses KL-divergence DKL(n||g) Total Variation δ(n, g) Max relative error

ram k3 n7.ra0.cnf 21 70 4.0× 10−5 0.0038 2.3 %

ram k3 n8.ra0.cnf 28 126 1.2× 10−5 0.0019 5.1 %

johnson8-2-4.clq.cnf 28 420 4.6× 10−5 0.0039 5.5 %

t3pm3-5555.spn.cnf 27 162 1.3× 10−5 0.0020 3.1 %

Synth. formula-Uniform 50 100 1.2× 10−5 0.0021 3.0 %

Synth. formula-PigeonHole 200 750 1.2× 10−7 0.0006 2.2 %

Table 1: Exact and estimated density of states compared in terms of KL-divergence and maximum relative error.

information theoretic non-symmetric measure defined as:

DKL(n||g) =
m∑

E=0

n(E)

Z
log2

(
n(E)

g(E)

)

where Z = 2n is used to normalize the DOS to probability
distributions. The Total Variation distance is often used to
evaluate the convergence of MCMC methods and is defined
as

δ(n, g) =
1

2
||n− g||1 =

1

2

∑
E

|g(E)− n(E)|

5.1 Structured problems: exact counts

We compare the true and estimated densities for several small
instances (all with less than 28 variables) from the MAXSAT-
2007 competition benchmark, which are encodings of three
classes of problems (Ramsey Problems, Spin Glasses, and
Max Cliques). The true density is computed by exact enu-
meration.

Our experiments show that the estimate is accurate and
that the relative error per count obtained by MCMC-FlatSat
compared to the exact count for a given energy level is never
greater than 5.5%. The high degree of accuracy obtained is
confirmed by the Kullback-Leibler divergences presented in
Table 1. The sampling strategy is also very efficient. For
instance, for the instance johnson8-2-4.clq.cnf it takes about
8× 106 flips for a search space of size 227 ≈ 1.3× 108.

5.2 Synthetic formulas: exact analytic counts

Consider a formula F which is the logical conjunction of �
copies of another formula φ, each one involving a different
set of variables x1, . . . , x�:

F (x1, . . . , x�) = φ(x1) ∧ φ(x2) ∧ . . . ∧ φ(x�).

By noticing that the subformulas in F do not share variables,
it is easy to see that the density of states nF (E) of F can be
computed as a nested convolution of nφ:

nF (E) = (nφ ∗ . . . ∗ nφ)(E), (3)

where ∗ is the convolution operator. This result is analogous
to the fact that the probability density function (PDF) of the
sum of independent random variables is equal to the convo-
lution of the PDFs of the addends (concentrating the measure
on the mean).

We test the effectiveness of MCMC-FlatSat on large syn-
thetic instances, for which exact enumeration would not be
possible, by comparing the estimated DOS with the analyti-
cal results given by (3). In particular, we use the conjunction

of formulas φ that are encoding of a Pigeon Hole problem
(Synth. formula-PigeonHole), and the conjunction of formu-
las φ that have a uniform density (Synth. formula-Uniform).
The ground truth is obtained by computing the density of φ
by direct enumeration and then carrying over the convolutions
according to Equation (3). When comparing the exact density
with the estimate obtained by running MCMC-FlatSat di-
rectly on the large formula, we get a relative error that is never
greater than 3%, as confirmed by the small Kullback-Leibler
divergences reported in Table 1. The sampling strategy de-
fined by MCMC-FlatSat is very efficient, since it needs
about 2 × 107 samples to collect fine grained statistics about
a much larger the state space (250 ≈ 1015 truth assignments)
.

5.3 Random formulas

In this section we present the results of MCMC-FlatSat for
random 3-SAT formulas as a function of the ratio clauses to
variables α. In particular, we compute the average DOS over
1000 random instances for each value of α in the range con-
sidered.

Notice that the average DOS (E[g(i)]) for random k-SAT
formulas is given by

E[g(i)] =

(
m

i

)(
1

2k

)i (
1− 1

2k

)m−i

2n (4)

where i is the number of violated constraints and m is the to-
tal number of clauses. This is because given a random truth
assignment σ, the probability of σ violating a clause of size k
is 1/2k. Therefore, by the linearity of expectation we obtain
formula (4). The comparison with the analytic result (4) in
Figure 1(a) confirms the good accuracy of MCMC-FlatSat.
Moreover, as shown in figure 1(b), the density of states gives
not only the number of models (i.e., n(0)), but also the the

log-partition function logZ(T ) = log
(∑

σ e
− 1

T
E(σ)

)
for

all the values of T . The temperature T can be thought as
the softness of the constraints or, alternatively, we can define
it in terms of the hardness w = 1/T with the notation used
in (1). In the limit limT→0 Z(T ), Z(T ) counts the number
of models (i.e., as the constraints become hard we recover the
traditional number of satisfying assignments). However, the
fact that we can compute it as a function of an external param-
eter (in this case the softness T ) turns out to be fundamental
for probabilistic reasoning applications, such as weight learn-
ing in Markov Logic Networks [3].
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Figure 1: Average DOS (a) and log-partition function as a function of the temperature parameter T (b). The number of variables
is n = 50 (see pdf for color version of figures).

5.4 Large structured instances

In this section we present the results obtained on large struc-
tured formulas for which the exact DOS is unknown and di-
rect enumeration is not feasible. Given that we are not aware
of any complete solver that is able to compute the exact DOS,
we need to resort to partial consistency checks to assess the
accuracy of MCMC-FlatSat. In particular, when it is possi-
ble, we compare g(0) with the exact model count given by a
complete solver such as Cachet ([14]).

A further consistency check can be obtained by looking at
the moments of the DOS. Intuitively, the moments represent a
quantitative measure of the shape of a set of points and there-
fore they can be used to check that the probability mass is
concentrated in the right regions. The k-th order moment is
defined as:

M(k) =
∑
E

Ek g(E)

Z

where Z = 2n is again used to normalize to a probability
distribution. For example, M(1) is the average number of
violated clauses by a random assignment. This value is com-
pared with the sample k-th moment

Ms(k) =
1

�

�∑
i=1

E(Xi)
k

where X1, X2, ..., X� are samples drawn uniformly from the
set of all truth assignments {0, 1}N .

The results presented in Table 2 show a good agreement
with exact model counters and sample k-th moments. The
sampling strategy is again quite efficient. For instance, in the
case of bw large.a it can sample a very large state space (2459

truth assignments) in just a few hours.

5.5 Model counting

To further demonstrate the scalability and the accuracy of
our method, we test its effectiveness as a method to com-
pute the number of models of a formula. In terms of the

density of states, this is equivalent to the problem of com-
puting the value of n(0). We compare the performance
of MCMC-FlatSat with two state-of-the-art approximate
model counters: SampleCount [6] and SampleMiniSATExact
[5]. The instances used are taken from the benchmark used
in [5; 6]. The results in Table 3 show that MCMC-FlatSat
almost always obtains more accurate solution counts, and is
often significantly faster, especially for random instances.

6 Conclusions and Future Work

We described MCMC-FlatSat, a Markov Chain Monte
Carlo technique based on the flat histogram method to esti-
mate the density of states for combinatorial energy functions
defined on Boolean hypercubes. The density of states pro-
vides a deep characterization of the state space. In fact, it
gives not only the partition function of the model (e.g., num-
ber of models), but also its parameterized version (e.g., for
all the levels of hardness of the constraints). This type of
information is crucial in many probabilistic reasoning appli-
cations, both for learning and inference tasks [3].

We demonstrated the effectiveness of MCMC-FlatSat,
both in terms of convergence and accuracy, on a broad range
of structured and synthetic instances. Because of the general-
ity and the effectiveness of the flat histogram idea, we expect
that this approach will find many other applications both in
counting and probabilistic inference applications.
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