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Abstract

There is interest in artificial intelligence for prin-
cipled techniques to analyze inconsistent informa-
tion. This stems from the recognition that the di-
chotomy between consistent and inconsistent sets
of formulae that comes from classical logics is not
sufficient for describing inconsistent information.
We review some existing proposals and make new
proposals for measures of inconsistency and mea-
sures of information, and then prove that they are
all pairwise incompatible. This shows that the no-
tion of inconsistency is a multi-dimensional con-
cept where different measures provide different in-
sights. We then explore relationships between mea-
sures of inconsistency and measures of information
in terms of the trade-offs they identify when using
them to guide resolution of inconsistency.

1 Introduction

The need for more intelligent ways to deal with inconsisten-
cies in information is an important issue in many areas of
computer science including data and knowledge engineering,
software engineering, robotics, and natural language process-
ing. This has then raised the need for ways to analyze incon-
sistent information in order to be able to decide how to act on
inconsistency intelligently.

If we have some items of information, we want more than
just to say that the set of items is “consistent” or “inconsis-
tent”. Intuitively, some sets of information are more inconsis-
tent than others, (e.g. in some respects {a, b,¬a,¬b} is more
inconsistent than {a, b, c,¬a}), and this has given rise to a
number of proposals for measuring the degree of inconsis-
tency. Furthermore, just because some set of information is
inconsistent does not mean that it fails to convey information.
Intuitively some sets of information (irrespective of whether
they are consistent or inconsistent) convey more information
than other sets (e.g. in some respects {a, b, c,¬a} is more
informative than {a, b,¬a,¬b}), and this has given rise to a
number of proposals for measuring the degree of informa-
tion. These measures are potentially important in diverse
applications such as belief revision, belief merging, nego-
tiation, multi-agent systems, decision-support, and software
engineering tools. Already, measures of inconsistency have

been considered for analysing conflicts in ontologies, in re-
quirements specifications, and in ecommerce protocols.

Since classical logic is trivialized by inconsistency, each
measure has to obviate this problem when analysing incon-
sistent information. For both inconsistency and information,
the measures are either syntactic, for instance based on maxi-
mally consistent subsets or minimally inconsistent subsets, or
semantic, for instance based on three-valued models.

In this paper, we explore the space of measures of incon-
sistency and measures of information by considering minimal
properties of such measures, and then reviewing existing and
new proposals for such measures to show that none can be
entirely replaced by any other. This shows in a formal way
that none of the measures is redundant, and each provides a
particular perspective on the (inconsistent) information. We
then explore how measures of inconsistency, and measures of
information, are inter-connected in a trade-off when revising
inconsistent information, since reducing the amount of incon-
sistency tends to also reduce the amount of information.

2 Preliminary Definitions

We assume a propositional language L of formulae composed
from a set of atoms A and the logical connectives ∧, ∨, ¬. We
use φ and ψ for arbitrary formulae and α and β for atoms.
All formulae are assumed to be in conjunctive normal form.
Hence every formula φ has the form ψ1 ∧ . . . ∧ ψn, where
each ψi, 1 ≤ i ≤ n, has the form βi1 ∨ . . .∨βim, where each
βik, 1 ≤ k ≤ m is a literal (an atom or negated atom). A
knowledgebase K is a finite set of formulae. We let � denote
the classical consequence relation, and writeK � ⊥ to denote
that K is inconsistent. Logical equivalence is defined in the
usual way: K ≡ K ′ iff K � K ′ and K ′ � K. We find
it useful to define also a stronger notion of equivalence we
call b(ijection)-equivalence as follows. Knowledgebase K is
b(ijection)-equivalent to knowledgebase K ′, denoted K ≡b

K ′ iff there is a bijection f : K → K ′ such that for all φ ∈
K, φ is logically equivalent to f(φ). For example, {a, b} is
logically equivalent but not b(ijection)-equivalent to {a ∧ b}.
We write R≥0 for the set of nonnegative real numbers and K
for the set of all knowledgebases (in some presumed language
L).

For a knowledgebase K, MI(K) is the set of minimal in-
consistent subsets of K, and MC(K) is the set of maximal
consistent subsets of K. Also, if MI(K) = {M1, ...,Mn}
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α T T T B B B F F F
β T B F T B F T B F

α ∨ β T T T T B B T B F
α ∧ β T B F B B F F F F
¬α F F F B B B T T T

Figure 1: Truth table for three valued logic (3VL). This se-
mantics extends the classical semantics with a third truth
value, B, denoting “contradictory”. Columns 1, 3, 7, and 9,
give the classical semantics, and the other columns give the
extended semantics.

then Problematic(K) = M1 ∪ ... ∪ Mn, and Free(K) =
K \ Problematic(K). So Free(K) contains the formu-
lae in K that are not involved in any inconsistency and
Problematic(K) contains the formulae inK that are involved
in at least one inconsistency. The set of formulae in K
that are individually inconsistent is given by the function
Selfcontradictions(K) = {φ ∈ K | {φ} � ⊥}). In the next
section we will use these functions in definitions for syntactic
measures of inconsistency.

The corresponding semantics uses Priest’s three valued
logic (3VL) [Priest, 1979] with the classical two valued se-
mantics augmented by a third truth value denoting inconsis-
tency. The truth values for the connectives are defined in
Figure 1. An interpretation i is a function that assigns to
each atom that appears in K one of three truth values: i :
Atoms(K) → {F,B, T}. For an interpretation i it is conve-
nient to separate the atoms into two groups, namely the ones
that are assigned a classical truth value, (i.e. Binarybase(i)
= {α | i(α) = T or i(α) = F}), and the ones that are as-
signed B. (i.e. Conflictbase(i) = {α | i(α) = B}). For a
knowledgebase K we define the models as the set of inter-
pretations where no formula in K is assigned the truth value
F : Models(K) = {i | for all φ ∈ K, i(φ) = T or i(φ) = B}
Then, as a measure of inconsistency for K we define

Contension(K) = Min{|Conflictbase(i)| | i ∈ Models(K)}
So the contension gives the minimal number of atoms that
need to be assigned B in order to get a 3VL model of K.

Example 1 ForK = {a,¬a, a∨b,¬b}, there are two models
of K, i1 and i2, where i1(a) = B, i1(b) = B, i2(a) =
B, and i2(b) = F . Therefore, Conflictbase(i1) = 2 and
Conflictbase(i2) = 1. Hence, Contension(K) = 1.

Finally, we consider some useful definitions based on the
notion of implicants. A consistent set of literals X is an im-
plicant for a knowledgebaseK iff for each φ ∈ K,X � φ. A
minimal implicant is called a prime implicant. For example,
for K = {a,¬b ∨ c}, the prime implicants are X1 = {a,¬b}
and X2 = {a, c}. A proxy for K is a set of literals X such
that X is a prime implicant of a maximal consistent subset
of K. Let the set of proxies for K (denoted Proxies(K)) be
defined as follows.

Proxies(K) = {X | X is a prime implicant of K ′ ∈ MC(K)}
For example, for K = {a,¬a, b ∨ c}, Proxies(K) =
{{a, b}, {¬a, b}, {a, c}, {¬a, c}}.

We see that each proxy represents an “interpretation” of the
possible literals that hold, and so the number of proxies rises
by increasing the number of disjuncts in any formula, and by
increasing the number of conflicting formulae. The cardinal-
ity of each proxy rises with the amount of information in each
alternative, and so adding conjuncts to a formula will increase
the size of one or more proxies (as long as the conjunction is
consistent).

3 Inconsistency and Information Measures

In this section, we study inconsistency and information mea-
sures. We consider both existing and new proposals. Our
main result is that for both inconsistency measures and in-
formation measures, the various measures are incompatible
with one another. This result strongly implies that unlike
some other intuitive concepts, such as the concept of effective
computability, where different definitions using recursion, λ-
calculus, and Turing machines are equivalent, both inconsis-
tency measure and information measure are too elusive to be
captured by a single definition. Additionally, for information
measures we also consider various plausible constraints and
investigate which measures satisfy them.

3.1 Inconsistency Measures for Knowledgebases

An inconsistency measure assigns a nonnegative real value
to every knowledgebase. We make three requirements for
inconsistency measures. The constraints ensure that all and
only consistent knowledgebases get measure 0, the measure
is monotonic for subsets, and the removal of a formula that
does not participate in an inconsistency leaves the measure
unchanged.

Definition 1 An inconsistency measure I : K → R≥0 is a
function such that the following three conditions hold:

1. I(K) = 0 iff K is consistent.
2. If K ⊆ K ′, then I(K) ≤ I(K ′).
3. For all α ∈ Free(K), (I(K) = I(K\{α}).
The above requirements are taken from [Hunter and

Konieczny, 2006] where (1) is called consistency, (2) is called
monotony, and (3) is called free formula independence.

Next we introduce five inconsistency measures: the ratio-
nale for each is given below.

Definition 2 For a knowledgebase K, the inconsistency
measures IC , IP , IB , IS , and IR are s.t.

• IC(K) = |MI(K)|
• IM (K) = (|MC(K)|+ |Selfcontradictions(K)|)− 1

• IP (K) = |Problematic(K)|
• IB(K) = Contension(K)

• IQ(K) =

{
0 if K is consistent∑

X∈MI(K)
1

|X| otherwise

We explain the measures as follows: IC(K) counts the
number of minimal inconsistent subsets of K; IM (K) counts
the sum of the number of maximal consistent subsets together
with the number of contradictory formulae but 1 must be sub-
tracted to make I(K) = 0 when K is consistent; IP (K)
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counts the number of formulae in minimal inconsistent sub-
sets of K; IB(K) counts the minimum number of atoms that
need to be assigned B amongst the 3VL models of K; and
IQ computes the weighted sum of the minimal inconsistent
subsets of K, where the weight is the inverse of the size of
the minimal inconsistent subset (and hence smaller minimal
inconsistent subsets are regarded as more inconsistent than
larger ones). Each of these measures satisfies the definition
of being an inconsistency measure (i.e. Definition 1).

There is a rationale for each inconsistency measure. We
cannot require these differently defined measures to give
identical numerical values but it would be reasonable to as-
sume that at least some of them place the knowledgebases
in the same order with respect to inconsistency. Define Ix
and Iy to be order-compatible if for all knowledgebases K1

and K2, Ix(K1) < Ix(K2) iff Iy(K1) < Iy(K2) and order-
incompatible otherwise. The next theorem shows that order-
compatibility doesn’t hold for any pair of the inconsistency
measures we have defined, leading us to think that inconsis-
tency is too elusive a concept to be captured in a single mea-
sure.

Theorem 1 1 IC , IM , IP , IB , and IQ are pairwise order-
incompatible.

Although the five inconsistency measures are quite differ-
ent, four of them give identical results on bijection-equivalent
knowledge bases.

Proposition 1 If K ≡b K
′ then IZ(K) = IZ(K

′) for Z ∈
{C,M,P,Q}.

Interestingly, b-equivalence does not guarantee equality for
IB . The problem is with self-contradictions. For instance, if
K = {a∧¬a} and K ′ = {a∧¬a∧ b∧¬b}, then K ≡b K

′,
but IB(K) = 1 �= IB(K

′) = 2.
The use of minimal inconsistent subsets, such as IC , IP ,

and IQ, and the use of maximal consistent subsets such as
IM , have been proposed previously for measures of incon-
sistency [Hunter and Konieczny, 2004; 2008]. The idea of a
measure that is sensitive to the number of formulae to pro-
duce an inconsistency eminates from Knight [Knight, 2001]
in which the more formulae needed to produce the inconsis-
tency, the less inconsistent the set. As explored in [Hunter and
Konieczny, 2008], this sensitivity is obtained with IQ. An-
other approach involves looking at the proportion of the lan-
guage that is touched by the inconsistency such as IB . Whilst
model-based techniques have been proposed before for mea-
sures of inconsistency, IB is a novel proposal since it is based
on three-valued logic, and as such, is simpler than the ones
based on four-valued logic (e.g. [Hunter, 2002]).

3.2 Information Measures for Knowledgebases

Another dimension to analysing inconsistency is to ascertain
the amount of information in a knowledgebase. The fol-
lowing novel proposal for an information measure assigns a
nonnegative real number to every knowledgebase. The con-
straints ensure that the empty set has measure 0, the mea-
sure is subset monotonic for consistent knowledgebases, and

1All proofs and additional references are given in the report
www.cs.ucl.ac.uk/staff/a.hunter/papers/stepwise.pdf.

a consistent knowledgebase that does not contain only tau-
tologies has nonzero measure.

Definition 3 An information measure J : K → R≥0 is a
function such that the following three conditions hold:

1. If K = ∅ then J(K) = 0.
2. If K ′ ⊆ K, and K is consistent, then J(K ′) ≤ J(K).
3. If K is consistent and ∃φ ∈ K such that φ is not a tau-

tology, then J(K) > 0.

The above definition is a general definition that allows for
a range of possible measures to be defined. Next we in-
troduce seven information measures; the rationale for each
is given below. We note here that in the definition of JB
we will use the concept of Models as previously defined
for 3VL. However, in the case of JL we will need a model
concept using classical 2-valued interpretations. We write
2VModels(K) = {i| is a 2-valued interpretation and for all
φ ∈ K, i(φ) = T}.

Definition 4 For a knowledgebase K, the information mea-
sures JA, JS , JF , JC , JB , JP , and JL are such that

• JA(K) = |Atoms(K)|
• JS(K) = |K|
• JF (K) = |Free(K)|
• JC(K) = Max{ |M | |M ∈ MC(K)}
• JB(K) = Max{ |Binarybase(i)| | i ∈ Models(K)}
• JP (K) = Max{ |X| | X ∈ Proxies(K)}
• JL(K) = log2

2n

|⋃{2VModels(K′)|K′∈MC(K)}| where n =

|Atoms(K)| if n ≥ 1, else JL(K) = 0.

The first two measures do not actually deal with inconsis-
tency at all: JA counts the number of atoms and JS counts
the number of formulae. For the other four measures: JF
counts the number of free formulae; JC finds the size of the
largest maximal consistent subset; JB finds the maximum
number of atoms that need not be assigned B in the 3VL
models; JP finds the size of the largest proxy; and JL uses
an information-theoretic approach that is discussed further at
the end of this section. All seven measures are information
measures according to Definition 3.

In analogy to inconsistency measures, we can define order-
compatibility and order-incompatibility for information mea-
sures. Similarly, we find that order-compatibility does not
hold for any pair of information measures, leading us to think
that information is also too elusive a concept to be captured
in a single measure.

Theorem 2 JA, JS , JF , JC , JB , JP , and JL are pairwise
order-incompatible.

Next we prove some results concerning information mea-
sures followed by some that relate information measures with
inconsistency measures.

Proposition 2 If K is consistent, then JS(K) = JF (K) =
JC(K).

Proposition 3 If K is a set of literals, then JA(K) = JC(K)
= JP (K).
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Proposition 4 For any knowledgebase K, JS(K) −
JF (K) = IP (K).

Proposition 5 For any knowledgebase K, JA(K) −
JB(K) = IB(K).

Proposition 6 No information measure is also an inconsis-
tency measure.

Since our definition of information measure (i.e. Definition
3) is rather weak we consider additional constraints that can
be useful for comparing information measures. For an infor-
mation measure J , and for any knowledgebases K,K ′ ⊆ L,
we call J :

• (Monotonic) If K ⊆ K ′, then J(K) ≤ J(K ′).

• (Clarity) For all φ ∈ K, J(K) ≥ J(K ∪ {ψ}), where ψ
is the cnf of ¬φ.

• (Equivalence) If K is consistent and K ≡ K ′, then
J(K) = J(K ′).

• (Bijection-Equivalence) If K ≡b K ′, then J(K) =
J(K ′).

• (Closed) If K is consistent, and K � φ, then J(K) =
J(K ∪ {φ}).

• (Cumulative) If K ∪ {φ} is consistent, and K �� φ, then
J(K) < J(K ∪ {φ}).

A monotonic measure is monotonic even for inconsis-
tent knowledgebases. A clarity measure does not increase
when the negation of a formula in the knowledgebase is
added. An equivalence measure assigns the same value to
logically equivalent consistent knowledgebases. A bijection-
equivalence measure (which was first proposed in [Knight,
2001]) has the same value for a pair of knowledgebases when
the formulae are pairwise equivalent. A closed measure
(which was first proposed in [Lozinskii, 1994]) does not have
increased information for a consistent knowledgebase when
entailed formulae are added. A cumulative measure (which
was first proposed in [Lozinskii, 1994]) has increased infor-
mation for a consistent knowledgebase when a non-entailed
formula is added that is consistent with it. We note that if an
information measure has the equivalence property then it is
closed because if K � φ then K ≡ K ∪ {φ}.

Theorem 3 Figure 2 indicates the constraints that hold for
each of the information measures JA, JS , JF , JC , JB , JP ,
and JL.

Depending on which constraints one considers important,
one may choose from those measures that satisfy them. In
particular, JP satisfies all seven constraints.

The JA, JS , JF , and JC measures are simple syntactic
measures that have been considered in some form before (see
for example [Hunter and Konieczny, 2004] for a discussion)).
However, the JB and JP are novel proposals for information
measures. There have also been proposals for measures of
information for propositional logic based on Shannon’s infor-
mation theory (see for example [Kemeny, 1953]). Essentially,
these measures consider the number of models of the set of
formulae (the less models, the more informative the set), and
in case the set of formulae is consistent, the result is intuitive.

JA JS JF JC JB JP JL
Monotonic × × × ×

Clarity × × × × ×
Equivalence × ×

B-Equivalence × × × × ×
Closed × ×

Cumulative × × × × ×

Figure 2: Summary of constraints that hold (indicated by ×)
for particular information measures

However, when the set is inconsistent, the set is regarded as
having null information content. To address the need to con-
sider inconsistent information, Lozinskii proposed a gener-
alization of the information-theoretic approach to measuring
information [Lozinskii, 1994] that we called JL earlier.

4 Stepwise Inconsistency Resolution

Generally, when a knowledgebase is inconsistent, we would
like to reduce its inconsistency value, preferably to 0. The
problem is that a reduction in inconsistency may lead to a
corresponding reduction in information. Consider, for in-
stance, JS . This measure counts the number of formulae in
the knowledgebase. Hence any deletion reduces it. Our goal
is to reduce inconsistency with as little information loss as
possible, a task that depends on the choice of both the incon-
sistency measure and the information measure.

Here we focus on stepwise inconsistency resolution. Often
it is not possible or desirable to irradicate all inconsistency at
the same time, and therefore we need a process that reduces
the degree of inconsistency over a number steps.

To illustrate some of the key issues in stepwise inconsis-
tency resolution, we consider the following example. Let
K = {a,¬a∧¬b∧¬c, b, d}. K has two minimal inconsistent
subsets: M1 = {a,¬a∧¬b∧¬c} andM2 = {¬a∧¬b∧¬c, b};
and two maximal consistent subsets N1 = {a, b, d} and
N2 = {¬a∧¬b∧¬c, d}. As we want to show how to reduce
the inconsistency ofK in a stepwise fashion, one formula at a
time, we will apply three inconsistency resolution functions:
delete a formula, weaken a formula, and split a formula.

• Deletion We delete a formula that is in a minimal incon-
sistent subset. Thus we can delete either ¬a∧¬b∧¬c or
a or b. In the first case, since ¬a∧¬b∧¬c is in both min-
imal inconsistent subsets, the result is consistent. This is
the most drastic of the three options because this opera-
tion loses the most information.

• Weakening We change a formula to another formula
logically implied by it. Typically, we add a disjunct
or change a conjunction to a disjunction. For instance,
we can weaken ¬a ∧ ¬b ∧ ¬c to (¬a ∨ ¬b) ∧ ¬c or
¬a∨¬b∨¬c. We can weaken a to a∨ b or even a∨¬a,
and so on. While this operation may reduce the number
of minimal inconsistent subsets, the size of the minimal
inconsistent subsets may rise, as seen here, where the
first weakening results in one minimal inconsistent sub-
set {a, (¬a ∨ ¬b) ∧ ¬c, b}.
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• Splitting We split a formula into its conjuncts. This may
isolate the really problematic conjuncts. For instance,
we can split ¬a ∧ ¬b ∧ ¬c into ¬a, ¬b, and ¬c. In this
case, we get a new knowledgebase {a,¬a, b,¬b,¬c, d}
that is still inconsistent, though by some inconsistency
measures it is less inconsistent. Also, this allows us at
a later step to delete just the portion of the conjunction
that causes the inconsistency.

In an inconsistent knowledgebase, any one of the formulae
in the knowledgebase can be selected for one of the resolu-
tion operations (of deletion, weakening or splitting). So there
is a question of how to choose a formula and which operation
to apply. In general, inconsistency and information measures
offer possible answers to this question. Our guiding principle
is to minimize information loss while reducing inconsistency
as we resolve an inconsistent knowledgebase by stepwise res-
olution.

We start by formally defining the three functions that we
allow in the process of inconsistency resolution. They appear
to be representative of all options. These operations will be
applied to inconsistent knowledgebases.

Definition 5 An inconsistency resolution function irf, is one
of the following three functions d(φ) or w(φ, ψ) or s(φ)
where φ ∈ K:

• (Deletion) d(φ) = K \ {φ}.

• (Weakening) w(φ, ψ) = (K \ {φ}) ∪ {ψ} where φ � ψ.

• (Splitting) s(φ) = (K \ {φ}) ∪ {φ1, . . . , φn} where
φ1, . . . , φn are the conjuncts in φ.

Then irf(K) is the knowledgebase obtained by applying irf to
K. Also irf(K) = K in case φ �∈ K.

In the stepwise inconsistency resolution process we will
usually have multiple applications of such functions. A step-
wise resolution function sequence (abbr. function sequence)
F = 〈irf1, . . . , irfn〉 is a sequence of such functions. A
stepwise inconsistency resolution knowledgebase sequence
(abbr. knowledgebase sequence) KF = 〈K0, . . . ,Kn〉 is a
sequence of knowledgebases obtained by using F such that
K0 is the initial knowledgebase and irfi(Ki−1) = Ki for
1 ≤ i ≤ n. We also write F(K0) = Kn and observe that
Kn = irfn(. . . irf1(K0) . . .).

The goal of stepwise inconsistency resolution is to reduce
the inconsistency of the knowledgebase. Next we define a
simple way to measure the reduction . We will be interested
in applying this definition to the case where F(K) = K ′ for
some function sequence F .

Definition 6 Given an inconsistency measure I , an inconsis-
tency resolution measure RI : K × K → R is defined as
follows:

RI(K,K
′) = I(K)− I(K ′)

For illustration we give two examples. The example given
in Figure 3 corresponds to deletion, and Example 2 corre-
sponds to splitting a formula.

Example 2 Let K = {a,¬a ∧ ¬b, b}. Splitting K by ap-
plying s(¬a ∧ ¬b) we obtain K′ = {a,¬a, b,¬b}. Here we
see that splitting does not reduce inconsistency according to

α
a ¬a ∧ b ¬b ∨ c ¬c c ∨ d ¬d

RIC 1 2 1 2 1 1
RIM 1 3 0 4 3 3
RIP 1 3 1 4 2 2
RIB 1 1 0 1 0 0
RIQ 3/6 5/6 2/6 4/6 2/6 2/6

Figure 3: Illustration of resolution measures RI (where
I ∈ {IC , IM , IP , IB , IQ}) applied to knowledgebases ob-
tained by deleting a formula from the knowledgebase K =
{a,¬a ∧ b,¬b ∨ c,¬c, c ∨ d,¬d}. (i.e. RI(K,K \ {α})).
Here we see that according to IP , ¬c is the optimal choice
for deletion, while for IQ, it is ¬a ∧ b.

any of the five inconsistency measures. Indeed, for several
measures it causes an increase in inconsistency .

RIC (K, (K \ {¬a ∧ ¬b}) ∪ {¬a,¬b}) = 0
RIM (K, (K \ {¬a ∧ ¬b}) ∪ {¬a,¬b}) = −2
RIP (K, (K \ {¬a ∧ ¬b}) ∪ {¬a,¬b}) = −1
RIB (K, (K \ {¬a ∧ ¬b}) ∪ {¬a,¬b}) = 0
RIQ(K, (K \ {¬a ∧ ¬b}) ∪ {¬a,¬b}) = 0

Some simple observations concerning the RI measure are
the following: (1) If φ �∈ K, then RI(K,K \ {φ}) = 0 and
(2) If φ ∈ Free(K) then RI(K,K \ {φ}) = 0.

In the stepwise resolution process we try to minimize the
loss of information as well. For this reason we now define a
way to measure the loss of information.

Definition 7 Given an information measure J , an informa-
tion loss measure RJ : K ×K → R is defined as follows.

RJ(K,K
′) = J(K)− J(K ′)

Our general goal is to simultaneously maximize RI and
minimizeRJ . In the following subsections we consider some
of the issues for each of the options we have (i.e. for deletion,
for weakening, and for splitting).

4.1 Inconsistency Resolution by Deletion

Deletion is the simplest, and yet most drastic, of the options
we have for dealing with inconsistency. In terms of deciding
of how to proceed, if deletion is the only function used, it is
just a matter of choosing a formula to delete at each step. The
following result describes the possibilities for both RI and
RJ when K ′ is obtained from K by a single deletion.

Theorem 4 Let K ′ be obtained from an inconsistent K by
deleting a single formula.
(a) For all 5 inconsistency measures RI(K,K

′) ≥ 0.
(b) For the information measures JF , JB and JL,RJ(K,K

′)
may be negative; in the other cases RJ(K,K

′) is a nonneg-
ative integer.

The following result follows immediately from the second
constraint of an information measure and will be useful in
narrowing the knowledgebases that need to be considered for
minimal information loss when inconsistency resolution is
done by deletions.
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Proposition 7 If K is consistent then RJ(K,K \ {φ}) ≥ 0.

This result shows that once we delete enough formulae
from an inconsistent knowledgebase to make it consistent
(and thereby make any inconsistency measure 0), we might
as well stop because additional deletions may only cause in-
formation loss. This gives the following result.

Corollary 1 Suppose that stepwise inconsistency resolution
is done by deletions only. To find a consistent knowledgebase
with minimal information loss (i. e. where RJ(K,K

′) is
minimal) it suffices to consider only those function sequences
F where F(K) ∈ MC(K).

4.2 Inconsistency Resolution by Weakening

In this subsection we investigate the case where the inconsis-
tency of a knowledgebase is resolved by using weakenings
only. Thus we start with an inconsistent knowledgebase K
and by applying one or more weakenings we obtain a consis-
tent K ′. Our concern here is what happens to the information
measure during this process. In order to analyze this situation
we will exclude the case where a formula is weakened by us-
ing an atom not in K such as by applying a disjunction with
such an atom. We do this because it does not seem reason-
able to change the language of the knowledgebase when our
purpose is to weaken it for consistency. Also, by excluding
this case we make sure that the information measure cannot
become arbitrarily large by simply taking bigger and bigger
disjuncts with new atoms.

Our result is summarized in the following theorem.

Theorem 5 Let K be an inconsistent knowledgebase that
is transformed to a consistent knowledgebase K ′ by one or
more weakenings without introducing any atom not already
in K. Then (1) JA(K ′) ≤ JA(K), (2) JS(K ′) ≤ JS(K), (3)
JF (K

′) ≥ JF (K), (4) JC(K ′) ≥ JC(K), (5) No inequality
holds between JB(K ′) and JB(K), (6) JP (K ′) ≤ JP (K),
and (7) JL(K ′) ≥ JL(K).

4.3 Inconsistency Resolution using Splitting

Here we consider what happens when splitting is applied.
First we note that unlike deletion and weakening, splitting
by itself cannot resolve inconsistencies. Hence splitting must
be used in conjunction with deletion or weakening. We start
by considering what happens when just splitting is applied.
Just as in the case of deletions and weakenings, we split only
formulae in Problematic(K).

Theorem 6 Let K ′ be obtained from an inconsistent knowl-
edgebaseK by splitting a single formula in Problematic(K).
Then (1) IC(K ′) ≥ IC(K), (2) IM (K ′) ≥ IM (K), (3)
IP (K

′) ≥ IP (K), (4) IB(K ′) = IB(K), (5) No inequality
holds between IQ(K ′) and IQ(K), (6) JA(K ′) = JA(K),
(7) JS(K ′) > JS(K), (8) JF (K ′) ≥ JF (K), (9) JC(K ′) ≥
JC(K), (10) JB(K ′) = JB(K), (11) JP (K ′) = JP (K) and
(12) No inequality holds between JL(K ′) and JL(K).

This theorem shows that splitting decreases neither incon-
sistency nor information (except possibly for IQ and JL), and
for some measures it increases both. Anyway, as pointed out
earlier, splitting must be combined with another operation to
eliminate inconsistency.

5 Discussion

In this paper, we have clarified the space of inconsistency and
information measures and then shown how a wide variety of
proposals conform to some general properties. It is surpris-
ing that all the different measures are incompatible with one
another. We have also shown how inconsistency and infor-
mation measures can be used to direct stepwise resolution of
inconsistency so that inconsistency can be decreased whilst
minimising information loss.

In future work, we want to better elucidate the different
dimensions for measuring inconsistency and measuring in-
formation. Ideally, we would like to identify the “elemen-
tary” measures of inconsistency and the “elementary” mea-
sures of information, and then identify functions that calcu-
late the other measures of inconsistency and information as
composites of the elementary measures.
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