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Abstract

Semi-supervised learning algorithms commonly
incorporate the available background knowledge
such that an expression of the derived model’s qual-
ity is improved. Depending on the specific context
quality can take several forms and can be related to
the generalization performance or to a simple clus-
tering coherence measure. Recently, a novel per-
spective of semi-supervised learning has been put
forward, that associates semi-supervised clustering
with the efficiency of spectral methods. More pre-
cisely, it has been demonstrated that the appro-
priate use of partial supervision can bias the data
Laplacian matrix such that the necessary eigenvec-
tor computations are provably accelerated. This re-
sult allows data mining practitioners to use back-
ground knowledge not only for improving the qual-
ity of clustering results, but also for accelerating the
required computations. In this paper we initially
provide a high level overview of the relevant effi-
ciency maximizing semi-supervised methods such
that their theoretical intuitions are comprehensively
outlined. Consecutively, we demonstrate how these
methods can be extended to handle multiple clus-
ters and also discuss possible issues that may arise
in the continuous semi-supervised solution. Fi-
nally, we illustrate the proposed extensions empiri-
cally in the context of text clustering.

1 Introduction

In machine learning, many popular clustering frameworks
are related to computationally hard (often NP-Hard) opti-
mization problems that need to be effectively approximated
such that useful clustering models are derived for the avail-
able data. Spectral Clustering [Luxburg, 2007] constitutes
a popular approximation technique that employs the eigen-
vectors and eigenvalues of an appropriate input matrix for
computing the clustering output. The fact that spectral al-
gorithms rely on eigenvalue-eigenvector computations may
create the impression that the computational aspect is not rel-
evant to the core data mining process and can be addressed
solely by using a state of the art matrix compression tech-
nique, or a standard linear algebra eigensolver. This consid-

eration is dominant in most spectral algorithms, with the ex-
ception of Pagerank [Brin and Page, 1998], where the com-
putational aspect is studied in depth as a consequence of its
application in the large WWW graph. In the context Pager-
ank it has been demonstrated that the introduction of the ap-
propriate supervised (or even random) bias to the input prob-
ability matrix, can considerably accelerate the computation
of the relevant eigenvector solution [Haveliwala and Kamvar,
2003]. This work has illustrated that efficiency enhancements
do not need to be “external” to the data mining process and
can be achieved by the appropriate supervised-bias of the in-
put data matrix. Albeit the considerable innovations of the
work of Haveliwala and Kamvar, its impact has been mostly
restrained within the context of computing stationary random
walk distributions.

In recent works, [Mavroeidis and Bingham, 2008;
Mavroeidis, 2010; Mavroeidis and Bingham, 2010], the re-
sults of Haveliwala and Kamvar have been extended for Spec-
tral Clustering and Spectral Ordering. More precisely, these
works have demonstrated that the incorporation of the ap-
propriate supervised bias to the data Laplacian matrix can
enhance the efficiency of the required eigenvector computa-
tions, thus accelerating Spectral Clustering/Ordering. These
findings come in support to the general intuition that semi-
supervised problems should be “easier” to solve than unsu-
pervised ones and provide data mining practitioners with a
novel algorithmic framework for clustering large and sparse
matrices.

In this paper we initially provide a high level overview of
the relevant efficiency maximizing semi-supervised methods
highlighting their theoretical intuitions. Moreover, we dis-
cuss certain issues that are of practical importance. More
precisely, we extend these methods to handle multiple clus-
ters (k>2) and also analyze some issues that may arise in the
continuous semi-supervised solution. Finally, we empirically
validate the efficiency and cluster quality enhancements in the
context of text clustering.

2 Spectral Clustering

Spectral Clustering is a slightly ambiguous term that is used
to describe the clustering algorithms that employ eigenvec-
tors and eigenvalues for approximating a clustering objective.
Spectral Clustering is commonly used for approximating the
Normalized Cut (Ncut) objective, which is a known NP -
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Complete problem [Shi and Malik, 2000]. The NCut objec-
tive for two clusters is defined as:

NCut =
cut(A,B)

vol(A)
+

cut(A,B)

vol(B)

where A,B denote the two cluster sets, cut(A,B) =∑
i∈A,j∈B W (i, j), with W (i, j) denoting the similarity be-

tween instances i, j and vol(A) =
∑

i∈A D(i, i), with

D(i, i) =
∑n

j=1 W (i, j). A clustering algorithm essentially

aims to retrieve the clustering solution {A,B} that minimizes
this objective.

The connection to eigenvector (spectral) methods can be
made apparent if one writes this objective in the following
equivalent form:

argmin{A,B}NCut = argmax{q}q
TLq

where L is the normalized Laplacian matrix L =
D−1/2WD−1/2 (D denotes the degree matrix and W the in-
stance similarity matrix) and q contains the discrete cluster

assignments in the form: q(i) =
√

vol(B)
vol(A)D(i, i) if i ∈ A and

q(i) = −
√

vol(A)
vol(B)D(i, i) if i ∈ B.

Based on this equivalent formulation, the minimization of
the NCut objective resembles an eigenvalue problem for ma-
trix L. We use the term “resembles” since q is a discrete and
not continuous vector, thus the problem is still not equiva-
lent to an eigenvector problem. Spectral methods consider
here the “continuous relaxation” step that relaxes the hard dis-
crete constraint and approximate the discrete cluster assign-
ments using the eigenvectors of matrix L. For two-cluster
NCut, the continuous solution is derived by the eigenvec-
tor that corresponds to the second largest eigenvalue of L,
while for multi-cluster NCut, the continuous solution is de-
rived by the k dominant eigenvectors of L. For discretizing
the continuous results several methods have been proposed
[Luxburg, 2007], with a popular choice being the simple use
of a k-means algorithm on the the k-dimensional Laplacian
eigenspace.

It can be observed that the computational cost of Spectral
clustering is dominated by the cost of solving an eigenvector
problem on the input Laplacian matrix. In the following sec-
tion we will describe the relevant linear algebra algorithms
that can be employed and the factors that determine their ef-
ficiency.

3 Mind the Eigen-Gap: Computing Spectral

Solutions

The problem of computing the eigenvectors of a real symmet-
ric matrix has been extensively studied in the context of lin-
ear algebra and several algorithms that correspond to different
memory/processor requirements have been proposed. When
solely a few eigenvectors are desired, it is common to em-
ploy iterative methods, such as the Power Method and Krylov
subspace methods [Golub and Van Loan, 1996]. These meth-
ods work by iteratively performing (matrix × vector), instead
of the more expensive (matrix × matrix) multiplications and

converge after a certain number of steps to the desired eigen-
vector solution. The computational cost of these methods is
determined by the cost of multiplying a matrix with a vector,
and the number of steps that are required to converge to the
desired solution.

The simplest iterative eigensolver is the Power Method,
that uses an initial random vector b0, and iteratively performs

a matrix-vector multiplication, bt = Abt−1

||Abt−1|| until conver-

gence. The speed of convergence of this iterative process de-
pends on the difference between the two largest (in absolute
value) eigenvalues of matrix A. In the context of Spectral
Clustering, the convergence speed of the Power Method de-
pends on the difference between the two largest non-trivial
eigenvalues of the Laplacian matrix L1. More precisely, if
we denote the eigenvalues of the Laplacian matrix as λ0 =
1 ≥ λ1 ≥ ... ≥ λn then the relevant eigengap that deter-

mines the speed of convergence of the Power Method is: λ1

λ2

.

Note that we do not need to order the eigenvalues in absolute
value since we can shift appropriately the Laplacian matrix
such that it becomes positive semidefinite (illustrated analyt-
ically in [Mavroeidis, 2010]). Moreover, if the eigenvalues of
the Laplacian matrix are not artificially inflated (i.e. through
matrix multiplication), we can also use the eigengap λ1 − λ2

as done in [Mavroeidis, 2010] for illustrating the efficiency of
the Power Method.

Orthogonal iterations [Golub and Van Loan, 1996] presents
the natural generalization of the Power Method for comput-
ing the k largest eigenvectors of an input matrix. This method
starts with a random n × k initial matrix and iteratively per-
form matrix multiplication and orthonormalization until con-
vergence. The speed of convergence of this method depends
on the difference between the k and the k+1 largest eigenval-
ues of a matrix. More precisely, if we denote the Laplacian
eigenvalues as λ0 = 1 ≥ λ1 ≥ ... ≥ λn, and also denote

gap = λk

λk−1

≤ 1 then the number of steps required by the or-

thogonal iteration for convergence are O( 1
1−gap ) [Bach and

Jordan, 2006]. Lanczos method [Golub and Van Loan, 1996],
that presents another popular choice for deriving the k dom-
inant eigenvectors also has a dependance on the size of the
relevant eigengap and requires a number of iterations that is
O( 1√

1−gap
) [Bach and Jordan, 2006].

It can be observed that the speed of convergence of these
methods depends on the eigengap between the k and the k+1
largest eigenvalues of a matrix. Thus a method that enlarges
this eigengap will consequently accelerate the relevant itera-
tive eigensolvers. In the subsequent paragraph we will recall
the work of [Mavroeidis, 2010] where the size of the rele-
vant eigengap is enlarged in the context of semi-supervised
learning, thus accelerating Spectral Clustering.

1Due to the special structure of matrix L, it is known that it has a
“trivial” largest eigenvalueλ0 , that is equal to one, λ0 = 1 and a cor-

responding largest eigenvector v0 that is equal to v0 =

√
D(i,i)∑
i
D(i,i)

.
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4 Semi-supervised Clustering

In the relevant semi-supervised works that accelerate the
Power Method computations [Mavroeidis and Bingham,
2008; Mavroeidis, 2010; Mavroeidis and Bingham, 2010],
partial supervision is incorporated in the form of a rank-1
update to the graph Laplacian matrix. More precisely, in
[Mavroeidis, 2010] the semi-supervised Laplacian matrix is
defined as:

Lsemi = Ldata + γv1v
T
1

where Ldata is the Laplacian matrix, as computed from the
input data, γ is a real valued parameter and v1 is a vector that
contains the input data labels and is defined as:

v1(i) =

{ √
di

vol(Ain)f(i) if i ∈ Ain

0 if i /∈ Ain

where Ain = Ain
1 ∪ Ain

2 denotes the set of labeled in-
stances (input supervision) and f(i) are defined as: f(i) =√

vol(Ain
2

)

vol(Ain
1

)
, if i ∈ Ain

1 and f(i) = −
√

vol(Ain
1

)

vol(Ain
2

)
, if i ∈ Ain

2 .

In [Mavroeidis, 2010], it is rigorously demonstrated that
this bias will impose a lower bound to the relevant eigen-
gap of Lsemi that controls the speed of convergence of
the Power Method. More precisely it was demonstrated
that λ1(Lsemi) − λ2(Lsemi) ≥ γ − 2 (and λ1(Lsemi) −
λ2(Lsemi) ≥ γ − 1 when Ldata is positive semidefinite). It
can be easily derived (by simply changing the last step in the
proof of Theorem 2 in [Mavroeidis, 2010]) that the γ param-

eter also bounds the multiplicative eigengaps:
λ1(Lsemi)
λ2(Lsemi)

≥
γ − 1 for general Ldata matrices and

λ1(Lsemi)
λ2(Lsemi)

≥ γ when

Ldata is positive semidefinite. Thus, setting γ to a moder-
ately large value is guaranteed to speed up the convergence
rate of the Power Method.

As analyzed in [Mavroeidis, 2010], an intuitive way to un-
derstand the behavior of the supervised rank-1 updates, is to
interpret them as a supervised similarity learning mechanism
that increases the weights of instances that belong to the same
cluster and decreases the similarities of objects that belong to
different clusters. This perspective can be illustrated if we
write the semi-supervised Laplacian as:

Lsemi(i, j) =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ldata(i, j)− γ

√
didj

vol(Ain) if i, j in diff. clusters

Ldata(i, j) + γ

√
didj

vol(Ain)
vol(Ain

2
)

vol(Ain
1

)
if i, j ∈ Ain

1

Ldata(i, j) + γ

√
didj

vol(Ain)
vol(Ain

1
)

vol(Ain
2

)
if i, j ∈ Ain

2

Ldata(i, j) otherwise

The afore explicit writing of matrix Lsemi illustrates
the effects of partial supervision to the elements of ma-

trix Ldata (recall that Ldata = D−1/2WD−1/2 is essen-
tially a normalized similarity matrix). The similarity of in-
stances that belong to different clusters will be decreased by

−γ

√
didj

vol(Ain) , while the similarity for the objects that belong to

the same cluster will be increased by γ

√
didj

vol(Ain)
vol(Ain

2
)

vol(Ain
1

)
and

γ

√
didj

vol(Ain)
vol(Ain

1
)

vol(Ain
2

)
respectively. The similarity between ob-

jects for which we do not have any label information, will
remain intact.

Although the same general intuition is followed by several
semi-supervised similarity learning methods that adjust the
data similarities such that input supervision is taken into ac-
count (see related work section of [Mavroeidis, 2010] for ap-
propriate references), the specific weighting scheme of Lsemi

also entails the acceleration property that substantially differ-
entiates it from the relevant work.

Although the supervised rank-1 Laplacian updates pre-
sented in this section introduce several novelties for handling
partial supervision, the discussion is confined for two-way
clustering and only for partial supervision provided in the
form of cluster labels. In the following section we will illus-
trate how this framework can be extended for multiple clus-
ters, i.e. k > 2.

5 Multiple Clusters

In the context of semi-supervised multi-way clustering we
consider as input a set of cluster labels for each cluster, i.e.
Ain

i ⊆ Ai for i = 1, 2, ..., k. Based on this information
we can formulate the semi-supervised Laplacian matrix as a
rank-k update of the original data-Laplacian matrix as:

Lsemi = Ldata + γ

k∑
i=1

viv
T
i

where

vj(i) =

{ √
di

vol(Ain
j

)
if i ∈ Ain

j

0 if i /∈ Ain
j

The differences between the definition of the vj vectors for
k > 2 and k = 2 can be understood if one looks into the dif-
ferences between the NCut quadratic formulations for k = 2
and k > 2 in [Luxburg, 2007]. There, it can be observed that
the v1 definition for 2-way clustering essentially resembles a
cluster indicator vector for k = 2, while the vectors vj used
for k > 2, resemble the cluster indicator vectors for k > 2.
The differences are also justified by the fact that the continu-
ous cluster solution for k = 2 is derived by the second largest
eigenvector, while for k > 2 the continuous solution is de-
rived by the k largest eigenvectors.

Based on this formulation of Lsemi, Theorem 2 in
[Mavroeidis, 2010] can be extended such that eigengap
bounds are derived for the difference between the k and k+1
largest eigenvalues of matrix Lsemi. More precisely, it can be
shown that λk−1(Lsemi)−λk(Lsemi) ≥ γ−2 for general ma-
trices and λk−1(Lsemi)− λk(Lsemi) ≥ γ − 1 when Ldata is
positive semidefinite. One can also derive the multiplicative

eigengaps:
λk−1(Lsemi)
λk(Lsemi)

≥ γ − 1 for general Ldata matrices

and
λk−1(Lsemi)
λk(Lsemi)

≥ γ when Ldata is positive semidefinite.

These bounds can be derived by the careful application of
Weyl’s theorem in a similar fashion as in [Mavroeidis, 2010].

In order to illustrate the effect of the supervised rank-k up-
date on the elements of the data Laplacian matrix Ldata we
write:
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Lsemi =

{
Ldata(i, j) + γ

√
didj

vol(Ain
l

)
if i, j ∈ Ain

l

Ldata(i, j) otherwise

The afore explicit writing of matrix Lsemi illustrates that
the similarity of the objects that belong to the same clusters

will be increased by γ

√
didj

vol(Ain
l

)
, while the similarity for the

other objects, for which we do not have background knowl-
edge will be based solely on the information encoded in
Ldata.

Having described the multi-cluster extension, we can move
on to the experiments section where the proposed framework
is verified empirically in the context of text clustering.

6 Experiments

In order to validate our approach for k > 2 clusters, we have
used four multi-cluster subsets of the 20-newsgroup Dataset:
Newsgroups Dataset 1:{comp.graphics/comp.os.ms-
windows.misc/comp.sys.ibm.pc.hardware}
Newsgroups Dataset 2:{rec.motorcycles/rec.sport.baseball/
rec.sport.hockey}
Newsgroups Dataset 3:{talk.politics.guns/talk.politics.mideast/
talk.politics.misc}
Newsgroups Dataset 4:{sci.crypt/sci.electronics/sci.med/
sci.space/soc.religion.christian}

For each datasets we have employed the tf-idf weighting
scheme, using the idf values of the whole 20-newsgroup cor-
pus. The similarity matrix W was consequently created us-
ing the inner product similarity between documents. For dis-
cretizing the continuous clustering results Vk

2, we have nor-
malized the rows of Vk, and consecutively applied k-means
clustering.

We have employed two configurations for k-means: k-
means-RANDOM and k-means-FIXED. k-means-RANDOM
works with random initial cluster centers, while k-means-
FIXED considers as initial cluster centers (random) elements
that are contained in the input label supervision.

We have experimented with different sizes of supervision,
ranging from 1% to 50% of the input data (i.e. at each run
x% of each cluster is used for forming the rank-k update).
For each level of supervision, we report the (multiplicative)
relevant eigengap, as well as the Normalized Mutual Infor-
mation (NMI) of the derived clustering. The reported results
are averaged over 10 runs using random samples for the spec-
ified supervision size.

In the experiments we have set the γ parameter to a fixed
value of γ = 1.25. This setting asserts that the relevant eigen-
gap will be larger than 0.25 (and the multiplicative relevant

eigengap
λk−1

λk
will be larger than 1.25), thus guaranteeing a

quick convergence to the required spectral solution. More-
over, we study the behavior of the proposed semi-supervised
framework using “random” supervision. In these cases the

2
Vk is an (instance × k) matrix that contains as columns the k

dominant eigenvectors of the Laplacian matrix

rank-k updates are computed using random instances not tak-
ing into account the instance labels.

In Figure 1, we present the quality of unsupervised
clustering (gamma=0) vs. the semi-supervised results
(gamma=1.25) vs. the quality of the semi-supervised frame-
work with random supervision (gamma=1.25, Random). In
this Figure we employ the k-means-RANDOM approach for
discretizing the results (random initial cluster centers). One
initial observation is that the semi-supervised framework with
random supervision (gamma=1.25, Random) degrades the
quality of clustering results (essentially it produces random
clusters since NMI quickly becomes zero). This result il-
lustrates that random supervision, although it improves on
the efficiency of the relevant eigenvector computations (see
Figure 3), is not an appropriate mechanism for accelerating
Spectral Clustering.

With regards to the semi-supervised cluster quality, the
general observation is that in two Figures, Figures 1(b) and
1(c), the proposed framework enhances the quality of the
clustering results even for very small amounts of input su-
pervision (above 1%), while in the other two cases, Fig-
ures 1(a) and 1(d) it does not behave well. As demonstrated
in Figure 2, the problematic cases can be corrected if one
uses the k-means-FIXED approach for discretizing the re-
sults. We report here both discretization approaches in or-
der to emphasize the importance of careful discretization for
the semi-supervised continuous results. With the appropri-
ate discretization procedure, the quality of clustering results
is improved in most experiments for small amounts of input
supervision.

The careful discretization is needed because of two issues
that may arise. Firstly, the formulation of a small amount
of supervision as a rank-k update may cause large similarity
adjustments to a small number of instance-pairs, thus result-
ing in a Lsemi matrix with imbalanced entries. Large ma-
trix value imbalances will also translate to large value imbal-
ances in the eigenvectors thus creating a difficult to cluster
k-eigenspace. Secondly, a rank-k bias that contains a small
number of labeled examples may promote “bad” eigenvec-
tors of the Ldata matrix that coincidentally agree with the in-
put supervision. This is because the vectors that are used for
defining the supervised rank-k update can be written as a lin-
ear combination of the Laplacian eigenvectors. Noise will be
inserted when “bad” eigenvectors coincidentally have a high
correlation with the input supervision vectors. In these cases
some “bad” eigenvectors will be able to influence the spectral
solution of the Lsemi matrix. Thus, for small amounts of in-
put supervision, it is expected that a certain level of noise will
also be inserted. It should be noted that albeit these issues the
proposed semi-supervised framework is demonstrated to en-
hance the performance of clustering in most cases even for
small amounts of input supervision.

The size of the multiplicative relevant eigengap (ratio be-
tween the k and the k+1 largest eigenvalues of the Laplacian
matrix) is reported in Figure 3. In all Figures it can be ob-
served that this eigengap is drastically enlarged and is also
above the theory bound of 1.25 (γ = 1.25). These results
illustrate that the relevant eigenvector computations can be
accelerated, thus enhancing the efficiency of Spectral Clus-
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0 0.1 0.2 0.3 0.4 0.5
0.2

0.4

0.6

0.8

1

Supervision Percentage

N
M

I

Accuracy vs. Supervision

gamma=0
gamma=1.25

(a) Newsgroups Dataset 1

0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1

Supervision Percentage

N
M

I
Accuracy vs. Supervision

gamma=0
gamma=1.25

(b) Newsgroups Dataset 4

Figure 2: NMI Results with k-means-FIXED

0 0.1 0.2 0.3 0.4 0.5
1

1.5

2

2.5

Supervision Percentage

R
el

ev
an

t E
ig

en
ga

p

Eigengap vs. Supervision

gamma=0
gamma=1.25
gamma=1.25, Random

(a) Newsgroups Dataset 1

0 0.1 0.2 0.3 0.4 0.5
1

2

3

4

5

Supervision Percentage

R
el

ev
an

t E
ig

en
ga

p

Eigengap vs. Supervision

gamma=0
gamma=1.25
gamma=1.25, Random

(b) Newsgroups Dataset 2

0 0.1 0.2 0.3 0.4 0.5
1

2

3

4

Supervision Percentage

R
el

ev
an

t E
ig

en
ga

p

Eigengap vs. Supervision

gamma=0
gamma=1.25
gamma=1.25, Random

(c) Newsgroups Dataset 3

0 0.1 0.2 0.3 0.4 0.5
1

2

3

4

Supervision Percentage

R
el

ev
an

t E
ig

en
ga

p

Eigengap vs. Supervision

gamma=0
gamma=1.25
gamma=1.25, Random

(d) Newsgroups Dataset 4

Figure 3: Relevant Eigengap vs. Supervision
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tering.

7 Discussion and Further Work

In further work, we aim to study in depth the input supervi-
sion size effect. This is an important issue, since the labeled
data size determines the bias magnitude that is imposed to
each element of the Ldata matrix. I.e. using a very small
number of instances as input supervision may create large
imbalances in the elements of the Lsemi matrix, thus creat-
ing analogous imbalances in the continuous spectral solution.
It should be noted though, that in the empirical results re-
ported in this paper, the value imbalancing issue did not seem
to affect the ability of the proposed framework to increase the
quality of the clustering results.

In some cases, imbalancing can be avoided by setting the
appropriate size for input supervision. For example in large
and sparse graphs with approximately fixed degree (i.e. when
using a k-nearest neighbor graph), this effect can be com-
pletely avoided if the number of labeled data is roughly equal
to the average number of instances that determine the graph
degrees. Moreover, if the values of Ldata matrix are already
imbalanced, partial supervision can also be used for balanc-
ing the matrix values (instead of being a source of imbalance).
This discussion illustrates that the effect of input supervision
size should be further studied and possibly associated to prop-
erties of the input data.

Apart from the issue of input supervision size, we aim
to study the connection between semi-supervised algorithms
and efficiency beyond spectral algorithms.
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