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Abstract

In their groundbreaking paper, Bartholdi, Tovey
and Trick [1989] argued that many well-known vot-
ing rules, such as Plurality, Borda, Copeland and
Maximin are easy to manipulate. An important as-
sumption made in that paper is that the manipula-
tor’s goal is to ensure that his preferred candidate
is among the candidates with the maximum score,
or, equivalently, that ties are broken in favor of
the manipulator’s preferred candidate. In this pa-
per, we examine the role of this assumption in the
easiness results of [Bartholdi et al., 1989]. We ob-
serve that the algorithm presented in [Bartholdi et
al., 1989] extends to all rules that break ties accord-
ing to a fixed ordering over the candidates. We then
show that all scoring rules are easy to manipulate if
the winner is selected from all tied candidates uni-
formly at random. This result extends to Maximin
under an additional assumption on the manipula-
tor’s utility function that is inspired by the origi-
nal model of [Bartholdi et al., 1989]. In contrast,
we show that manipulation becomes hard when ar-
bitrary polynomial-time tie-breaking rules are al-
lowed, both for the rules considered in [Bartholdi
et al., 1989], and for a large class of scoring rules.

1 Introduction

Computational social choice is an actively growing subarea
of multiagent systems that provides theoretical foundations
for preference aggregation and collective decision-making in
multiagent domains. One of the most influential early con-
tributions to this area is the paper by Bartholdi, Tovey, and
Trick entitled “The computational difficulty of manipulating
an election” [Bartholdi et al., 1989]. In this paper, the au-
thors suggested that computational complexity can serve as a
barrier to dishonest behavior by the voters, and proposed clas-
sifying voting rules according to how difficult it is to manip-
ulate them. In particular, they argued that such well-known
voting rules as Plurality, Borda, Copeland and Maximin are
easy to manipulate, yet a variant of the Copeland rule known
as second-order Copeland is computationally resistant to ma-
nipulation. In a subsequent paper, Bartholdi and Orlin [1991]

showed that another well-known voting rule, namely, STV, is
NP-hard to manipulate as well.

Since then, the computational complexity of manipula-
tion under various voting rules, either by a single voter or
by a coalition of voters, received considerable attention in
the literature, both from the theoretical and from the ex-
perimental perspective (see, in particular, [Xia et al., 2009;
2010] and the recent survey [Faliszewski and Procaccia,
2010] for the former, and [Walsh, 2009; Davies et al., 2010]
for the latter). While it has been argued that worst-case com-
plexity does not provide adequate protection against mali-
cious behavior (see, e.g. [Procaccia and Rosenschein, 2007;
Xia and Conitzer, 2008; Friedgut et al., 2008; Isaksson et al.,
2010]), determining whether a given voting rule is NP-hard
to manipulate is still a natural first step in evaluating its resis-
tance to manipulation in realistic scenarios.

An important property of the voting rules discussed
in [Bartholdi et al., 1989] is that they may produce multi-
ple winners, i.e., they are, in fact, voting correspondences
(see Section 2 for the formal definitions). It is not immedi-
ately clear what it means for manipulation to be successful
in such a case. [Bartholdi et al., 1989] take a rather liberal
approach: they define a manipulation to be successful if, as
a result, the manipulator’s preferred candidate is one of the
election winners. This approach is equivalent to assuming
that ties are broken in favor of the manipulator. Now, a care-
ful examination of the algorithm in [Bartholdi et al., 1989]
shows that it works as long as ties are broken either adver-
sarially to the manipulator or according to an arbitrary fixed
lexicographic order over the candidates. However, in real-life
settings, when an election ends in a tie, it is not uncommon
to choose the winner using a tie-breaking rule that is non-
lexicographic in nature. Indeed, perhaps the most common
approach is to toss a coin, i.e., select the winner uniformly at
random among all tied alternatives. A more sophisticated ex-
ample is provided by the second-order Copeland rule studied
in [Bartholdi et al., 1989], which is effectively the Copeland
rule combined with a rather involved tie-breaking method;
despite its apparent complexity, the second-order Copeland is
the voting rule of choice for several organizations [Bartholdi
et al., 1989]. Thus, it is natural to ask under what conditions
on the tie-breaking rule the voting correspondences consid-
ered in [Bartholdi et al., 1989] remain easy to manipulate.

In this paper, we make two contributions towards answer-
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ing this question. We first consider the randomized tie-
breaking rule, which chooses the winner uniformly at random
among all tied candidates. Now, to formalize the notion of a
successful manipulation under this rule, we need additional
information about the manipulator’s preferences: knowing
the manipulator’s preference order is insufficient for deter-
mining whether he prefers a tie between his top candidate and
his least favorite candidate to his second choice becoming the
unique winner. Thus, following [Desmedt and Elkind, 2010],
we endow the manipulator with utilities for all candidates,
and seek a manipulation that maximizes his expected utility,
where the expectation is taken over the random bits used to
select the winner. We demonstrate that for all scoring rules
such a manipulation can be found in polynomial time. This
is also true for Maximin as long as the manipulator’s utility
function has a special form that is inspired by the notion of
manipulation employed in [Bartholdi et al., 1989]: namely,
the manipulator values one of the candidates at 1 and the rest
of the candidates at 0.

Given these easiness results, it is natural to ask whether
all (efficiently computable) tie-breaking rules produce eas-
ily manipulable rules when combined with the voting cor-
respondences considered in [Bartholdi et al., 1989]. Now,
[Bartholdi et al., 1989] show that for Copeland this is not
the case, by proving that the second-order Copeland rule is
hard to manipulate. However, prior to our work, no such
result was known for other rules considered in [Bartholdi
et al., 1989]. Our second contribution is in demonstrating
that Maximin and Borda, as well as many families of scor-
ing rules, become hard to manipulate if we allow arbitrary
polynomial-time tie-breaking rules; our proof also works for
Copeland. One can view these results as a continuation of
the line of work suggested in [Conitzer and Sandholm, 2003;
Elkind and Lipmaa, 2005], namely, identifying minor tweaks
to voting rules that make them hard to manipulate. Indeed,
here we propose to “tweak” a voting rule by combining it
with an appropriate tie-breaking rule; arguably, such a tweak
affects the original rule less than the modifications proposed
in [Conitzer and Sandholm, 2003] and [Elkind and Lipmaa,
2005] (i.e., combining a voting rule with a preround or taking
a “hybrid” of the rule with itself or another rule).

The rest of the paper is organized as follows. We introduce
the necessary notation and definitions in Section 2. Section 3
discusses the algorithm and the formal model of [Bartholdi et
al., 1989]. We describe the algorithms for scoring rules and
Maximin under randomized tie-breaking in Section 4, and
prove our hardness results in Section 5. Section 6 concludes.

2 Preliminaries

An election is specified by a set of candidates C, |C| = m,
and a set of voters V = {v1, . . . , vn}, where each voter vi
is associated with a linear order Ri over the candidates in C;
this order is called vi’s preference order. We denote the space
of all linear orderings over C by L(C). For readability, we
will sometimes denote Ri by �i. When a �i b for some
a, b ∈ C, we say that voter vi prefers a to b. The vector
R = (R1, . . . , Rn), where each Ri is a linear order over C,
is called a preference profile. A voting rule F is a mapping

that, given a preference profile R over C outputs a candidate
c ∈ C; we write c = F(R). Many classic voting rules,
such as the ones defined below, are, in fact, voting correspon-
dences, i.e., they map a preference profile R to a non-empty
subset S of C. Voting correspondences can be transformed
into voting rules using tie-breaking rules. A tie-breaking rule
for an election (C, V ) is a mapping T = T (R, S) that for any
S ⊆ C, S �= ∅, outputs a candidate c ∈ S. We say that a tie-
breaking rule T is lexicographic with respect to a preference
ordering � over C if for any preference profileR over C and
any S ⊆ C it selects the most preferred candidate from S
with respect to�, i.e., we have T (S) = c if and only if c � a
for all a ∈ S \ {c}.

A composition of a voting correspondence F and a tie-
breaking rule T is a voting rule T ◦F that, given a preference
profile R over C, outputs T (R,F(R)). Clearly, T ◦ F is a
voting rule and T ◦ F(R) ∈ F(R).

We will now describe the voting rules (correspondences)
considered in this paper. All these rules assign scores to
candidates; the winners are the candidates with the highest
scores.
Scoring rules Any vector α = (α1, . . . , αm) ∈ R

m with
α1 ≥ · · · ≥ αm defines a scoring rule Fα. Under this
rule, each voter grants αi points to the candidate it ranks
in the i-th position; the score of a candidate is the sum of
the scores it receives from all voters. The vector α is called
a scoring vector. A scoring rule is said to be faithful if
α1 > · · · > αm. We are interested in scoring rules that
are succinctly representable; therefore, throughout this paper
we assume that the coordinates of α are nonnegative inte-
gers given in binary. We remark that scoring rules are de-
fined for a fixed number of candidates. Therefore, we will
often consider families of scoring rules, i.e., collections of
the form (αm)∞m=1, where αm = (αm

1 , . . . , αm
m). We require

such families to be polynomial-time computable, i.e., we only
consider families of voting rules (αm)∞m=1 for which there
exists a polynomial-time algorithm that given an m ∈ N out-
puts αm

1 , . . . , αm
m. Two well-known examples of polynomial-

time computable families of scoring rules are Borda, given by
αm = (m − 1, . . . , 1, 0), and k-approval, given by αm

i = 1
if i ≤ k, αm

i = 0 if i > k. 1-approval is also known as
Plurality.
Copeland We say that a candidate a wins a pairwise election
against b if more than half of the voters prefer a to b; if exactly
half of the voters prefer a to b, then a is said to tie his pairwise
election against b. Given a rational value α ∈ [0, 1], under the
Copelandα rule each candidate gets 1 point for each pairwise
election he wins and α points for each pairwise election he
ties.
Maximin The Maximin score of a candidate c ∈ C is equal
to the number of votes he gets in his worst pairwise election,
i.e., mind∈C\{c} |{i | c �i d}|.

Given a preference profile R over a set of candidates C,
for any preference order L over C we denote by (R−i, L) the
preference profile obtained from R by replacing Ri with L.
We say that a voter vi can successfully manipulate an election
(C, V ) with a preference profile (R1, . . . , Rn) with respect to
a voting rule F if F(R−i, L) �i F(R). We will now define
the computational problem that corresponds to this notion.
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An instance of theF -MANIPULATION problem is given by
a set of candidates C, a set of voters V , a preference profile
R, and the manipulating voter vi. It is a “yes”-instance if
there exists a vote L such that F(R−i, L) �i F(R) and a
“no”-instance otherwise.

3 The model and the algorithm of Bartholdi,

Tovey and Trick

Before we describe the algorithm presented in [Bartholdi
et al., 1989], we remark that the definition of successful
manipulation given in [Bartholdi et al., 1989] differs from
our definition of F -MANIPULATION (which is modeled af-
ter the standard social choice definition, see, e.g. [Gib-
bard, 1973; Satterthwaite, 1975]), even if we assume that
F is a voting rule rather than a voting correspondence.
Specifically, in [Bartholdi et al., 1989] it is assumed that
the manipulator has a preferred candidate p, and his goal
is to make p elected; we will refer to this problem as
F -MANIPULATION(p). However, a poly-time algorithm
for F -MANIPULATION(p) can be converted into a poly-
time algorithm for F -MANIPULATION: we can run F -
MANIPULATION(p) on all candidates ranked by the manip-
ulator above the current winner, and pick the best among the
candidates for which F -MANIPULATION(p) outputs “yes”.
Thus, if F -MANIPULATION is hard, F -MANIPULATION(p)
is hard, too. Moreover, all of our hardness reductions directly
show hardness of both variants of the problem.

The algorithm for F -MANIPULATION(p) proposed
in [Bartholdi et al., 1989] assumes that the voting rule
assigns scores to all candidates, and the winners are the
candidates with the highest scores. Let v be the manipulator,
and let p be her preferred candidate. The algorithm places p
first, and then fills in the remaining positions in the vote from
top to bottom, searching for a candidate that can be placed in
the next available position in v’s vote so that his score does
not exceed that of p. This approach works as long as the
rule is monotone and we can determine a candidate’s final
score given his position in v’s vote and the identities of the
candidates that v ranks above him. It is not hard to show that
Plurality and Borda (and, in fact, all scoring rules), as well as
Copeland and Maximin have this property.

We can easily modify this algorithm for the setting where
the ties are broken adversarially to the manipulator: in that
case, when the manipulator fills a position i in his vote, i > 1,
he needs to ensure that the score of the candidate in that po-
sition is strictly less than that of p. A similar approach works
for an arbitrary lexicographic ordering� over the candidates.

4 Randomized Tie-Breaking Rules

In this section, we consider a very common approach to tie-
breaking, namely, choosing the winner uniformly at random
among all tied candidates. In this case, knowing the manip-
ulator’s preference ordering is not sufficient to determine his
optimal strategy. For example, suppose that voter v prefers a
to b to c, and by voting strategically he can change the output
of the voting correspondence from b to {a, c}. It is not im-
mediately clear if this manipulation is beneficial. Indeed, if
v strongly prefers a, but is essentially indifferent between b

and c, then the answer is probably positive, but if v strongly
dislikes c and slightly prefers a to b, the answer is likely to be
negative (of course, this also depends on v’s risk attitude).

Thus, to model this situation appropriately, we need to
know the utilities that the manipulator assigns to all candi-
dates. Under the natural assumption of risk neutrality, the
manipulator’s utility for a set of candidates is equal to his ex-
pected utility when the candidate is drawn from this set uni-
formly at random, or, equivalently, to his average utility for
a candidate in this set. Since we are interested in computa-
tional issues, it is reasonable to assume that all utilities are
rational numbers; by scaling, we can assume that all utilities
are positive integers given in binary.

Formally, given a set of candidates C, we assume that the
manipulator is endowed with a utility function u : C → N.
This function can be extended to sets of candidates by set-
ting u(S) = 1

|S|
∑

c∈S u(c) for any S ⊆ C. Given a vot-
ing correspondence F and an election (C, V ) with a prefer-
ence profile R, we say that a vote L is optimal for a voter
vi ∈ V with a utility function ui : C → N with re-
spect to F combined with the randomized tie-breaking rule
if ui(F(R−i, L)) ≥ ui(F(R−i), L

′) for all L′ ∈ L(C). We
say that vi has a successful manipulation if his optimal vote
L satisfies ui(F(R−i, L)) > ui(F(R)). In the rest of this
section, we will explore the complexity of finding an optimal
vote with respect to scoring rules and Maximin.

4.1 Scoring rules

All scoring rules turn out to be easy to manipulate under ran-
domized tie-breaking.

Theorem 4.1 For any election E = (C, V ) with |C| = m,
any voter v ∈ V with a utility function u : C → N, and any
scoring vector α = (α1, . . . , αm), we can find in polynomial
time an optimal vote for v with respect to the scoring rule Fα

combined with the randomized tie-breaking rule.

Proof Fix a voter v ∈ V with a utility function u, and let
R′ denote the preference profile consisting of all other vot-
ers’ preferences. Let si denote the score of candidate ci after
all voters other than v have cast their vote. Let us renum-
ber the candidates in order of increasing score, and, within
each group with the same score, in order of decreasing utility.
That is, under the new ordering we have s1 ≤ · · · ≤ sm and if
si = sj for some i < j then u(ci) ≥ u(cj). We say that two
candidates ci, cj with si = sj belong to the same level. Thus,
all candidates are partitioned into h ≤ m levels H1, . . . , Hh,
so that if ci ∈ Hk and cj ∈ H�, k < �, then si < sj .

Consider first the vote L0 given by c1 � . . . � cm, and
let T be the number of points obtained by the winner(s) in
(R′, L0). We claim that for any L ∈ L(C), in the preference
profile (R′, L) the winner(s) will get at least T points. In-
deed, let ci be the last candidate to get T points in (R′, L0),
and suppose that there exists a vote L such that ci gets less
than T points in (R′, L). By the pigeonhole principle, this
means that L assigns at least αi points to some cj with j > i,
and we have sj + αi ≥ si + αi = T , i.e., some other candi-
date gets at least T points, as claimed. We will say that a vote
L is conservative if the winners’ score in (R′, L) is T .
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We will now argue that if L maximizes v’s utility, then
either L is conservative or it can be chosen so that Fα has a
unique winner under (R′, L). Indeed, suppose that this is not
the case, i.e., any vote L that maximizes v’s utility is such that
the set S = Fα(R′, L) is of size at least 2, and all candidates
in S get T ′ > T points. Let ci be v’s most preferred candidate
in S; we have u(ci) ≥ u(S). Suppose that L grants αj points
to ci. Since we have ci +αj > T , it follows that j < i. Now,
consider the vote obtained from L0 by swapping ci and cj .
Clearly, all candidates in C\{ci, cj} get at most T points, and
ci gets T ′ > T points. Further, cj gets sj+αi ≤ sj+αj ≤ T
points. Thus, in this case ci is a unique winner and u(ci) ≥
u(S), a contradiction.

Therefore, to find an optimal manipulation, it suffices to
(i) check for each candidate c ∈ C whether c can be made
the unique winner with a score that exceeds T and (ii) find
an optimal conservative vote. The optimal manipulation can
then be selected from the ones found in (i) and (ii).

Step (i) is easy to implement. Indeed, a candidate ci can
be made the unique winner with a score that exceeds T if and
only if si +α1 > T . To see this, observe that if si +α1 > T ,
we can swap c1 and ci in L0: ci will get more than T points,
and all other candidates will get at most T points. Conversely,
if si + α1 ≤ T , then the score of ci is at most T no matter
how v votes.

Thus, it remains to show how to implement (ii). Intuitively,
our algorithm proceeds as follows. We start with the set of
winners produced by L0; we will later show that this set is
minimal, in the sense that if it contains x candidates from
some level, then for any vote the set of winners will contain
at least x candidates from that level. Note also that due to the
ordering of the candidates we select the best candidates from
each level at this step. We then try to increase the average
utility of the winners’ set. To this end, we order the remaining
candidates by their utility, and try to add them to the set of
winners one by one as long as this increases its average utility.
We will now give a formal description of our algorithm and
its proof of correctness.

Let S0 = Fα(R′, L0). We initialize S and L by setting
S = S0, L = L0. Let �∗ be some ordering of the set C that
ranks the candidates in S0 first, followed by the candidates
in C \ S0 in the order of decreasing utility, breaking ties ar-
bitrarily. We order the candidates from C \ S0 according to
�∗, and process the candidates in this ordering one by one.
For each candidate ci, we check if u(ci) > u(S); if this is
not the case, we terminate, as all subsequent candidates have
even lower utility. Otherwise, we check if we can swap ci
with another candidate that is currently not in S and receives
T − si points from L (so that ci gets T points in the resulting
vote). If this is the case, we update L by performing the swap
and set S = S ∪ {ci}. We then proceed to the next candidate
on the list.

We claim that the vote L obtained in the end of this process
is optimal for the manipulator, among all conservative votes.
We remark that at any point in time S is exactly the set of
candidates that get T points in (R′, L). Thus, we claim that
any conservative vote L̂ satisfies u(Fα(R′, L̂)) ≤ u(S).

Assume that this is not the case. Among all optimal con-
servative votes, we will select one that is most “similar” to L

in order to obtain a contradiction. Formally, let L0 be the set
of all optimal conservative votes, and let L1 be the subset of
L0 that consists of all votes L′ that maximize the size of the
set Fα(R′, L′)∩S. The ordering�∗ induces a lexicographic
ordering on the subsets of C. Let L̂ be the vote such that the
set Fα(R′, L̂) is minimal with respect to this ordering, over
all votes in L1. Set Ŝ = Fα(R′, L̂); by our assumption we
have u(Ŝ) > u(S).

Observe first that our algorithm never removes a candidate
from S: when we want to add ci to S and search for an appro-
priate swap, we only consider candidates that have not been
added to S yet. Also, at each step of our algorithm the util-
ity of the set S strictly increases. These observations will be
important for the analysis of our algorithm.

The following lemma shows that Ŝ \ S is empty.

Lemma 4.2 We have Ŝ \ S = ∅.
Proof Suppose Ŝ \ S �= ∅, and let ci be a candidate in Ŝ \ S.
Suppose that ci appears in the j-th position in our ordering of
C \ S0. If our algorithm terminated at or before the j-th step,
we have u(ci) < u(S) < u(Ŝ), and hence u(Ŝ \ {ci}) >

u(Ŝ), a contradiction to the optimality of L̂.
Thus, when our algorithm considered ci, it could not find

a suitable swap. Since ci ∈ Ŝ, it has to be the case that
there exists an entry of the scoring vector that equals T − si;
however, when our algorithm processed ci it was unable to
place ci in a position that grants T − si points. This could
only happen if all candidates that were receiving T−si points
from L at that point were in S at that time; denote the set of all
such candidates by Bi. Note that all candidates in Bi belong
to the same level as ci. Also, all candidates in Bi∩S0 have the
same or higher utility than ci, because initially we order the
candidates at the same level by their utility, so that L0 grants a
higher score to the best candidates at each level. On the other
hand, all candidates in Bi \S0 were added to S at some point,
which means that they have been processed before ci. Since
at this stage of the algorithm we order the candidates by their
utility, it means that they, too, have the same or higher utility
than ci.

Now, since L̂ grants T − si points to ci, it grants less than
T − si points to one of the candidates in Bi. Let ck be any
such candidate, and consider the vote L̂′ obtained from L̂ by
swapping ci and ck. Let Ŝ′ = Fα(R′, L̂′); we have Ŝ′ =
(Ŝ \ {ci}) ∪ {ck}. By the argument above, we have either
u(ck) > u(ci) or u(ck) = u(ci). In the former case, we get
u(Ŝ′) > u(Ŝ). In the latter case, we get u(Ŝ′) = u(Ŝ) and
|Ŝ′ ∩ S| > |Ŝ ∩ S|. In both cases, we obtain a contradiction
to our choice of L̂.

Thus, we have Ŝ ⊆ S, and it remains to show that S ⊆ Ŝ.
We will first show that Ŝ contains all candidates in S0.

Lemma 4.3 We have S0 ⊆ Ŝ.

Proof Suppose that |S0 ∩ Hk| = mk for k = 1, . . . , h. We
will first show that |Ŝ ∩Hk| ≥ mk for k = 1, . . . , h. Indeed,
fix a k ≤ h, and suppose that the first candidate in the k-th
level is ci. Then in (R′, L0) the scores of the candidates in
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Hk are si + αi, . . . , si + αj for some j ≥ i. If si + αi < T ,
then mk = 0 and our claim is trivially true for this value of
k. Otherwise, by the pigeonhole principle, if it holds that in
(R′, L̂) less than mk voters in Hk get T points, it has to be the
case that at least one candidate in Hk+1∪· · ·∪Hh receives at
least αi points from L̂. However, for any c� ∈ Hk+1∪· · ·∪Hh

we have s� > si, so s�+αi > T , a contradiction to our choice
of L̂.

Now, suppose that S0 ∩ Hk �⊆ Ŝ ∩ Hk for some k ≤ h,
and consider a candidate c� ∈ (S0 ∩Hk) \ (Ŝ ∩Hk). Since
we have argued that |Ŝ ∩Hk| ≥ mk, it must be the case that
there also exists a candidate cj ∈ (Ŝ ∩ Hk) \ (S0 ∩ Hk). It
is easy to see that S0 contains the mk best candidates from
Hk, so u(c�) ≥ u(cj). The rest of the proof is similar to
that of Lemma 4.2: Consider the vote L̂′ obtained from L̂ by
swapping c� and cj and let Ŝ′ = Fα(R′, L̂′). Since c� and cj
belong to the same level, we have Ŝ′ = (Ŝ \ {c�}) ∪ {ck}.
Thus, either u(Ŝ′) > u(Ŝ) or u(Ŝ′) = u(Ŝ) and |Ŝ′ ∩ S| >
|Ŝ ∩ S|. In both cases we get a contradiction. Thus, we have
S0 ∩Hk ⊆ Ŝ ∩Hk. Since this holds for every value of k, the
proof is complete.

Given Lemma 4.2 and Lemma 4.3, it is easy to complete
the proof. Suppose that Ŝ is a strict subset of S. Observe
first that for any subset S′ of S there is a vote L′ such that
Fα(R′, L′) = S′: we can simply ignore the candidates that
are not members of S′ when running our algorithm, as this
only increases the number of “available” swaps at each step.
Now, order the candidates in C \ S0 according to �∗. Let
ci be the first candidate in this order that appears in S, but
not in Ŝ. If there is a candidate cj that appears later in the
sequence and is contained in both S and Ŝ, consider the set
S′ = Ŝ\{cj}∪{ci}. As argued above, there is a vote L′ such
that Fα(R′, L′) = S′. Now, if u(ci) > u(cj), this set has a
higher average utility that Ŝ. Thus, this is a contradiction to
our choice of L̂. On the other hand, if u(cj) = u(ci), then we
have u(S′) = u(Ŝ), |S ∩ S′| = |S ∩ Ŝ|, and S′ precedes Ŝ
is the lexicographic ordering induced by �∗, a contradiction
with the choice of L̂ again. Therefore, none of the candidates
in S that appear after ci in the ordering belongs to Ŝ. Now,
when we added ci to S, we did so because its utility was
higher than the average utility of S at that point. However,
by construction, the latter is exactly equal to u(Ŝ). Thus,
u(Ŝ ∪ {ci}) > u(Ŝ), a contradiction again. Therefore, the
proof is complete.

4.2 Maximin

For Maximin with randomized tie-breaking, we have not been
able to design an efficient algorithm for finding an optimal
manipulation in the general utility model. However, this
problem admits a poly-time algorithm if the manipulator’s
utility function has a special structure. Specifically, recall that
in the model of [Bartholdi et al., 1989] the manipulator’s goal
is to make a specific candidate p a winner. This suggests that
the manipulator’s utility can be modeled by setting u(p) = 1,
u(c) = 0 for all c ∈ C \ {p}. We will now show that for

such utilities there exists a poly-time algorithm for finding
an optimal manipulation under Maximin combined with the
randomized tie-breaking rule.
Theorem 4.4 If the manipulator’s utility function is given by
u(p) = 1, u(c) = 0 for c ∈ C \ {p}, the problem of finding
an optimal manipulation under Maximin combined with the
randomized tie-breaking rule is in P.
Proof sketch We construct a directed graph whose vertices
are candidates, and there is an edge from ci to cj if ci is cj’s
most dangerous opponent. Let sM (c) denote the Maximin
score of c. Under the utility function u, our goal is to make
p one of the winners and minimize the number of candidates
tied with p. This can only be achieved if s(p) ≥ maxi s(ci)−
1; assume that this is indeed the case. We say that a vertex c
is purple if s(c) = s(p) + 1, and red if s(c) = s(p). Then
the manipulator’s goal can be reformulated as follows: order
the vertices of the graph so that each purple vertex, and as
many red vertices as possible, have an incoming edge from a
predecessor. This can be achieved by purely graph-theoretic
means, but the algorithm is not straightforward; in particular,
it may have to contract and then expand cycles.

5 Hardness results

In this section, we consider deterministic polynomial-time
tie-breaking rules, We will first present a specific tie-breaking
rule T , and then show that manipulating the composition of
this rule with Borda, Copeland or Maximin is NP-hard.

Recall that an instance C of 3-SAT is given by a set of
s variables X = {x1, . . . , xs} and a collection of t clauses
Cl = {c1, . . . , ct}, where each clause ci ∈ Cl is a disjunc-
tion of three literals over X , i.e., variables or their negations;
we denote the negation of xi by xi. It is a “yes”-instance if
there is a truth assignment for the variables in X such that
all clauses in Cl are satisfied, and a “no”-instance otherwise.
This problem is known to be hard even if we assume that all
literals in each clause are distinct, so from now on we assume
that this is the case. Now, given s variables x1, . . . , xs, there
are exactly � =

(
2s
3

)
3-literal clauses that can be formed from

these variables (this includes clauses of the form x1∧x1∧x2).
Ordering the literals as x1 < x1 < · · · < xs < xs induces
a lexicographic ordering over all 3-literal clauses. Let φi de-
note the i-th clause in this ordering. Thus, we can encode an
instance C of 3-SAT with s variables as a binary string σ(C)
of length �, where the i-th bit of σ(C) is 1 if and only if φi

appears in C.
We are ready to describe T . Given a set S ⊆ C of candi-

dates, where |C| = m, T first checks if m = � + 2s + 4 for
some s > 0 and � =

(
2s
3

)
. If this is not the case, it outputs the

lexicographically first candidate in S and stops. Otherwise,
it checks whether cm ∈ S and for every i = 1, . . . , s, the
set S satisfies |S ∩ {c�+2i−1, c�+2i}| = 1. If this is not the
case, it outputs the lexicographically first candidate in S and
stops. If the conditions above are satisfied, it constructs an in-
stance C = (X,Cl) of 3-SAT by setting X = {x1, . . . , xs},
Cl = {φi | 1 ≤ i ≤ �, ci ∈ S}. Next, it constructs a truth as-
signment (ξ1, . . . , ξs) for C by setting ξi = � if c�+2i−1 ∈ S,
c�+2i �∈ S and ξi = ⊥ if c�+2i−1 �∈ S, c�+2i ∈ S. Fi-
nally, if C(ξ1, . . . , ξs) = �, it outputs cm and otherwise it
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outputs the lexicographically first candidate in S. Clearly,
T is polynomial-time computable, and hence the problem
T ◦ F-MANIPULATION is in NP for any polynomial-time
computable rule F (and, in particular, for Borda, Maximin
and Copeland). In the rest of this section, we will show that
T ◦ F-MANIPULATION is NP-hard for all these rules.

In all cases, our argument proceeds as follows. Given an
instance C of 3-SAT with s variables, we create an election
with m = � + 2s + 4 candidates, where � =

(
2s
3

)
. The ma-

nipulator v ranks cm first, followed by cm−1, followed by all
the remaining candidates. The voters’ preferences are set so
that if v votes truthfully, cm−1 wins, so v can only benefit
from the manipulation if he can make cm the winner. More-
over, the preferences of the non-manipulators are selected so
that (a) the set of candidates in {c1, . . . , c�} with the max-
imum score encodes C, and the manipulator cannot change
this without jeopardizing cm’s chances of winning; (b) for
each pair (c�+2i−1, c�+2i), i = 1, . . . , s, the manipulator can
ensure that exactly one of these candidates has the maximum
score, i.e., v can select an arbitrary truth assignment; (c) v can
ensure that cm has the maximum score. We remark that con-
structing an election with these properties is not trivial; in par-
ticular, the constructions for Borda, Maximin and Copeland
are very different. It follows that any beneficial manipulation
corresponds to a satisfying assignment and vice versa. Thus,
we obtain the following result.

Theorem 5.1 T ◦ F-MANIPULATION is NP-hard for F ∈
{ Borda, Maximin, Copelandα, α ∈ [0, 1]}.

The tie-breaking rule T has the attractive property that to
compute the winner, we only need to know the set of tied
candidates S. Theorem 5.1 can be generalized to other fam-
ilies of scoring rules, including k-approval, where k is poly-
nomially related to m (i.e., m = poly(k)), using a modified
version of T which still has this property. However, the com-
bination of any such tie-breaking rule and Plurality can be
shown to be easy to manipulate. Therefore, to prove an ana-
logue of Theorem 5.1 for Plurality, we use a tie-breaking rule
that depends on the votes themselves, and not just on S.

Theorem 5.2 There exists a tie-breaking rule T ′ such that
T ′ ◦ Plurality-MANIPULATION is NP-complete.

6 Conclusions and Future Work

We have explored the complexity of manipulating many
common voting rules under randomized tie-breaking as well
as under arbitrary polynomial-time tie-breaking procedures.
Our results for randomized tie-breaking are far from com-
plete, and a natural research direction is to extend them to
other voting rules, such as Copeland or Bucklin, as well as to
the Maximin rule with general utilities.
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