
Norm Compliance of Rule-Based Cognitive Agents

Antonino Rotolo

CIRSFID, University of Bologna
Italy

antonino.rotolo@unibo.it

Abstract

This paper shows how belief revision techniques
can be used in Defeasible Logic to change rule-
based theories characterizing the deliberation pro-
cess of cognitive agents. We discuss intention re-
consideration as a strategy to make agents compli-
ant with the norms regulating their behavior.

1 Introduction and Background

A significant research effort in MAS combine two perspec-
tives [Broersen et al., 2002; Dastani et al., 2005; Dignum,
1999; van der Torre et al., 2008]: (a) a classical (BDI-like)
cognitive model of agents; (b) a model of agents’ behavior
based on normative concepts. This combination leads to an
account of agents’ deliberation in terms of the interplay be-
tween mental attitudes and normative factors such as obliga-
tions.

In this approach agents’ reasoning is typically embedded in
rule-based non-monotonic systems, as one significant prob-
lem concerns the cases where the agent’s intentions are in
conflict with obligations.

If intentions prevail over obligations, this poses the ques-
tion of agents’ norm compliance. There are two strategies to
get compliance in MAS. First, norm compliance is achieved
by design, i.e., by stating that rules supporting the derivation
of obligations always prevail over rules supporting conflict-
ing intentions [Broersen et al., 2002; Governatori and Rotolo,
2008]. Second, compliance is ensured by stating that vio-
lations should result in sanctions or other normative effects
[Governatori and Rotolo, 2009], as norms cannot limit in ad-
vance agents’ behavior, but provide soft constraints which can
be violated [Boella and van der Torre, 2004].

There are pros and cons in both approaches. But, indepen-
dently of this, a research issue is still overlooked in the liter-
ature: what’s the relation between norm compliance and in-
tention reconsideration? Most of the existing models of inten-
tional systems view the reconsideration of intentions as either
a costly computational process or mainly dependent on the
dynamics of beliefs [Singh, 1991; Rao and Georgeff, 1991;
Shoham, 1993; Meyer et al., 1999; Wooldridge, 2000; Lorini,
2007; Lorini and Herzig, 2008]. Decision making in most
agent systems is composed of two main activities like delib-
eration (deciding what intentions to achieve) and means/ends

reasoning (deciding how to achieve these intentions). Delib-
eration itself can be a computationally costly process and re-
quires an appropriate intention reconsideration policy which
helps the agent to deliberate only when necessary. In this pic-
ture, it is still overlooked the problem of changing intentions
not because of the change of beliefs, but because the norma-
tive constraints require to do so.

This paper explores how different types of intention recon-
siderations can be modeled by applying techniques from revi-
sion theory to an extension of Defeasible Logic (DL) which
embeds modalities for obligations and intentions [Governa-
tori and Rotolo, 2008; Governatori et al., 2009] and also—
this is another novelty—makes use of path labels to keep
track of the reasoning chains leading to “illegal” intentions.

The layout of the paper is as follows. Section 2 presents
the extension of DL with path labels to reason about inten-
tions and obligations; the purpose is to develop a formalism
able to handle intention reconsideration when intentions con-
flict with obligations. Section 3 recalls a classification be-
tween different types of intentions and then shows how differ-
ent techniques from revision theory can used in the proposed
logical framework.

2 The Logical Framework

In line with [Governatori and Rotolo, 2008; Governatori et
al., 2009] we develop a constructive account of the modalities
O and I corresponding to obligations and intentions: rules for
these concepts are thus meant to devise suitable logical con-
ditions for introducing modalities. For example, rules such as
a1, . . . ,an ⇒O b and d1, . . . ,dn ⇒I e if applicable, will allow
for deriving Ob and Ie, meaning the former that b is obliga-
tory, the latter that e is an intention of an agent.

In our language, for X ∈ {O,I}, strict rules have the
form φ1, . . . ,φn →X ψ . Defeasible rules have the form
φ1, . . . ,φn ⇒X ψ . A rule of the form φ1, . . . ,φn �X ψ is a
defeater. Strict rules support indisputable conclusions when-
ever their antecedents, too, are indisputable; defeasible rules
can be defeated by contrary evidence; defeaters cannot lead
to any conclusion but are used to defeat some defeasible rules
by producing evidence to the contrary.

Definition 1 (Language). Let Prop be a set of propositional
atoms, Mod = {O,I}, and Lbl be a set of labels. The sets
defined below are the smallest ones closed under the given

2716

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



construction conditions:

Literals
Lit = Prop∪{¬p|p ∈ Prop}

If q is a literal, ∼q denotes the complementary literal (if
q is a positive literal p then ∼q is ¬p; and if q is ¬p,
then ∼q is p);

Modal literals

ModLit = {X l,¬X l|X ∈ {O,I} , l ∈ Lit}

Rules Rul = RulXs ∪RulXd ∪RulXdft, where X ∈ {I,O}, s.t.

RulXs = {r : φ1, . . . ,φn →X ψ|
r ∈ Lbl,A(r)⊆ Lit∪ModLit,ψ ∈ Lit}

RulXd = {r : φ1, . . . ,φn ⇒X ψ|
r ∈ Lbl,A(r)⊆ Lit∪ModLit,ψ ∈ Lit}

RulXdft = {r : φ1, . . . ,φn �X ψ|
r ∈ Lbl,A(r)⊆ Lit∪ModLit,ψ ∈ Lit}

We use some obvious abbreviations, such as superscripts
for the rule mode (I,O), subscripts for the type of rule,
and Rul[φ ] for rules whose consequent is φ , for example:

RulI = {r : φ1, . . . ,φn ↪→I ψ| ↪→∈ {→,⇒,�}}
RulXsd = {r : φ1, . . . ,φn ↪→X ψ|X ∈ Mod, ↪→∈ {→,⇒}}
Ruls[ψ] = {φ1, . . . ,φn →X ψ|∀X ∈ Mod}

We use A(r) to denote the set {φ1, . . . ,φn} of antecedents
of the rule r, and C(r) to denote the consequent ψ of the
rule r.

An agent theory is the knowledge base which is used to
reason about the agent’s intentions and their interplay with a
set of normative rules regulating the agent’s deliberation.

Definition 2 (Agent Theory). An agent theory D is a struc-
ture (F,RO,RI,	) where (i) F ⊆ Lit∪ModLit is a finite set
of facts; (ii) RO ⊆ RulO is a finite set of obligation rules; (iii)
RI ⊆ RulI is a finite set of intention rules; (iv) 	 is an acyclic
(superiority) relation over (RI ×RI)∪ (RO ×RO).

Definition 3. A path based on an agent theory D is a structure

[α11 , . . . ,αn1 ]1[α12 , . . . ,αn2 ]2 . . . [ω] j

where αlw , 1 ≤ w ≤ j−1 and 1w ≤ lw ≤ nw, is either a literal,
modal literal, or a rule, such that j ≥ 0. If j ≥ 1, then

• either

– ω =−r where r ∈ RO ∪RI; or
– ω ∈ RO

sd ∪RI
sd such that, if j = 1 then A(ω) = /0; or

– if ω ∈ RO
sd ∪RI

sd and j > 1, then ∀b ∈ A(ω) ∃αk j−1

such that either
∗ if b ∈ Lit, then αk j−1 = b ∈ F, or
∗ if b = Xl ∈ ModLit, then either αk j−1 = b ∈ F or

l =C(αk j−1) : αk j−1 ∈ RX
sd;

• ∀αxt , 1 < t ≤ j−1, αxt ∈ RO
sd∪RI

sd such that ∀b ∈ A(αxt )∃αyt−1 such that either

– if b ∈ Lit, then αyt−1 = b ∈ F, or

– if b = Xl ∈ ModLit, then either αyt−1 = b ∈ F or
l =C(αyt−1) : αyt−1 ∈ RX

sd.

An empty path is a path where j = 0. A broken path is a path
where ω =−r. A rule r occurs in a path iff r = αlw , or r = ω .

Example: if d ∈ F and we have the following rules

r : Oe ⇒I f s : I f ⇒O a t : d ⇒I g
u : Ig ⇒I b w : Oa, Ib ⇒O c z :⇒O e

then we can obtain, e.g., the path [z,d]1[r, t]2[s,u]3[w]4.
Proofs are sequences of literals and modal literals together

with the so-called proof tags +Δ, −Δ, +∂ and −∂ . These
tags can be labeled by modalities and paths: the modality
indicates the mode of the conclusion (if it is an intention or
an obligation), the path keeps track of the facts and rules used
to obtain it. Hence, if X ∈ {O,I}, given an agent theory D,
+ΔXL q means that literal q is provable as modalized with
X (e.g., Oq, if X = O) in D using the facts and strict rules
in the path L , −ΔXL q means that it has been proved in D
that q is not definitely provable in D, +∂ XL q means that q is
defeasibly provable as modalized with X in D using the facts
and rules in L , and −∂ XL q means that it has been proved in
D that q is not defeasibly provable in D. We will clarify later
the structure of paths in the case of the negative proof tags.

Definition 4. Given an agent theory D, a proof in D is a
linear derivation, i.e, a sequence of labelled formulas of the
type +ΔXL q, −ΔXL q, +∂ XL q and −∂ XL q, where the
proof conditions defined in the rest of this section hold.

Definition 5. Let D be an agent theory. Let # ∈ {Δ,∂}
and X ∈ {O,I}, L be any path based on D, and P =
(P(1), . . . ,P(n)) be a proof in D. A literal q is #L -provable
in P if there is a line P(m), 1 ≤ m ≤ n, of P s.t. either

1. q is a modal literal X p and P(m) = +#XL p or

2. q is a modal literal ¬X p and P(m) =−#XL p.

A literal q is #L -rejected in P if there is a line P(m) of P s.t.

1. q is a modal literal X p and P(m) =−#XL p, or

2. q is a modal literal ¬X p and P(m) = +#XL p.

The definition of ΔX describes just forward (monotonic)
chaining of strict rules: given 1 ≤ j ≤ n

If P(n+1) =+ΔXL [α1, . . . ,αn][r]q then
(1) ∃x ∈ RX

s [q]:
(1.1) x = r and
(1.2) ∀a ∈ A(r) either

(1.2.1) a ∈ F , or
(1.2.2) a is ΔL [α j]-provable.

If P(n+1) =−ΔXL [α1, . . . ,αn][r]q then
(1) ∀x ∈ RX

s [q] either
(1.1) x �= r or
(1.2) ∃a ∈ A(r):

(1.2.1) a �∈ F , and
(1.2.2) a is ΔL [α j]-rejected.

The path supporting q is built step by step by including the
rules and facts used to obtain it. In the case of negative proof
tags, any path involved is in fact empty, since there is no rea-
soning chain supporting q. See also Proposition 1 below.
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Example 1. Consider the following agent theory:
F = {Oa,Ib}
R = {r1 : Ib →I c,r2 : Ic →I a}
	= /0

Let us work on the proof conditions for Δ. The obligation
Oa does not trigger any rule. The fact Ib triggers r1 (condi-
tion (1.1)): hence we obtain +ΔI[Ib][r1]c. Now, using proof
condition (1.2), we trigger r2 to get +ΔI[Ib][r1][r2]a.

Consider now proof conditions for ∂ X : given 1 ≤ j ≤ n,
If P(n+1) =+∂ XL [α1, . . . ,αn][r]q then

(1) +ΔXL [α1, . . . ,αn][r]q or
(2) (2.1) −ΔXX ∼q ∈ P[1..n] and

(2.2) ∃x ∈ RX
sd[q] :

(2.2.1) x = r and
(2.2.2) ∀a ∈ A(r)

(2.2.2.1) a ∈ F , or
(2.2.2.2) a is ∂L [α j]-provable, and

(2.3) ∀s ∈ RX [∼q] either ∃a ∈ A(s):
a is ∂Y -rejected, or
(2.3.1) ∃t ∈ RX [q]: ∀a ∈ A(r)

a is ∂Z -provable and t 	 s.

If P(n+1) =−∂ XL [α1, . . . ,αn][r]q then
(1) −ΔXL [α1, . . . ,αn][r]q and
(2) (2.1) +ΔXX ∼q ∈ P[1..n] or

(2.2) ∀x ∈ RX
sd[q] either

(2.2.1) x �= r, or
(2.2.2) ∃a ∈ A(r):

(2.2.2.1) a �∈ F , and
(2.2.2.2) a is ∂L [α j]-rejected, or

(2.3) ∃s ∈ RX [∼q]: ∀a ∈ A(s)
a is ∂Y [s]-provable, and
(2.3.1) ∀t ∈ RX [q], ∃a ∈ A(r):

a is ∂Z -rejected or t �	 s,
where [r] = [−r] if ∀a ∈ A(r)

a ∈ F , or
a is ∂L [α j]-provable.

To show that a literal q is defeasibly provable with the mode X
we have two choices: (a) We show that q is already definitely
provable; or (b) We need to argue using the defeasible part of
an agent theory D. For this second case, some (sub)conditions
must be satisfied: First, we need to consider possible reason-
ing chains in support of ∼q with the mode X , and show that
∼q is not definitely provable with that mode (2.1 above). Sec-
ond, we require that there must be a strict or defeasible rule
with mode X for q which can be applied (2.2 above). Third,
we must consider the set of all rules which are not known to
be inapplicable and which permit to get ∼q with the mode X
(2.3 above). Essentially, each such a rule s attacks the conclu-
sion q. For q to be provable, s must be counterattacked by a
rule t for q with the following properties: t must be applicable
and must prevail over s. Thus each attack on the conclusion
q must be counterattacked by a stronger rule. In other words,
r and the rules t form a team (for q) that defeats the rules
s. The mechanism for handling paths is basically the one for
definite conclusions. The only difference is that here we can
have broken paths when a rule is made applicable but is de-
feated by a stronger rule: in this case, the path keeps track of
the defeated rule r, which is marked as −r.

Proposition 1. (a) For −Δ: if condition (1) holds, then
L [α1, . . .αn][r] is an empty path.

(b) For −∂ : if condition (2.2) holds, then L [α1, . . .αn][r] is
an empty path;

(c) For −∂ : if condition (2.3) holds and L [α1, . . .αn][r] is
broken, then rule r is applicable.

Sketch. Consider the case (a): if condition (1) holds, this
means that there is no path and proof supporting q, and so
L [α1, . . .αn][r] must be empty. The same argument applies
to the case (b). Consider case (c): here, by construction there
is a path and a proof supporting the antecedents of r, even
though any r is defeated. Hence r is applicable.

Example 2. Let us expand the theory in Example 1:

F = {Oa,Ib,d}
R = {r1 : Ib →I c, r2 : Ic →I a, r3 :�O ¬e, r4 : Ib ⇒O e,

r5 : d ⇒I ¬e, r6 :⇒I ¬e, r7 : I¬e,Ib ⇒O f}
	= {r4 	 r3}

Since the defeasible part of the theory cannot affect the
derivation obtained using the monotonic part, which is the
same of Example 1, the definite conclusions do not change.
The fact Ib triggers r4, which conflicts with r3; if r3 could
prevail, we would have −∂ O[−r3]e, but this is not the case
since r4 is stronger than r3, thus leading to +∂ O[Ib][r4]e.
The fact d makes r5 applicable, and so +∂ I[d][r5]¬e. The
rule r6 is always applicable, thus supporting +∂ I[r6]¬e. Fi-
nally, from the Ib and the last two conclusions we obtain
+∂ O[d][r5,Ib][r7]f and +∂ O[r6,Ib]f .
Definition 6. Given an agent theory D, D � ±#X l (i.e., ±#X l
is a conclusion of D), where # ∈ {Δ,∂} and X ∈ {c,O,I}, iff
there is a proof P = (P(1), . . . ,P(n)) in D such that P(n) =
±#X l.
Definition 7. Given a theory D, the universe of D (UD) is the
set of all the atoms occurring in D; the extension of D (ED),
is defined as follows:

ED = (Δ+(D),Δ−(D),∂+(D),∂−(D))

where for X ∈ {I,O}
Δ+(D) =

{
Xl|D �+ΔXL l

}
Δ−(D) =

{
Xl|D � −ΔXL l

}
∂+(D) =

{
Xl|D �+∂ XL l

}
∂−(D) =

{
Xl|D � −∂ XL l

}
.

3 Compliance and Revising Intentions

3.1 Conceptual Background

Suppose the agent’s intentions conflict with some obligations.
If we assume that obligations are unchangeable, the possibil-
ity to avoid violations relies on the possibility to handle rules
for intentions.

As we argued elsewhere [Governatori and Rotolo, 2008;
Governatori et al., 2009], we can conceptually distinguish be-
tween different types of intentions: unchangeable intentions,
strong intentions and weak intentions. The first type corre-
sponds in our logic to intentional facts of an agent theory (el-
ements of F), the second type to definite conclusions (+ΔI),
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the third to defeasible conclusions (+∂ I). Unchangeable in-
tentions cannot be reconsidered in any case (see [Governatori
et al., 2009] for a discussion on this issue). To give up a
strong intention we have necessarily to change (revise) the
theory (i.e., we have to modify the strict rules), while we can
abandon a weak intention if we have an exception to it with-
out having to change the theory. To illustrate this point let us
consider the following rules:

r1 : a →I b r2 : c →I ¬b (1)

Suppose the same connections are expressed as defeasible
rules:

r′1 : a ⇒I b r′2 : c ⇒I ¬b r′2 	 r′1 (2)

In both cases we obtain Ib given a as a fact. However if both
a and c are given then from (1) we get an inconsistency, since
definite conclusions cannot be blocked and we have to revise
the theory. If we use belief revision to change the theory then
we have to remove r1 from the theory. A consequence of this
operation is that we are no longer able to derive Ib from a.
An alternative would be to use base revision instead of belief
revision. If this strategy is taken then r1 is changed into

r′′1 : a,¬c →I b (3)

Again, it is not possible to obtain Ib from a. To derive it we
have to supplement the theory with the information whether
c or ¬c is definitely the case, increasing then the cognitive
burden on the agent.

If the same information were encoded as weak intentions,
as in (2), then we would not suffer from the above drawback,
since (2) prevents the conclusion of an inconsistency (in case
we do not specify that r′2 is stronger than r1, we are not able
to conclude Ib nor I¬b). Indeed, the defeasibility of weak
intentions makes it possible to block the application of the
intention to the particular case without reconsidering it. This
is in agreement with [Bratman, 1987]. This way the amount
of deliberation required for intention re-consideration can be
minimized to some extent.

Unfortunately, if the first and compelling purpose is to
make agents compliant, not in all cases the defeasibility of
intentions is the solution. Indeed, if a theory containing (2)
allows for deriving Ob, there is no way to recover, unless we
change the theory.

3.2 A Simple Model

Let us first formally characterize the notion of compliance to
a norm:

Definition 8 (Rule Fulfilment and Violation). An agent
theory D = (F,RO,RI,	) fulfil a rule r ∈ RO

sd iff, if D �
+∂ OLC(r), then, either

• if C(r) is a positive literal l (r is a conditional obliga-
tion), then there is an Y such that D �+∂ IY l, or

• if C(r) is a negative literal ¬l (r is a conditional prohi-
bition) for any L , D � −∂ IL l or D �+∂ IL¬l.

D violates the rule r whenever D does not fulfil r. D is com-
pliant iff D does not violate any rule in it.

As we briefly discussed in Section 3.1, an option to recover
from violations and reinstate compliance is to revise inten-
tions by using AGM techniques. This idea looks natural (see
e.g. [Cawsey et al., 1993; Lorini, 2007]). However, it is far
from obvious how to do it in DL. Fortunately, AGM funda-
mental operations have been defined for propositional DL in
[Billington et al., 1999].

The first step is thus to extend [Billington et al., 1999]’s no-
tions of expansion and contraction to cover DL with modali-
ties, which is trivial. Consider an agent theory D and suppose
we want to expand the extension of D with c = Ip1, . . . ,Ipn:

D+
c =

⎧⎨
⎩

D if ∃i ∈ {1, . . .n}: I∼pi ∈ ∂+(D)

D if ∃i, j ∈ {1, . . .n}: ∼pi = p j

(F,RO,RI′ ,	′) otherwise

where

RI′ =RI ∪{w1 :⇒I p1, . . . ,wn :⇒I pn}
	′ =(	 ∪ {wi 	 r |1 ≤ i ≤ n,r ∈ RI[∼p]})−

{r 	 wi |1 ≤ i ≤ n,r ∈ RI[∼p]}.
(4)

Thus, we add rules that prove p1, . . . pn as intentions; these
rules are always applicable and are strictly stronger than any
possibly contradicting rules. This solution looks useful to
deal with many cases of violation.
Example 3. Consider the following theory D.

F = {a}
R = {r1 : a →I b,r2 : Ib ⇒O c,r3 : a �I ¬c,r4 : Ib ⇒I c}
	= /0

Here we obtain, among other conclusions, +∂ O[a][r1][r2]c.
To be compliant, we should be able to derive that c is
intended, but this is not possible. We have here that
−∂ I[a][r1][−r4]c. What we can do is to expand D with Ic
by simply adding a rule w and applying (4). Since this opera-
tion satisfies AGM postulates for expansion [Billington et al.,
1999], this guarantees that Ic is added to the positive exten-
sion of D. Hence, we obtain +∂ I[w]c and make D compliant.

Let us define the procedure explained in Example 3.
Definition 9 (Positive Revision). Let D = (F,RO,RI,	) be
an agent theory. If D violates the rules r1, . . . ,rn ∈ RO, then
D+

c where c = Ip1, . . . ,Ipn such that C(r1) = p1, . . . ,C(rn) =
pn.

Let us adjust [Billington et al., 1999]’s definition of con-
traction. Here, too, we trivially extends [Billington et al.,
1999]’s. If we want to contract c = Ip1, . . . ,Ipn in D, then:

D−
c =

{
D if Ip1, . . . ,Ipn �∈ ∂+(D)

(F,RORI′ ,	′) otherwise

where

RI′ =RI ∪{s : Ip1, . . . ,Ipi−1,Ipi+1, . . . ,Ipn �I ∼pi|
1 ≤ i ≤ n}

	′ = 	− {r 	 s | r ∈ RI′ −RI}.

(5)
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(5) blocks the proof of Ip1, . . . ,Ipn. It is ensured that at least
one of the Ipis will not be derived. The new rules in RI′ are
such that, if all but one Ipi have been obtained, a defeater with
head ∼p j is triggered. The defeaters are not weaker than any
other rules, so the defeater cannot be “counterattacked” by
another rule, and p j will not be proven as an intention.

Example 4. Consider the following theory D.

F = {a,Id}
R = {r1 : a →I b,r2 : Ib ⇒O c,r3 : Id ⇒I ¬c}
	= /0

We obtain, among other conclusions, +∂ O[a][r1][r2]c. To
be compliant, we should derive that Ic, but we obtain the
opposite through r3. More precisely, we get +∂ I[Id][r3]¬c.
What we can do is to contract Id by simply adding a defeater
s :�I ¬c and thus applying (5). Since this operation satisfies
AGM postulates for contraction [Billington et al., 1999], this
guarantees that Id is removed from the positive extension of
D and added to the negative extension.

Definition 10 (Negative Revision). Let D = (F,RO,RI,	)
be an agent theory. If D violates the rules r1, . . . ,rn ∈
RO, then D−

c where c = Ip1, . . . ,Ipn such that C(r1) =
¬p1, . . . ,C(rn) = ¬pn.

Definitions 9 and 10 guarantee to recover from violations,
are very simple, and directly exploit techniques and results
from [Billington et al., 1999]. Also, they do not make any es-
sential use of paths, which sometimes may look cumbersome.
However, they have two serious drawbacks: (a) They work
only on the defeasible part of agent theories, and so cannot
be used to recover from violations when these are caused by
strong intentions (see the discussion in Section 3.1); (b) They
apply only to the last rule of the reasoning chains supporting
“illegal” intentions.

To overcome the above difficulties, DL with paths is useful.

3.3 Refinements: Using Paths

The advantage of using paths is that we can easily identify
(i) which rules have been violated, and (ii) which rules for
intentions have determined the violation of an obligation.

Let us see when Definitions 9 and 10 clearly fail while DL
with paths succeeds.

Example 5 (Strong Intentions). Consider this theory:

F = {a,Ib}
R = {r1 : a →I ¬c,r2 : Ib ⇒O c,r3 : Ib →I d,

r4 : Id,a →I ¬c}
	= /0

We have two reasons for the violation of r2 (indeed, we ob-
tain +∂ O[Ib][r2]c). In fact, we can derive +ΔI[a][r1]¬c and
+ΔI[Ib][r3,a][r4]¬c. Since strict rules cannot be defeated, the
only solution is rule removal. Hence, we have to operate over
r1 but we are free to remove either r3 or r4. For example, if we
prefer not to remove r4, we will successfully get compliance
by removing r1 and only r3.

Definition 11 (Rule Removal). Let D = (F,RO,RI,	) be an
agent theory. For each r ∈ RO

sd such that the paths L1, . . .Ln

are the ones based on D such that D � +ΔIL1 p, . . . ,D �
+ΔILn p and D � +∂ OY C(r), where C(r) = ¬p, the theory
D−X is such that

• X = {w1, . . . ,wm} is the smallest set of rules in RI such
that, for each k ∈ {1, . . . ,n}, there is at least a w j ∈ X
that occurs in Lk,

• RI−X = RI −X, and

• F−X = F, RO
−X = RO, and 	−X=	.

Let us work on weak intentions only. The following defi-
nition proposes intention retraction for DL with paths by ex-
ploiting the contraction of intentions as framed in (5).
Definition 12 (Contraction with Paths). Let
D = (F,RO,RI,	) be an agent theory. For each r ∈ RO

sd such
that the paths L1, . . .Ln are the ones based on D such that
D � +∂ IL1 p, . . . ,D � +∂ ILn p and D � +∂ OY C(r), where
C(r) = ¬p, the theory D�p = (F,RO,RI′ ,	′) is such that

(i) RI′ = RI ∪{s :�I ∼q}∪{t :�I ∼x},

(ii) 	′=	 − [{rk 	 s|rk ∈ RI[∼C(s)],rk occurs in Lk ∀k ∈
{1, . . . ,n}}∪{w 	 t | for each path M [−w] based on D
such that C(w) = x, either x = p or w occurs in Lk ∀k ∈
{1, . . . ,n}}].

Example 6 (Paths). Consider the following agent theory:

F = {a,Ib}
R = {r1 : a ⇒I ¬c,r2 : Ib ⇒O c,r3 : Ib ⇒I d,r4 : Id,a ⇒I ¬c

r5 : g ⇒I ¬c}
	= /0

Like in Example 5, we obtain +∂ O[Ib][r2]c. We also derive
+∂ I[a][r1]¬c and +∂ I[Ib][r3,a][r4]¬c, which violate rule r2.
Definition 12 allow us to add, for example, a defeater for c
which is stronger than r1 and another defeater for ¬d which is
stronger than r3. Hence, as we have already seen in Example
5, Definition 12 does not only provide tools to affect the rules
r1 and r4 that directly prove illegal intentions, but also rules
preceding them in the involved path (e.g., r3).
Proposition 2 (Success). Let D = (F,RO,RI,	) be an agent
theory. If, for each r ∈ RO

sd we have D � +∂ OY C(r), where
C(r) = ¬p, and for the paths L1, . . .Ln based on D

(a) D �+ΔIL1 p, . . . ,D �+ΔILn p, then Ip �∈ Δ+(D−X );

(b) D � +∂ IL1 p, . . . ,D � +∂ ILn p, then Ip �∈ ∂+(D�p) un-
less Ip ∈ Δ+(D).

Sketch. Case (a): By construction, Definition 11 guarantees
that at least one strict intention rule is removed in every path
based on D supporting Ip.

Case (b): An inspection of the proof conditions for ∂ shows
that Definition 12 successfully blocks the derivation of Ip,
unless it is derived using only strict rules. Notice that con-
dition (ii) in Definition 12 ensures that, in case the attacks
made by the defeaters s activate other (previously defeated)
rules supporting Ip, these last potential derivations are made
unsuccessful.
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4 Summary and Future Work

In this paper we presented an extension of DL with path la-
bels to reason about intentions and obligations The formalism
was able to handle intention reconsideration when the agent’s
intentions conflict with obligations. In particular, we showed
that the reconsideration of different types of intentions can be
modeled using different techniques from revision theory.

This is a preliminary step towards modeling intention re-
consideration in DL. A number of open issues should be ad-
dressed. First: according to [Governatori and Rotolo, 2010]
if I violate a norm r but I comply with an obligation which
is meant to compensate the violation of r, I am still compli-
ant. In [Dastani et al., 2005] we introduced the operator ⊗
to handle compensations in a version of DL with modalities
but without paths. What happens if we combine ⊗ with DL
with paths? Second: in [Governatori and Rotolo, 2008] we
showed that the extensions of agent theories, in some modal
versions of DL, can be computed in linear time. We will have
to check whether this is preserved in the new logic. Third: we
have to investigate the properties of the new operations over
agent theories. In particular, we have to better study how to
minimize changes. Finally: another possibility is not to re-
vise the set of rules for intention, but to change rule priorities
[Governatori et al., 2010]. Also this question is left to a future
research.
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