Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

Adaptive Data Compression for Robot Perception

Mike Smith and Ingmar Posner and Paul Newman
Oxford University Mobile Robotics Group
Oxford, UK
{mike, hip, pnewman } @robots.ox.ac.uk

Abstract

This paper concerns the creation of an efficient,
continuous, non-parametric representation of sur-
faces implicit in 3D laser data as typically recorded
by mobile robots. Our approach explicitly lever-
ages the probabilistic nature of Gaussian Process
regression to provide for a principled, adaptive
subsampling which automatically prunes redundant
data. The algorithm places no restriction on the
complexity of the underlying surfaces and enables
predictions at arbitrary locations and densities. We
present results using real and synthetic data and
show that our approach attains decimation factors
in excess of two orders of magnitude without sig-
nificant degradation in fidelity of the workspace re-
constructions.

1 Introduction

Robot perception in complex and dynamic environments is
reliant on the timely processing of low-level sensor data
to provide a faithful and detailed impression of the current
workspace. In recent years, 3D point clouds obtained from
purpose-built laser range finders have become a particularly
popular environment representation in robotics: they provide
a rich source of information regarding 3D geometry. Un-
fortunately, the data represent only a sparse, oftentimes non-
uniform sampling of the world with a manyfold redundancy
in information provided per datum: for example, flat surfaces
will often be sampled as densely as more complex objects.
While the high degree of redundancy results in an unneces-
sarily inflated computational cost, the non-uniform, sparse
nature of the data provides a challenge for standard percep-
tion tasks such as object detection and classification or sur-
face reconstruction. Much is to be gained, therefore, by a
similarly faithful, yet more compact, continuously queryable
representation of 3D environments. The development of such
a representation is the subject of this paper.

We restrict our attention to point clouds generated by a sim-
ple 3D data acquisition system commonly found in robotics:
a single 2D laser scanner is pushed through the workspace
and a point cloud is formed by aggregation. Based on this
system, Section 3 describes the parameterisation adopted in
this work. Our representation is based on a non-parametric
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Figure 1: A typical result of our approach: a dense 3D point cloud
representing an urban scene is subsampled such that only informa-
tion rich data are retained (black points in the bottom left image are
those that are selected). These form the basis for a continuous sur-
face reconstruction.

method which simultaneously generates a continuous repre-
sentation of the workspace from discrete laser samples and
decimates the data set retaining only locally salient samples.
At the heart of our work lies Gaussian Process (GP) regres-
sion based, in this case, with support from a finite, time vary-
ing region. This sliding-window approach to GP regression
is outlined in Section 4. Inspired by the basic mechanisms of
GP sparsification [Quifionero-Candela and Rasmussen, 2005;
Csat6 and Opper, 2002; Seeger erf al., 2003], the data in the
support region are chosen using the GP predictive distribu-
tion itself. We refer to this process as active sampling and
describe it in Section 4.1. Active sampling explicitly retains
data in regions of high complexity and therefore allows us to
attain decimation factors in excess of two orders of magni-
tude without significant degradation in fidelity. Fig. 1 shows
a typical example of the output of our system.

2 Related Works

The requirement of robots to operate in large, unstructured
environments provides ample incentive for research into suit-
able models of the workspaces encountered. A large body
of work addresses the problem of 3D surface reconstruc-
tion using meshing techniques (see, for example, [Friih and



Zakhor, 2003; Hoppe et al., 1993]) where every datum of
a point cloud forms the vertex of a polygon. Heuristics
are used to achieve the minimum number of vertices re-
quired for a suitable representation. Problems are encoun-
tered when the data arise from a non-homogeneous sampling
of the workspace and/or coverage is incomplete — both are
frequently the case in our problem domain. Alternative ap-
proaches address the problem by fitting geometric primitives
such as planes to subsets of the raw data [Hihnel et al., 2003;
Triebel et al., 2005]. This requires a strong prior on which
primitives will represent the workspace well. GP models
have also become a popular choice in recent years to model
the terrain traversed by a robot. This is due to their ability
to handle incomplete data in a principled, probabilistic fash-
ion, Examples of such approaches include [Lang et al., 2007,
Plagemann et al., 2008; Vasudevan et al., 2009]. However,
these works do not address the data compression problem.

While we share the common goal of accurate 3D surface re-
construction with the literature above, this work bears closest
relation to that of Gaussian Beam Processes [Plagemann et
al., 2007]. The authors model laser range data on a per-scan
basis using a GP model to regress range on bearing. However,
while our model also regresses on range, we achieve an im-
plicit model of the entire workspace through a sliding window
approach and active data selection. This provides significant
advantages above and beyond a mere extension of Gaussian
Beam Processes to the 3D case.

Our active sampling strategy has been inspired by the body
of work addressing GP sparsification, where active subsam-
pling strategies have been used to select information-rich data
through use of information theoretic criteria [Krause et al.,
2008; Deisenroth et al., 2009; Seeger et al., 2003]. Our spar-
sification approach is particularly similar to [Seeger er al.,
2003]. However, we exploit the time-sequential nature of
laser data to form an exact and inexpensive predictive dis-
tribution for use in our decision criterion.

3 The Push-Broom 3D Laser System and its
Configuration Space

The 3D laser system considered in this work consists of a sim-
ple ‘push-broom’ configuration: a 2D laser sensor is moved
through space along an arbitrary path (see Fig. 2-left). A
3D point cloud is constructed by agglomeration of the in-
dividual scans. Our aim is to form an implicit representa-
tion of workspace surfaces by processing the data gathered.
Specifically, we pose queries of points in (x,y,z) on the
workspace’s surface as range queries along arbitrary rays em-
anating from the sensor at a point along the sensor’s trajec-
tory. Let a beam from the laser be parameterised as a point
q € S x R where q = [#,#]7. 6 denotes the 1D angular
position of the laser beam (not the whole sensor unit) and t
denotes the timestamp of the laser scan. We describe q as a
point in sensor configuration space Q as illustrated in Fig. 2
and refer to it as a particular configuration of the laser sen-
sor. Sensor configuration space provides a natural domain for
range regression since it is closely related to the state of the
laser and not that of the rest of the robotic system. The map-
ping from sensor configuration space to range is necessarily
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Figure 2: An illustration of the sensor system considered in this
work (left) and the corresponding sensor configuration space Q
(right). Every point q on the manifold in the configuration space
is parameterised by time ¢ and angular position of the laser beam 6.

a well formed function — our laser sensor associates a single
range r with any point in Q such that

G:SxR—=-R,q—r (D
Consider now a mapping from Q to the Euclidean workspace
w
E'(q) = E(V(a), G(a)) 2)
where:
V:SxR—=S*xR3 q—p (3)
E:(S$*xR¥) xR — R (p,r) —x 4)

For every point q in Q, V(q) provides the six d.o.f. pose of
the sensor’s laser beam p € S? x R? at the time a measure-
ment is taken — represented as roll, pitch, yaw and position.
E(p,r) maps a six d.o.f. laser beam pose p and a scalar range
measurement 7 to a single point x in 3D Euclidean space.
This parameterisation naturally eschews the non-functional
relation between elevation z and (z,y) location that is com-
monly found in terrain mapping formulations. By keeping
each operation distinct, we also decouple robot trajectory es-
timation V'(q), from that of the regression of the laser data
G(q)!. This permits the independent relaxation of the sensor
trajectory (which, for example, could be in response to loop
closure events).

To form an estimate of G(q) at any arbitrary position in
Q we turn to Gaussian Process Regression. Given a set of
measurements D = {(q,, ;) }}, at a query point g* we can
obtain a predictive distribution p(r*|q*, D). In the follow-
ing section we present a brief summary of how this predictive
distribution is obtained from a sliding window in sensor con-
figuration space.

4 Sliding-Window Gaussian Process
Regression

Gaussian Processes (GPs) provide for non-parametric prob-
abilistic regression. A GP consists of a collection of jointly
Gaussian distributed random variables and describes a dis-
tribution over latent functions underlying observations. It is
fully specified by mean ;(q) and covariance k(q,q’) func-
tions. In our application we are concerned with estimating the
mapping G(q) corresponding to these latent functions. Given
known ranges r from different configurations Q = {q;}¥,

"Note that the regression will always be dependent on the
ground-truth trajectory of the vehicle, but that no knowledge of this
trajectory is required in our algorithm.



and a query point q* with corresponding unknown target
range r* we can write:

{r]NN(u(Q) {K@,me

r* p(q*)’ k(Q,q")"

k(Q,q") D

&)

In the stationary case, each element of K is derived from a
suitably chosen distance metric d = ||q — q’|| between two
corresponding points q and q’ in Q. We explicitly account
for noise in the training observations r through an additive
white noise process of strength o,,, along the diagonal entries
of K2. The derivation of the mean E[r*] and covariance V/[r*]
of the predictive distribution p(r*|q*, D) for a deterministic
w(q) = 0 (as is commonly used [Vasudevan et al., 2009]) are
standard and can be found, for example, in [Rasmussen and
Williams, 2006]

k(Q,q")"(K(Q,Q) +opI) 'r (6)
k(a*,q%) + o2, —
k(Q.q") " (K(Q,Q) +o21) 'k(Q,q") (7)

Throughout this work we use a member of the Matérn class
of covariance functions as advocated in [Stein, 1999]. We
note, however, that many others, including non-stationary co-
variance functions [Lang et al., 2007], could be adapted and
substituted in its place. The Matérn class is dependent on
a shape parameter v which regulates the smoothness of the
interpolation. It equates to the more standard exponential
covariance function as a special case when v = % and the
squared exponential as v — co. As suggested in [Rasmussen
and Williams, 2006], we explored several common choices of
v = {1 35 oo} over a number of workspaces varying in
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complexity. We found that v = % consistently produced ac-
curate surface reconstructions for a variety of support set sizes
and length scales. Although the smoother covariance func-
tions v = {2,00} performed well for simple workspaces,
they seemed over constrained in complex scenarios, and vice
versa for the rough covariance function v = % Thus

dv3 dv3
k(a4 ) imatern ez = op(1 + \l—f) exp(—T\[) ®)

where og is the process noise, [ is the length scale and d =
|la —q’|| o denotes the geodesic distance between q and q’ in
@, which for this sensor configuration is the £ norm.

In the absence of data, predictions using G(q) tend to the
mean function p(q). Thus far, this mean function has been
specified a priori without accounting for the data. This leads
to suboptimal behaviour particularly near the boundaries of
the active window. Therefore, we modify our approach by in-
troducing a stochastic mean function such that the GP models
the residuals between a local model of the mean derived from
data and the support set. This view of GP regression has been
used successfully in robotics applications such as [Nguyen-
Tuong and Peters, 2010] and, in our case, provides substantial
gains in terms of decimation factor. Due to space limitations
the details of this approach have been omitted and the reader

’In this paper we have used o2, = 0.01m>.
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is referred to [Smith et al., 2010] and [Smith et al., 2011] for
a detailed description.

The quantities of data we consider render the application
of a single monolithic GP infeasible — time complexity of
a naive implementation of GP regression is cubic in N, the
size of the dataset D. Instead, for each prediction we en-
force a fixed support window size n, formed from the closest
(in terms of the ¢ norm from ¢ to ¢,.) measurements that have
been actively accepted by our algorithm to guarantee constant
time operation. The time-sequential nature of laser data en-
sures that this support window slides across Q as the robot
progresses along its trajectory.

We are interested in minimising the computational complex-
ity of our algorithm for practical applications. Therefore, we
now devise an active sampling strategy to intelligently deter-
mine a salient subset of D, D’ to include in our active win-
dow. The advantages of this are two-fold: we can achieve
a significant compression of D, and we can re-use the inver-
sion in Equations 6 and 7 across multiple predictions, thus
decreasing computational cost. Where we must incorporate
new measurements into the active window we update, rather
than re-calculate the inversion. This lowers the overall worst
case prediction cost to O(n?).

4.1 Active Sampling Using KL Divergence

Measurements are actively selected for inclusion in the sup-
port region of the GP regressor based on the information they
provide with respect to the current model. Specifically, this
decision is taken based on whether the current model’s range
prediction 7* ~ N (u,, US) differs significantly from each
measurement 7, ~ N (i, 02,) at q*. We use the KL diver-
gence between the two distributions to ascertain if the aver-
age additional information required to specify 7, as a result
of using r* (instead of the true r,,) is greater than a thresh-
old . This threshold, naturally modulated by environment
complexity, affects the rate of compression that is achieved.
A sensitivity analysis of our method with a changing & is
presented in Section 6. The KL divergence between two 1D
Gaussian distributions has a closed form solution:

11y + i = 2fighim + 00,
o

-1

€))

On adoption of any new measurement into the active support
set an introspection step analyses the closest (in terms of /1
norm in Q) 7, that had previously been marked as redun-
dant to determine if this assessment has changed in light of
the new information. On adoption of this measurement fur-
ther introspection steps are applied for the next closest redun-
dant r,,, until there are no further adoptions. This approach
is demonstrated in Figure 3. Importantly, it is the introspec-
tion steps that allow both sides of discontinuities to be re-
tained given the final sampling of the opposite side of the
discontinuity. Figure 4 demonstrates the results of this re-
verse sweep, and the typical D’ that is stored and used for
subsequent predictions instead of D. In the worst case, where
there are truly complex sections of the workspace, our algo-
rithm performs as well as a naive implementation by using
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Figure 3: An illustration of the active sampling process in 1D. Each
node represents a measurement: black indicates data accepted by
the forward pass; white nodes have been rejected; blue nodes are
yet to be observed; green nodes are predictions made by our algo-
rithm and red nodes are data accepted during introspection steps. A
predicted observation has a KL divergence from the actual measure-
ment greater than « (top). Hence, it is adopted into the active support
set (2nd row). The algorithm then makes a back prediction which is
now in error with the measurement (3rd row). The measurement,
which was previously rejected, is therefore accepted into the active
region (bottom).

all D, while maintaining the ability to automatically subsam-
ple simple scenes. Note that this subsampling provide an in-
formation rich subset of D which is desirable for common
applications such as data registration, where careful selec-
tion of measurements can increase accuracy and robustness
[Rusinkiewicz and Levoy, 2001].

S Experimental Setup

We now analyse system performance using both synthetic
data and a real dataset collected from an outdoor urban en-
vironment. In particular, we investigate how a changing

affects the compression rate (% %) of the original point

cloud.

The real data used are part of the publically available New
College data set [Smith et al., 2009]. Data were gathered
from a two-wheeled Segway RMP~200 platform with two
vertically aligned SICK LMS291-S14 laser sensors mounted
on the side of the vehicle. Pose estimates were obtained us-
ing visual odometry from a forward facing stereoscopic cam-
era [Newman er al., 2009]. Throughout, we use the Matérn
class of covariance functions, a length scale ! of 8 units, a
process variance 0127 of 0.05m? and an active window size of
200 measurements. These parameters were determined em-
pirically to produce consistently accurate surface representa-
tions, for a given compression rate, as discussed in Section 4.
The reconstruction error (in metres) is defined as the ¢; norm
in range between a hold out set of the real measurements and
corresponding predictions at the same point in Q. Predictions
are made as the centre of the active window passes the hold
out set in @ and are conditioned on the current active set.

6 Results

Figure 5 depicts typical subsampling as x is varied. For ag-
gressive decimation factors of 1,000 (corresponding to k =

2749

Figure 4: The result of applying our active sampling approach to
data from a synthetic environment. (Left) The CAD model of the
environment. (Right) The synthetic data. Blue indicates all laser
measurements, black denotes measurements selected on the forward
pass of the algorithm, and red are measurements that have been cho-
sen through introspection steps. Here k = 0.8 nats. Note that the
discontinuity caused by the floating cube in the centre of the scene
is densely sampled on both sides.
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Figure 6: Compression rate, measured as the percentage of D se-
lected by our algorithm (% % ), versus & for exemplars (a) to (d)
in Fig. 7. (e) and (f) refer to results on the synthetic environment
shown in Fig. 4. For (e) only the wall and ground plane are used. (f)
uses the entire model. A lower compression rate results from higher
thresholds and scenes that are less complex.

3.18 nats) to we achieve a modest mean error of 0.3 m. With
k = 0.3 nats errors are comparable with measurement pre-
cision of 0.015m and we need retain only one sixth of the
original data.

In Figure 6 results are collated across a range of « for the
four exemplars, a) through d) (see Figure 7) and the two syn-
thetic cases, e) and f) (see Figure 4). Intuitively, as the thresh-
old is increased the amount of data retained decreases. This
is accompanied by an increase in reconstruction error as de-
picted by the box plots in Figure 7. As one can discern from
the images and CAD models, the relative positions of the
curves correspond to the scene complexity: the more com-
plex the scene, the greater the compression rate. Scenes b)
and d) are the most complex, with noisy foliage, measure-
ments of ceilings behind window panes and discontinuities
as great as b m, compared to that of the 1 m discontinuity the
person in ¢) presents. In all cases, these complex regions have
been sampled most heavily — the outline of the person can be
recognised in the Euclidean plot of c) in Figure 7.



k = 0.3nats

k = 1.26 nats

k = 3.18 nats

Figure 5: The subsampling process for various values of KL divergence threshold, «, for test case c) plotted in 3D Euclidean space. The
original measurements are in blue. Measurements selected by our active sampling algorithm are in black. The bottom row shows surface

representations using only the measurements selected by our algorithm.

7 Conclusions

This paper presents an overview of an adaptive 3D point-
cloud compression algorithm first proposed in [Smith et al.,
2010]. The approach leverages a Gaussian Process frame-
work to provide a continuous representation of the implicit
surfaces underlying 3D laser point clouds commonly en-
countered in robot perception. Adaptive data compression
is achieved via an information theoretic selection criterion
applied in a sliding window. The resulting algorithm deci-
mates point clouds of simple workspaces by factors in excess
of two orders of magnitude without significant degradation in
fidelity. The computational complexity of the algorithm pro-
posed is squared in the size if of the active window, which
is constant, rather than cubic in the size of the data set. For a
more detailed description of this work as well as an investiga-
tion into the use of non-stationary covariance functions that
are used for the GP regression at the heart of the system, the
reader is referred to [Smith er al., 2010] and [Smith et al.,
20111].
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