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Abstract

Linear classification is a useful tool for dealing
with large-scale data in applications such as doc-
ument classification and natural language process-
ing. Recent developments of linear classification
have shown that the training process can be effi-
ciently conducted. However, when the data size ex-
ceeds the memory capacity, most training methods
suffer from very slow convergence due to the severe
disk swapping. Although some methods have at-
tempted to handle such a situation, they are usually
too complicated to support some important func-
tions such as parameter selection. In this paper, we
introduce a block minimization framework for data
larger than memory. Under the framework, a solver
splits data into blocks and stores them into separate
files. Then, at each time, the solver trains a data
block loaded from disk. Although the framework
is simple, the experimental results show that it ef-
fectively handles a data set 20 times larger than the
memory capacity.

1

As the availability of annotated data increases steadily, data
size becomes larger and larger. For example, it takes around
40 MB main memory to train the largest data in a data mining
challenge kddcup 2004, and 1.6GB in kddcup 2009. In kdd-
cup 2010, the size becomes about 10GB.! In a visual recog-
nition challenge ImageNet? in 2010, the winner reports that
their method involves training a data set in hundreds of giga-
bytes.

Linear classification is a promising tool for learning on
huge data with large numbers of instances as well as fea-
tures. Recent developments on linear classification (e.g.,
[Joachims, 2006; Shalev-Shwartz et al., 2007; Bottou, 2007;
Hsieh ef al., 2008]) have shown that training one million in-
stances takes only a few seconds if data is already loaded in
the memory. Therefore, some have said that linear classifi-
cation is essentially a solved problem when the memory is

Introduction

'Of course the data size depends on the features extracted from
the data.
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Figure 1: Data size versus training time on a machine with
1GB memory.

enough. However, handling data beyond the memory capac-
ity remains a challenging research issue. Existing training
algorithms often need to iteratively access data. When data is
not in the memory, the huge amount of disk access becomes
the bottleneck of the training process. To see how serious the
situation is, Figure 1 presents the running time by applying
an efficient linear classification package LIBLINEAR [Fan et
al., 2008] to train data with different scales on a computer
with 1 GB memory. Clearly, the time grows sharply when the
data size is beyond the memory capacity.

Following the discussion in [Yu et al., 2010], the training
time can be modeled to consist of two parts:

training time = time to run data in memory +

ey

time to access data from disk.

In literature, most algorithm designs (e.g., [Shalev-Shwartz
et al., 2007; Bottou, 2007]) omit the second part, while focus
only on the first part. Therefore, they aim at minimizing the
number of CPU operations. However, in linear classification,
especially when applied to data larger than memory capac-
ity, the second part — I/O access, may dominate the training
process.

Although several approaches have claimed to handle large
data, most of them are either complicated or do not take I/O
time into consideration Moreover, existing implementations
may lack important functions such as evaluations by different
criteria, parameter selection, or feature selection. In this pa-
per, we introduce a block minimization framework (BM) [Yu



et al., 2010] for large linear classification when data is stored
in disk. BM splits the entire data into several subsets. Then,
it iteratively loads and trains a subset of data. The method
enjoys the following properties:

e BM is simple and can easily support functions such as
multi-class learning and parameter selection.

e BM is proven to converge to a global minimum of a
function defined on the entire data, even though it up-
dates the model on a local subset of data at each time.

e In practice, BM deals with memory problem effectively.
We show in Section 6 that BM handles a data which is 20
times larger than the memory capacity and BM is more
efficient than other methods.

This paper is organized as follows. In Section 2, we con-
sider SVM as our linear classifier and introduce a block mini-
mization framework. Two implementations of the framework
for primal and dual SVM problems are respectively in Sec-
tions 3 and 4. Section 5 reviews some related approaches for
data larger than memory. We show experiments in Section 6
and give conclusions in Section 7.

A detailed version of this paper is in [Yu ef al., 2010].

2 Block Minimization for Linear SVMs
Givenadataset {(x;,y;)}\_,, ®; € R", y; € {—1,+1}, lin-
ear classifiers solve the following unconstrained optimization
problem:
1
min in'uH—CZi: 1 (w; i, i), @
where C' > 0 is a penalty parameter, 1/2w” w is the regu-

larization term, and &(w;®;,y;) is the loss function. Three
common loss functions are

L1-SVM : max(1 — y;w” z;,0)
L2-SVM : max(1 — y;wT x;,0)?
Logistic Regression : log(1 + efy”"Tmi).

After solving (2), we get the model w. The prediction can
then be done by computing w” x for any incoming instance
x. Problem (2) is often referred to as the primal form of clas-
sification problems. One may instead solve its dual problem.
Here we only show the dual form of L1-SVM?:

1
iaTQa —ela

min fla) =
subject to 0<; <C,i=1,...,1, 3)
where e = [1,...,1]T and Q;; = y,y;z] x;. After obtain-

ing the optimal solution a* for (3), the model w can then be

computed by
l
w = Z alY; ;.
i=1
Most linear SVM solvers assume data is stored in the mem-
ory so that the data can be randomly accessed. Therefore,

3The dual forms for L2-SVM and LR are similar, see [Hsieh ez
al., 2008] and [Yu et al., 2010]
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Algorithm 1 A block minimization framework for linear
SVM
1. Split {1,...,1} to By,...
files accordingly.
2. Set initial o or w
3. Fork=1,2,... (outer iteration)
Forj=1,...,m (inner iteration)
3.1. Read z,, Vr € B; from disk
3.2. Conduct operations on {x, | r € B;}
3.3. Update o or w

, By, and store data into m

when data cannot fit in memory, such methods suffer from
disk swapping. With limited memory, a viable method must
satisfy the following conditions:

1. Each optimization step reads a continuous chunk of
training data.

The optimization procedure converges toward the opti-
mum even though each step trains only a subset of data.

. The number of optimization steps (iterations) need be
small. Otherwise, the amount of disk access will be
huge.

Obtaining a method having all these properties is not easy.

As entire data cannot fit in memory, we consider loading a
block of data at a time. In the following, we show that with
a careful design, a block minimization can fully utilize the
data in the memory before loading another data block from
the disk.

Let {Bi,...,B,,} be a partition of all data indices
{1,...,1}. We adjust the block size such that instances as-
sociated with B; can fit in memory. These m blocks, stored
as m files, are loaded when needed. Then, at each step, we
conduct some operations using one data block, and update w
or o according to if the primal or the dual problem is con-
sidered. The block minimization framework is summarized
in Algorithm 1. We refer to the step of working on a single
block as an inner iteration, while the m steps of going over
all blocks as an outer iteration. Algorithm 1 can be applied
on both the primal form (2) and the dual form (3). We show
two implementations in Sections 3 and 4, respectively.

Block minimization is a classical technique in optimization
(e.g., [Bertsekas, 1999, Chapter 2.7]). Many studies have
applied block minimization to train SVM or other machine
learning problems, but we might be the first to consider it in
the disk level.

Assume By, ..., By, have a similar size |B| = [/m. The
time cost of Algorithm 1 is

(T (1B]) + Ta(|B])) x x #outer-iters,

l
|B|
where

e T,,(|B]) is the cost of operations at each inner iteration;
e Ty(|B]) is the cost to read a block of data from disk.

These two terms respectively correspond to the two parts in
(1) for modeling the training time.



Regarding the block size | B, if data are stored in memory
in advance, T4(|B|) = 0. For T,,,(| B]), people observe that
if | B| linearly increases, then

|B| 7, Tin(|B|) /, and #outer-iters \, .

T,.(|B]) is generally more than linear to |B|, so T,,,(|B|) x
1/|B| is increasing along with |B|. In contrast, the #outer-
iters may not decrease as quick. Therefore, nearly all exist-
ing SVM packages use a small |B|. For example, |B| = 2
in LIBSVM [Chang and Lin, 2001] and 10 in SVM'9"t
[Joachims, 1998].

However, when data cannot be stored in the memory,
Ty(|B|) > 0 and the situation is different. At each outer
iteration, the cost is

l l

To(|B]) x — +Ty(|B|) x —. 4
The second term is for loading [ instances from disk. As read-
ing each data block takes some initial time, a smaller number
of blocks reduces the cost. Hence the second term in (4) is
a decreasing function of |B|. While the first term is increas-
ing following the earlier discussion, as reading data from the
disk is slow, the second term is likely to dominate. Therefore,
contrary to existing SVM software, in our case the block size
should not be too small.

Moreover, since the loading time T;;(B) is proportional to
the size of data, we can reduce the size of each data blocks by
storing a compressed file in the disk. However, we then need
some additional time to decompress the data when each block
is loaded. The balance between compression speed and ratio
has been well studied in the area of backup and networking
tools [Morse, 2005]. We choose a widely used compression
library zlib for our implementation.* The detailed discussion
of implementation issues can be found in [Yu et al., 2010].

3 Solving Dual SVM for Each Block

A nice property of the SVM dual problem (3) is that each
variable corresponds to a training instance. Thus we can eas-
ily devise an implementation of Algorithm 1 by updating a
block of variables at a time. Assume B; = {1,...,{}\Bj, at
each inner iteration we solve the following sub-problem.

min  f(e+d) 5)

J

subjectto dp =0and0 < a; +d; < C, Vi € B;.

That is, we change ap; using the solution of (5), while fix
o .. Then Algorithm 1 reduces to the standard block mini-
mization procedure, so the convergence to the optimal func-
tion value of (3) holds [Bertsekas, 1999, Proposition 2.7.1].

We must ensure that at each inner iteration, only one block
of data is needed. With the constraint d B, = 0in (5),

1
fla+d) = §d§jQBijdBj +(Qp,..a—ep,) dp, + f(c),
(6)

‘http://www.zlib.net
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Algorithm 2 An implementation of Algorithm 1 for solving
dual SVM
We only show details of steps 3.2 and 3.3:
3.2 Exactly or approximately solve the sub-problem (5)
to obtain d;_
33 ap, < ap, + dgj
Update w by (8)

where (), . is a sub-matrix of @ including elements Q.,
r € Bj,i=1,...,1. Clearly, Qp, . in (6) involves all train-
ing data, a situation violating the requirement in Algorithm 1.
Fortunately, by maintaining

l
w=> iy, )
we have =
Q.o — 1 =ywlz, —1,vr € B;.
Therefore, if w is available in memory, only instances asso-
ciated with the block B; are needed. To maintain w, if d,
is an optimal solution of (5), we consider (7) and use

w— w+ Z Ay, (8)
reB;
This operation again needs only the block B;. The procedure
is summarized in Algorithm 2.

For solving the sub-problem (5), as all the information is
available in the memory, any bound-constrained optimization
method can be applied. We consider LIBLINEAR [Fan er
al., 2008], which implements a coordinate descent method
(i.e., block minimization with a single element in each block).
Then, Algorithm 2 becomes a two-level block minimization
method. The two-level setting had been used for SVM or
other applications (e.g., [Memisevic, 2006; Pérez-Cruz ef al.,
2004]), but ours might be the first to associate the inner level
with memory and the outer level with disk.

Under this framework, we can either accurately or loosely
solves the sub-problem of block B;:

1. Loosely solving the sub-problem: A simple setting is to
go through all variables in B; a fixed number of times. A
small number of passes over B; means to loosely solve
the sub-problem (5). While the cost per block is cheaper,
the number of outer iterations may be large.

2. Accurately solving the sub-problem: Alternately, we can
accurately solve the sub-problem. The cost per inner it-
eration is higher, but the number of outer iterations may
be reduced. As an upper bound on the number of itera-
tions does not reveal how accurate the solution is, most
optimization software consider the gradient information.

When the sub-problem solvers satisfy certain conditions, Al-
gorithm 1 globally converges to an optimal solution a* with
linear rate. That is, there are 0 < p < 1 and an iteration kg
such that

F@fh) — fla*) < p(f(a) = fla)) . Yk = ko.
In [Yu et al., 2010], we prove that the linear convergence
holds when the sub-problems are solved with a fixed num-

ber of passes or the gradient stopping condition used in
LIBLINEAR.



Algorithm 3 An implementation of Algorithm 1 for solving
primal SVM. Each inner iteration is by Pegasos
1. Split {1,...,1} to By,...
files accordingly.
2. t = 0 and initial w = 0.
3. Fork=1,2,...
Forj=1,...,m
3.1. Find a partition of B;: Bj,...,Bj.
32. Forr=1,...,7
e Use B;- as B to conduct the update (9)-(11).
ot t+1

, By, and store data into m

4 Solving Primal SVM for Each Block

Instead of solving the dual problem, in this section we check
if the framework in Algorithm 1 can be used to solve the
primal problem. Since the primal variable w does not cor-
respond to data instances, we cannot use a standard block
minimization setting to have a sub-problem like (5). In con-
trast, existing stochastic gradient descent methods possess a
nice property that at each step only certain data are used. In
this section, we study how Pegasos [Shalev-Shwartz et al.,
2007] can by used for implementing an Algorithm 1.

Pegasos considers a scaled form of the primal SVM prob-
lem:

min
w

l
1 1
%wTw + 7 ;max(l —yiwTx;,0).
At the tth update, Pegasos chooses a block of data B and
updates the primal variable w by a stochastic gradient descent
step:
w=w—n'V,

)
where n* = [C'/t is the learning rate, V*? is the sub-gradient
t

1 1
= - E Z Yiq,
i€Bt

and BT = {i € B | y;wTx; < 1}. Then Pegasos obtains
w by scaling w:

(10)

VIC

w + min(1, o]

)w. an

Clearly we can directly consider B; in Algorithm 1 as the
set B in the above update. Alternatively, we can conduct sev-
eral Pegasos updates on a partition of B;. Algorithm 3 gives
details of the procedure.

In this paper, we consider splitting B; to | B;| sets, where
each one contains an element in B;. We then conduct |B;]|
Pegasos updates in Step 3.2 of Algorithm 3. The compari-
son for other settings can be found in [Yu et al., 2010].

5 Related Approaches for Large-scale Data

In this section, we discuss related methods for training linear
model when data is larger than the memory size. Existing
methods include:

Parallelizing batch learners Some approaches (e.g.,
[Chang et al., 2007; Zhu et al., 2009]) consider solving
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huge data set in distributed systems by a parallel scheme.
Although such approaches can scale up to large data, they
are usually complicated and induce expensive communica-
tion/synchronization overheads. Moreover, distributed sys-
tems may not be easily accessed by a ordinary user.

Sub-sampling In many cases, sub-sampling training data
does not downgrade the prediction accuracy much. There-
fore, by randomly drawing some training samples and stor-
ing them in memory, we can employ standard training tech-
niques. This approach usually works when the data quality
is good. However, in some situations, dealing with huge data
may still be necessary. In Section 6.2, we show the relation-
ship between testing performance and sub-sampled size.

Bagging Bagging [Breiman, 1996] averages models
trained on subsets of data. A bagging method randomly draws
m subsets of samples from the entire data set, and then trains
m models wy, ..., w,,, separately. The final model is ob-
tained by averaging these m models. Although a bagging
method can be easily parallelized and sometimes achieves an
accurate model [Zinkevich et al., 2010], it does not solve a
specific formulation such as (2).

Online Learning Online learners assume each time one
data point is randomly drawn from a probability distribution.
According to this data point, they then update the model w
to minimize the expected loss. As the update rule is simple
and only depends on one data point, online methods are suit-
able for handling the situation that data exceeds the memory
size. For example, a recent software Vowpal Wabbit> han-
dles large data by cyclically loading each data instance into
memory and conducting an online sub-gradient descent up-
date. It also supports the setting to pass over data several
times. During the first pass, it saves the data points into a
compressed cache file to speed up the reading time for the
following passes. This is similar to our data compression
strategy mentioned in Section 2. Note that Vowpal_Wabbit
solves a non-regularized problem, which is different from (2).

6 Experiments

In this section, we first show that sub-sampling data to fit in
memory may downgrade the accuracy on the data we consid-
ered. Then, we demonstrate that block minimization meth-
ods are effective and efficient for training a data set larger
than memory capacity. A detailed comparison demonstrating
the influence of various settings under the block minimization
framework can be founded in [Yu et al., 2010].

6.1 Data and Experimental Environment

We consider two document data sets yahoo-korea® and web-
spam, and an artificial data epsilon.” Table 1 summarizes
the data statistics.

We randomly split the data such that 4/5 for training and
1/5 for testing. All feature vectors are instance-wisely scaled
to unit-length (i.e., ||z;|| = 1, Vi). For epsilon, each feature
of is normalized to have mean zero and variance one, and the

5The software is available at http: //hunch.net/ vw/.

SThis data set is not publicly available

"webspam and epsilon can be downloaded at http://
largescale.first.fraunhofer.de



Table 1: Data statistics: We assume a sparse storage. Each non-zero feature value needs 12 bytes (4 bytes for the feature
index, and 8 bytes for the value). However, this 12-byte structure consumes 16 bytes on a 64-bit machine due to data structure

alignment.
Data set | l n #nonzeros Memory (Bytes)
yahoo-korea | 460,554 3,052,939 156,436,656 2,502,986,496
webspam 350,000 16,609,143 1,304,697,446  20,875,159,136
epsilon 500,000 2,000 1,000,000,000  16,000,000,000

—— yahoo-korea
++ webspam
= epsilon

Difference to the best accuracy (%)

0.0
0

20 100

40 60 80
Percentage of the whole data set (%)

Figure 3: Data size versus testing accuracy. The marker indi-
cates the size of subset of data that can fit in memory. Results
show that training only on the sub-sampled data is not enough
to achieve a reasonable testing performance.

testing set is modified according to the same scaling factors.
This feature-wise scaling is conducted before the instance-
wise scaling. The value C in (2) is set to one.

We conduct experiments on a 64-bit machine with 1GB
RAM. Due to the space consumed by the operating system,
the real memory capacity we can use is 895MB. Note that the
size of the largest data, webspam, is 20 times larger than the
size of memory.

6.2 Data Sub-sampling

In some applications, training on a subset of data achieves
similar performance as on the entire data. However, in other
cases, sub-sampling may harm the testing performance. To
investigate the performance of sub-sampling, we show the
testing performance along data size in Figure 3. Result in-
dicates that using a subset may not be enough to obtain a
reasonable model in our case.

6.3 Training Time and Testing Accuracy

Next, we investigate the performance of block minimization
methods. We compare the following methods:

e BM-LIBLINEAR: Algorithm 2 with LIBLINEAR to
solve each sub-problem.  For each sub-problem,
LIBLINEAR goes through the data block 10 rounds.

BM-Pegasos: Algorithm 3 with # = |B;|. That is, we
apply |B,| Pegasos updates, each of which uses an in-
dividual data instance.

LIBLINEAR: The standard LIBLINEAR without any
modification to handle the situation if data cannot fit in
memory.

We make sure that no other jobs are running on the same ma-
chine and report wall clock time in all experiments. We in-
clude data loading time and, for Algorithm 1, the initial time
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to split and compress data into blocks. It takes around 228
seconds to split yahoo-korea, 1,594 seconds to split web-
spam and 1,237 seconds to split epsilon. For LIBLINEAR,
the loading time for yahoo-korea is 103 seconds, 829 sec-
onds for webspam and 560 seconds for epsilon.

We are interested in both how fast the methods reduce the
objective function value (2) and how quickly the methods ob-
tain a reasonable model. Therefore, we present the following
results in Figure 2:

1. Training time versus the relative difference to the opti-
mum
fP(w) — f7(w*)
S (w*)
where f¥ is the primal objective function in (2) and w*
is the optimal solution. Since w™ is not really available,

we spend enough training time to get a reference solu-
tion.

3

Training time versus the difference to the best testing
accuracy
(acc® — acc(w)) x 100%,

where acc(w) is the testing accuracy using the model w
and acc™ is the best testing accuracy among all methods.

Results show that LIBLINEAR suffers from slow training due
to severe disk swapping. In contrast, since memory issues
are carefully handled, BM-LIBLINEAR and BM-Pegasos are
more efficient. Therefore, they obtain a reasonable solution
much faster than LIBLINEAR. Further, BM-LIBLINEAR
is slightly faster than BM-Pegasos. This is because BM-
Pegasos only conducts a simple update on each instance,
while BM-LIBLINEAR considers a data block at a time and
utilizes the instances loaded in memory by multiple updates.

7 Conclusions

In summary, we introduce a block minimization framework
for solving large linear classification problems when data can-
not fit in memory. The approach is simple but effective. Ex-
periments show that the block minimization methods can han-
dle data 20 times larger than the memory size.
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