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Abstract

The counterfactual regret minimization (CFR) al-
gorithm is state-of-the-art for computing strate-
gies in large games and other sequential decision-
making problems. Little is known, however, about
CFR in games with more than 2 players. This ex-
tended abstract outlines research towards a better
understanding of CFR in multiplayer games and
new procedures for computing even stronger mul-
tiplayer strategies. We summarize work already
completed that investigates techniques for creating
“expert” strategies for playing smaller sub-games,
and work that proves CFR avoids classes of unde-
sirable strategies. In addition, we provide an out-
line of our future research direction. Our goals
are to apply regret minimization to the problem of
playing multiple games simultaneously, and aug-
ment CFR to achieve effective on-line opponent
modelling of multiple opponents. The objective
of this research is to build a world-class computer
poker player for multiplayer Limit Texas Hold’em.

1

An extensive form game [Osborne and Rubenstein, 1994] is
a rooted directed tree, where nodes represent decision states,
edges represent actions, and terminal nodes hold end-game
utility values. For each player ¢, the decision states are par-
titioned into information sets Z; such that game states within
an information set are indistinguishable to player 7. For ex-
ample, poker can be modelled as an extensive game where Z;
disguises the private cards held by the opponent(s). Exten-
sive games are very versatile due to their ability to represent
multiple agents, imperfect information, and stochastic events.

A strategy o; for player ¢ in an extensive game is a mapping
from the set of information sets for player ¢ to a probability
distribution over actions. A strategy profile in an n-player
game is a vector of strategies o = (o1, ..., 0y, ), one for each
player. We denote u;(c) to be the expected utility for player ¢
given that all players play according to the strategy profile o.
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Counterfactual regret minimization (CFR) [Zinkevich et
al., 2008] is an iterative procedure for computing a strategy
profile in an extensive game. The algorithm constructs a se-
quence of profiles (o', 02, ...) that minimize the counterfac-
tual regret, RZ-T(I ,a), at every information set I and action
a at I. In a nutshell, RT (I, a) tells us how much player i
would rather always play action a than follow o/ at I at times
t = 1..T. The output of CFR after T iterations is the average
of the sequence of profiles, 77, and is an approximate Nash
equilibrium profile in 2-player zero-sum games. Though CFR
strategies have also been found to compete very well in multi-
player (more than 2 players) settings [Abou Risk and Szafron,
20101, very little is known as to why they do well and how
performance can be improved.

2 Strategy Stitching

For many real-world problems, the extensive game represen-
tation is too large to feasibly apply CFR. To address this lim-
itation, strategies are often computed in abstract versions of
the game that group similar states together into single abstract
states. For example, in poker, a common approach is to group
many different card dealings into single abstract states ac-
cording to some similarity metric. For very large games, these
abstractions need to be quite coarse, leaving many different
states indistinguishable. However, for smaller sub-trees of the
full game, strategies can be computed in much finer abstrac-
tions. Such “expert” strategies can then be pieced together,
typically connecting to a “base strategy” computed in the full
coarsely-abstracted game.

We have investigated stitched strategies in extensive
games, focusing on the trade-offs between the sizes of the
abstractions versus the assumptions made by the experts and
the cohesion among the computed strategies when stitched
together. We defined two strategy stitching techniques: (i)
static experts that are computed in very fine abstractions with
varying degrees of assumptions and little cohesion, and (ii)
dynamic experts that are contained in abstractions with lower
granularity, but make fewer assumptions and have perfect co-
hesion. We generalized previous strategy stitching efforts
[Billings et al., 2003; Waugh et al., 2009; Abou Risk and
Szafron, 2010] under a more general static expert framework.
In poker, we found that experts can create much stronger
overall agents than the base strategy alone. Furthermore, un-
der a fixed memory limitation, a specific class of static ex-



perts were preferred because of the increase in granularity of
abstraction allowed by the static approach. As a final valida-
tion of our results, we built two 3-player Limit Texas Hold’em
agents with static experts and entered them into the 2010 An-
nual Computer Poker Competition.! Our agents won the 3-
player events by a significant margin.

3 Domination

A pure strategy s; for player ¢ assigns a probability of 1 to a
single action at each information set ; denote this action by
s;(I). A pure strategy s; is strictly dominated if there exists
another strategy o, such that w;(s;,0_;) < u;(o},0_;) for
all opponent strategies o_;. In addition, a pure strategy s; is
recursively defined to be iteratively strictly dominated if ei-
ther s; is strictly dominated, or if there exists another strategy
ol such that u;(s;,0_;) < u;(o},o_;) for all non-iteratively
dominated opponent strategies o_;.

One should never play a dominated strategy. Also, if we
assume our opponents are rational and will not play domi-
nated strategies, one should also avoid iteratively dominated
strategies. We have extended the notion of dominance to ac-
tions at information sets: We say that a is a strictly dominated
action at information set I if there exists another action a’ at
I such that v;(0(1q), ) < vi(0(15ar), I) for all strategy
profiles o. Here, v;(c, I) is the counterfactual value of o at
I as defined by Lanctot et al. [2009, Eq. (4)], and o(;_,) is
the profile o except at I, action a is always taken. Iteratively
strictly dominated actions are defined analogously.

We have two main results regarding dominance in CFR.
The first proves that if the opponents continue to reach an
information set I with positive probability, then eventually
the probability of playing a strictly dominated action at I be-
comes zero.> This implies that 7 plays iteratively strictly
dominated actions with vanishing probability. Our second re-
sult shows that if s; is a strictly dominated strategy, then even-
tually the regret RT (I, s(I)) for action s;(I) must be nega-
tive at some information set /. Future work will look into
measuring how quickly the dominated elements are removed
from 57 and strengthening these results.

4 Simultaneous Game Playing

Strategy stitching allows us to employ finer abstractions to
sub-games. For very large games, however, it is not feasible
to build expert strategies for every sub-game. Currently, we
play in a coarsely abstracted base game for much of the tree,
where granularity is restricted by our resource limitations.
Our goal is to develop a regret minimization procedure
that produces a strong strategy for playing multiple (abstract)
games simultaneously. The motivation for this comes from
overlapping tilings in reinforcement learning [Sutton and
Barto, 1998, Figure 8.5]. By coarsely abstracting the space in
multiple ways, we have fewer total information sets than if we
considered the single “product” abstraction. Consequently,
less memory and less time are required to run a CFR-type al-
gorithm. The goal is to find strategies that perform well in

Uhttp://www.computerpokercompetition.org
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each of the individual abstractions and improve play in the
full game.

5 On-line Opponent Modelling

Finally, in repeated games, monitoring opponent behaviors
and exploiting them is a challenging but important task. In
multiplayer settings, following a single static strategy can be
problematic; even playing a Nash equilibrium does not pro-
vide a worst case guarantee. While there are some positive
results in 2-player games [Davidson, 2002; Lockett and Mi-
ikkulainen, 2008], little has been achieved with modelling
multiple opponents on-line.

Our goal is to apply an augmentation of CFR on-line that
will perturb our strategy according to the opponents’ play.
Since hidden information is not always revealed after each
repetition, we plan to model opponent behavior based only
on their public actions and restricting the opponents’ strat-
egy space accordingly. By leaving our strategy space unre-
stricted, the goal is to update our strategy to better exploit
these restricted opponents. Opponent modelling is essential
to our primary objective: Building a world-class poker player
for multiplayer Limit Texas Hold’em.
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