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1 Introduction

Quantitative prediction problems involving both spatial and
temporal components have appeared prominently in several
disparate research areas including finance, supply chain man-
agement, and civil engineering. Unfortunately, either the spa-
tial or temporal aspect tends to dominate the other in many
prediction formulations. We briefly examine the underlying
formulations used in spatial and temporal prediction. Then,
we outline a method that combines these approaches and im-
proves prediction results in high-dimensional economic do-
mains by integrating multivariate and time series techniques
which require minimal tuning but achieve superior perfor-
mance compared to previous methods. We present prelimi-
nary results in the context of the Trading Agent Competition
for Supply Chain Management.

2 Completed Work

Much of the work completed so far focuses on economic anal-
ysis and prediction techniques relevant to data derived from
the Trading Agent Competition for Supply Chain Manage-
ment (TAC SCM). TAC SCM is a multi-agent supply chain
simulation involving an oligopoly of competing, fully au-
tonomous agents who seek to maximize profit. In the simu-
lation, agents purchase component parts from suppliers, con-
struct computers with the component parts, and sell the com-
puters to customers. This is a complex economic simulation
competition with an annual tournament since 2003 that has
attracted university teams from around the world."

2.1 Understanding Complex Economic Data

Understanding the effect of changes in behavior in a dynamic,
noisy economic environment is a challenge. Actions that in
off-line analysis should improve agent behavior can have ad-
verse unintended effects due to the inter-related nature of op-
erating in a highly optimized and competitive multi-agent en-
vironment. Much of our early work focuses on understanding
how low-level tactical decisions in TAC SCM combine into
high-level strategic behaviors using visualization [Groves et
al.,2010; 2011].

Figure 1 illustrates a technique for visualizing supply and
demand pressures for an individual day in the component

'"For more information
http://tac.cs.umn.edu/ .

on TAC SCM, please see
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Figure 1: Customer market supply and demand for a product
on day 4 (top) and day 89 (bottom) of game tac01-#3454. The
demand line is the total demand. The dotted lines correspond
to the offers made by each agent and the height of the line
indicates the offer price. The agent with the lowest offer price
for a given request will receive the order.

purchase market. The “Supply” line represents the ascend-
ing price-sorted set of offers made by the agents in response
to customer requests. The total demand from customers is
shown in the “Demand” line, sorted by decreasing reserve
price. Offers from individual agents are visible as short hor-



izontal lines set vertically at the price specified in the offer.
The offer with the lowest price becomes the accepted order
for each request. Using this graph it is possible to estimate
the current market pressure based on how tightly the bids are
compressed in terms of price (y-axis). Visualizations such as
this are useful for formulating strategic and tactical behaviors
in future runs of the simulation.

2.2 Improving prediction by leveraging temporal
aspects of data

Economic data generally features a large number of simulta-
neously observable variables that contain potentially relevant
information for prediction. Many types of multivariate algo-
rithms can capture relationships between sets of variables and
be used for prediction. [Martens and Nees, 1992] provides an
excellent overview of multivariate techniques. There are also
many types of time series prediction methods that perform
prediction for temporal data.

We introduce a method that augments the feature vector
used in multivariate techniques with time features and show
that it improves prediction in high-dimensionality domains
having a significant temporal aspect. Specifically, we aug-
ment the features fed to a partial least squares (PLS) regres-
sion model as follows: (1) we include time-delayed obser-
vations (that we call lagged features) as additional elements
in the feature vector, in addition to the most recent observed
value, and (2) we introduce a hierarchical segmentation of
the features set. In our domain, the 101 raw data streams
are divided into 5 classes based on the relationship of each
to the target variable. The intuition we use is that earlier ob-
servations of the variable to be predicted are most likely to
contain predictive information. Data streams on other sim-
ilar products also provide some information. Finally, data
streams from the remaining products are expected to contain
the least useful information. The extent of lagged features is
set uniformly within each feature class and is determined by
a search process. Partitioning the raw features into classes in
this way makes searching for a higher-performance combina-
tion of time-delayed features tractable and efficient.

Future Future

Product Component

(p-value) (p-value)
PLS regression with | 0.08553 0.09910
Lagged Features (0.2660) (0.0012)
PLS regression (no | 0.09039 0.10947
lagged features)
2008 First Place 0.08726 0.09964
2008 Third Place 0.09934 0.10281

Table 1: RMSE (Root Mean Square Error) of the aggregate
prediction scores (lower is more accurate) of an agent imple-
menting our method for each of the 20 day ahead (“future”)
predictions and the scores of the top performing agents in the
2008 TAC SCM Prediction Challenge.

Table 1 shows the results of PLS regression used both with
and without the augmented feature vector. The table also
compares results produced by our approach with the scores
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of other prediction methods used the TAC SCM domain. A
p-value less than 0.1 denotes statistical significance at the
90% level using Student’s paired ¢-test. Our method, which
is domain-agnostic, achieves competitive and often superior
performance compared to the state-of-the-art domain-specific
prediction methods used by top agents in the 2008 TAC SCM
Prediction Challenge competition. The Prediction Challenge
is concerned only with price prediction aspects in TAC SCM.

3 Conclusions and Future Work

We have shown that augmenting multivariate techniques with
temporal features facilitates prediction and is easy to gener-
alize to many domains. This methodology can replace elabo-
rate domain specific models in many applications.

For future work, we will seek to apply these prediction
techniques in other domains. Our next steps are (1) to add
spatial information and (2) to use the computed models to
determine mathematical relationships between the variables.
Many real-world prediction domains contain both temporal
and spatial aspects, and this motivates the need to incorporate
spatial relationships into the prediction model. In particular,
we believe spatial relationships present in airline ticket price
data (see [Etzioni et al., 2003]) are amenable to our approach.

Multivariate techniques such as PLS regression implicitly
compute vectors (PLS factors) from the training data to per-
form dimensionality reduction. These PLS factors, analogous
to principal components in Principal Component Analysis,
contain information about correlations within the augmented
feature set. Analysis of the PLS factors will allow estimates
of spatial and temporal relationships. These could serve to
validate prediction models computed on data with known re-
lationships. For instance, if the spatial relationships between
locations in the air transportation network are estimated from
the data, these computed relationships could be verified using
known physical relationships. This could serve as a mecha-
nism for prediction model validation.

References

[Etzioni et al., 2003] Oren Etzioni, Rattapoom Tuchinda,
Craig A. Knoblock, and Alexander Yates. To buy or not to
buy: mining airfare data to minimize ticket purchase price.
In KDD, pages 119-128, 2003.

[Groves et al., 2010] W. Groves, W. Ketter, J. Collins, and
M. Gini. Analyzing market interactions in a multi-agent
supply chain environment. In R. Sharman, H. R. Rao, and
T. S. Raghu, editors, Exploring the Grand Challenges for
Next Generation E-Business. 8th Workshop on E-Business,
WEB 2009, Revised Selected Papers, volume 52 of Lecture
Notes in Business Information Processing, pages 44-58.
Springer, 2010.

[Groves et al., 2011] W. Groves, W. Ketter, J. Collins, and
M. Gini. Analysis of Market Interactions and Decision
Support in a Multiagent Supply Chain Network. [EEE
Trans on Automation Science and Engineering, in review,

2011.

[Martens and Nes, 1992] Harald Martens and Tormod Ns.
Multivariate Calibration. John Wiley & Sons, July 1992.





