Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

A Method for Evaluating and Standardizing Ontologies

A. Patrice Seyed
Department of Computer Science and Engineering
University at Buffalo, Buffalo, NY, USA
apseyed @buffalo.edu

1 Introduction

For my thesis work I am developing a method for evaluating
and standardizing ontologies based on an integration of the
Basic Formal Ontology (BFO) and OntoClean. BFO serves
as the upper ontology for the domain ontologies of the Open
Biomedical Ontologies (OBO) Foundry'. The OBO Foundry
initiative is a collaborative effort for developing interopera-
ble, science-based ontologies. OntoClean is an approach for
the quality assurance of ontologies, and helps a modeler de-
tect when the subsumption relation is used improperly.

Ontologies developed for OBO use include some that have
been ratified, and others holding the status of “candidate”. To
maintain consistency between ontologies, it is important to
establish formal principled criteria that a candidate ontology
must meet for ratification. The formalisms that result from
our integration will serve as criteria an OBO Foundry candi-
date ontology must satisfy in order to be ratified. The for-
malisms will also serve as a constraints within a prototype of
an ontology editor that interactively asks a modeler questions
that helps alleviate constraint violations.

The first step in the integration is the unification of the cat-
egorical units of OntoClean and BFO. OntoClean uses prop-
erties, which are the intension of general terms. BFO uses
types, “generalizations about the structure, order, and regu-
larity that exists in nature that experiments and observations
make possible” [Spear, 2007, p.16]. We unify property and
type under the categorical unit class, since each has a cor-
responding class. member_of(x,A,f) means that the object x
satisfies the definition of class A at t. exists_at(x,r) means
that under a certain ontological theory, object x is within its
domain, and it’s existence spans f.

OntoClean requires that a modeler characterize their prop-
erties with respect to the notions of Identity, Unity, and Rigid-
ity.? Identity holds for properties for which there is a way to
uniquely identify its instances. Unity holds for properties for
which their instances are integral wholes. Rigidity is a no-
tion that characterizes a property as either: Rigid, essential to
all its instances; Non-Rigid, non-essential to some instance;
or Anti-Rigid, non-essential to all instances. In what follows
we describe the completed work on integrating the Rigidity

"http://www.obofoundry.org/
*Dependence will be addressed within the scope of Rigidity in
the dissertation.

2846

component of OntoClean with BFO’s theory of types.

2 Integrating Rigidity with the BFO Theory
of Types

Each object that has a Rigid property has that property at
all times at which the object exists. We formalize this un-
der classes instead of properties by the unary relation Rigid.
Rigid(Person) means that all members of the class Person are
people at all times at which they exist. Types are not gener-
ally characterized as Rigid in BFO because for classes like
Fetus which some consider a type, the existence conditions
are debatable. For the purposes of our method we exclude
these kinds of classes from our domain, hence types satisfy
the Rigid relation.

Because unexemplifiable properties are trivially Rigid, the
theory was later constrained to properties for which there
exists some instance [Welty and Andersen, 2005, p.108].
We define this intuition more strictly: Instantiated(A) means
there is some member of A at ¢ which exists at z. Types also
satisfy this criterion [Smith, 2003, p. 6]. Also, Rigid prop-
erties are only instantiated by actually existing objects. For
classes, Exists(A) means that for A its members exist at all
times at which they are members. This intuition is essential
to BFO; all types satisfy this criterion.

Non-Rigid is presented as the negation of OntoClean’s no-
tion of Rigid, which we apply for our class formulation, under
the unary relation Non-Rigid. Non-Rigid(S7udent) means a
member of the class Student exists at a time at which he is
not a student. Given that types (under the restriction given)
are Rigid, it follows that no Non-Rigid class is a type.

The semantics of Anti-Rigid are such that an object may
have an Anti-Rigid property at all times it exists, with the
possibility that it could have not had that property while exist-
ing. Because a non-modal interpretation of Anti-Rigid cannot
capture its intuition, we do not reformulate Anti-Rigid. For
modeling BFO ontologies, we can now use Rigid and Non-
Rigid, as a replacement for OntoClean’s modal definitions of
Rigidity.

The objects of BFO’s domain are partitioned into partic-
ulars and types. Particulars are entities confined to specific
spatial, spatiotemporal, or temporal regions (e.g., a specific
grasshopper in front of me, its life, or the time interval that its
life spans, respectively). instance_of(x,A,f) means that par-



ticular x is an instance of type A at time . If a general term
refers to a class, but also to what is a BFO type, then each of
the members of the class instantiates the type. BFO consid-
ers instance_of, not member_of, the most basic relation for
constructing ontologies.

Particulars that instantiate a type are in some sense a part of
a whole; types exist in their corresponding particulars [Smith,
2003, p.6], so there is a dependency between a type and its
particulars. (This may be more controversial for types that are
artifactual, however.) With the member_of(x,A,¢) relation,
there is no commitment about the nature of A. Classes may
be members of a class, but only particulars are instances of a
type.

isa(A,B) means that all instances of A are instances of B.
It is the “backbone” BFO relation for scientific classification,
i.e., building taxonomies. isa is provably reflexive, transitive,
and anti-symmetric. disa(A,B) (‘d’ for “direct”) means there
is no other type “in between” A and B in the isa hierarchy.
disa is provably irreflexive, intransitive, and asymmetric, and
isa is its transitive closure. The root type of the BFO up-
per ontology is Entity and is directly subtyped by Continu-
ant and Occurrent. Continuants (e.g., a heart) are continuous
with respect to time, while occurrents (e.g., process of a heart
beating) are bound with respect to time. If an occurrent in-
stantiates a type, it instantiates that type for all time.

BFOQ’s theory of types commits to the Disjointness Princi-
ple, that two types have no instances in common unless one is
a subtype of the other. The Single Inheritance Principle fol-
lows, that no type has more than one direct supertype. From
the definition of disa and the Disjointness Principle, it follows
that two types which have an instance and a direct supertype
in common are identical. Candidate types (i.e., classes pro-
posed as types in an OBO Foundry candidate ontology) that
violate either principle are not types.

2.1 Dependency

BFO is influenced by Aristotle’s division of particulars
into substances and accidents. BFO refers to these under
the types IndependentContinuant and DependentContinuant,
which disjointly fall under Continuant. An example of an
independent is a specific chunk of wood. An example of
a dependent is the texture of that chunk of wood. The de-
pends_on(x,y.f) relation means that the dependent x depends
on the independent y at a time ¢. Relative to our example, the
texture is given the status of a particular in BFO, but it only
exists when the chunk of wood exists, and cannot migrate
from one chunk to another.

There are other type-level relations besides isa which, in-
stead of subsumption, describe relationship patterns between
particulars of two types. Depends_On(A,B) means that for
every instance of A there is some instance of B where the for-
mer instance depends on the latter instance. For example, a
function of mitochondria is to supply cellular energy.

3 Applying Rigidity and Disjointness to
BFO-Compliant Domain Modeling

Our reformulation of Rigidity is useful as a modeling con-
struct for BFO and OBO because a Non-Rigid candidate type

is frequently a class whose members are independents and the
class definition implicitly refers to dependents. In the context
of an evaluation method, the notion of Rigid and Non-Rigid
candidates is useful together with the Disjointness Principle.
Violations of the Disjointness Principle follow the pattern
A is a subtype of B and C, where under closed world rea-
soning, B is not a subtype of C, and vice versa. One rea-
son for the violation is that B and C are types, and one is
a subtype of the other, but it has not been specified yet by
the modeler. Another possibility is that one candidate, B, is
a type, and the other, C, is Non-Rigid. Let’s assume that A
is the candidate Molecule and C is the candidate Reactant.
We assume that Reactant has the informal definition “A start-
ing material in a chemical reaction.” In this case members
of Reactant are molecules and the class definition implic-
itly refers to other particulars which BFO considers roles.
Because reactant roles are only played by molecules, De-
pends_On(Reactant,Molecule) is the appropriate representa-
tion for the relationship, instead of isa(Molecule,Reactant).

4 Conclusion and Future Work

The notion of class covers both OntoClean’s notion of prop-
erty and BFO’s notion of fype. A class might or might not
satisfy Instantiated, Exists, Rigid, or Non-Rigid, the latter
two capturing the intuitions of Rigidity within our formal the-
ory of classes. BFO’s notion of type is captured by a class that
satisfies Instantiated, Exists, and Rigid. A domain modeler
who wants her ontology to be ratified for OBO use and thus
BFO-compliant must show that the candidate types of her on-
tology are indeed types by these criteria.

In future work we will integrate OntoClean’s other compo-
nents (i.e., Unity and Identity) with BFO. We will also more
closely tie the current work to the ontology modeling process.
In doing so we will treat our formalisms as a foundation for
developing a phased, question-asking method that assists a
modeler in determining if a candidate type satisfies Instan-
tiated, Exists, Rigid, or Non-Rigid. Ofttimes ontology lit-
erature is obfuscated by philosphical lingo. We take a more
intuitive approach in our method by asking the modeler ques-
tions using examples they provide for what they want to clas-
sify. Ultimately, the method we develop will provide a mod-
eler assistance in evaluating candidate types. For those candi-
date types that do not satisfy criteria needed to be a type, the
method will assist the modeler in determining how the can-
didate type can be formulated in a manner that is consistent
with BFO’s theory.

References

Barry Smith. The Logic of Biological Classification and the
Foundations of Biomedical Ontology. In D. Westerstahl,
editor, International Conference on Logic, Methodology
and Philosophy of Science. Elsevier-North-Holland, 2003.

Andrew Spear. Ontology for the twenty first century: An in-
troduction with recommendations. Technical report, Uni-
versity at Buffalo, 2007.

Christopher Welty and William Andersen. Towards Onto-
Clean 2.0: A framework for Rigidity. Applied Ontology,
1(1):107-116, 2005.

2847





