
Towards a Model-Centric Cognitive Architecture for Service Robots

Andreas Steck

University of Applied Sciences Ulm
Department of Computer Science∗, 89075 Ulm, Germany

steck@hs-ulm.de

Abstract

The development of service robots has gained more
and more attention over the last years. Advanced
robots have to cope with many different situations
and contingencies while executing concurrent and
interruptable complex tasks. To manage the sheer
variety of different execution variants the robot has
to decide at run-time for the most appropriate be-
havior to execute. That requires task coordination
mechanisms that provide the flexibility to adapt at
run-time and allow to balance between alternatives.

1 Introduction, Motivation and Related Work

Recent advances in robotics and cognitive sciences have stim-
ulated expectations for emergence of a new generation of
robotic devices that interact and cooperate with people in or-
dinary human environments. Robotic systems which should
be able to operate in everyday life have to manage the high
dynamics and complexity of real-world environments. The
huge amount of different situations and contingencies be-
comes overwhelming and can hardly be pre-programmed,
even by the most skilled robot engineer. The sheer variety of
execution variants in open environments does neither allow
an optimal solution nor an exhaustive assignment of proper
reactions to situations. Thus, the robot has to balance between
different alternatives and to decide for the most appropriate
one at run-time. Reliably performing complex tasks over long
periods of time requires task coordination mechanisms which
can manage complexity as well as address robustness. There-
fore, at design-time the developer specifies variation points
and corridors in which the robot can make decisions and op-
erate at run-time. Binding left open variation points at run-
time may require to consult simulators, symbolic planners
or analysis tools. This demands for explicit descriptions of
relevant properties and parameters of the robot, its resources
and its capabilities. Different views on partial aspects of a
robot (mechanical, electrical and even software) can be pro-
vided by different models as is already common practice at
design-time. However, these design-time models also need to

∗Collaborative Center of Applied Research on Service Robotics
(ZAFH Service Robotics) www.zafh-servicerobotik.de

be accessible at run-time to support run-time reasoning in or-
der to take advantage of the information which is explicated
in the models. Therefore, useful information needs to be ex-
tracted out of the design-time models and transformed into
representations which can be exploited at run-time. Exploit-
ing those resources demands for effective coordination and
planning capabilities. [Schlegel et al., 2010]

Managing execution variants and binding left-open vari-
ation points at run-time requires extensions of task coordi-
nation mechanisms. Task coordination languages [Verma et
al., 2005] have successfully been introduced into robotics,
but have been developed with limited robot platforms and
capabilities. The power of those concepts can now be ex-
ploited and the progress in robotics allows to proceed the
development of those ideas which have strongly influenced
SMARTTCL, which is part of this work.

In CRAM [Beetz et al., 2010] a two layer architecture is
proposed to coordinate the skills. CRAM relies on reason-
ing mechanisms to infer control decisions rather than pre-
programming them. In the here proposed approach the fo-
cus is to take advantage from prior knowledge and to pro-
vide this as procedural knowledge in form of reusable action
plots. At design-time purposefully left open variation points
are bound just before execution. This balancing between pre-
programming, reasoning and planning provides flexibility in
given situations as well as robustness.

2 The overall Approach

The approach is to provide task coordination mechanisms that
can manage the huge amount of different execution variants
by exploiting design-time models at run-time. Simulators,
symbolic planners and analysis tools are, for example, used
to bind purposefully left open variation points. That requires
to bring together ideas and approaches from currently sepa-
rated technologies including robotics, cognitive sciences and
software engineering. The different aspects and views are
represented by different models created with different tools
which are based on different representations. As each tool
has its specific representation the models have to be trans-
formed accordingly. Model transformations are widely used
in the domain of software engineering and a huge commu-
nity provides tools like the Eclipse Modeling Project, which
could be tailored to robotics as already done, for example, in
[Schlegel et al., 2010] without re-inventing the wheel.
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Figure 1: The sequencer coordinates the overall system.

In the SMART ROBOTICS ARCHITECTURE (SARA) the
sequencer has the control over the whole system (fig. 1).
The sequencer is implemented with the TASK COORDINA-
TION LANGUAGE (SMARTTCL) [Steck and Schlegel, 2010],
which is an extension to Common Lisp. It bridges the gap
between continuous processing and event driven task execu-
tion and mediates between symbolic and subsymbolic mech-
anisms of information processing. Subsymbolic mechanisms
ensure flexibility and reactivity since they typically allow
short cycle times. Symbolic mechanisms ensure goal ori-
ented activities and are able to reason about the steps which
are necessary to achieve higher-level goals. The sequencer is
the place to store procedural knowledge on how to configure
skills to behaviors, when to use a symbolic task planner and
what kind of action plots are suitable to achieve certain goals.
It supports hierarchical task decomposition and situation-
driven task execution. At run-time a task-tree is dynamically
created and modified depending on situation and context. The
action plots in SMARTTCL perform dynamic online reconfig-
urations and orchestration of the software components of the
whole system, including skills, analysis, planning and simu-
lation. They furthermore have encoded how to access the dif-
ferent models, how to extract partial views and how to trans-
form between them at run-time.

Symbolic task planners like Metric-FF and LAMA are,
for example, used to bind left open variation points at run-
time. The developer specifies the PDDL models at design-
time which are enriched with the facts, extracted from the
models (e.g. KB) at run-time. Which planner to use, what
partial knowledge to forward to it and how to import the gen-
erated plan into the task tree is encoded in the action plot of
the node which is responsible to bind the specific variation
point. Executing the generated plan is thus in the responsi-
bility of SMARTTCL and consequently its contingency han-

dling mechanisms are applied to ensure that the execution re-
mains in the specified corridor. The responsible node decides
whether the failure can be fixed locally or a complete new
plan has to be generated.

Another example how to bind left open variation points at
run-time is the integration of simulators. A node in the task
tree calls, for example, a physics simulator to experience the
appropriate maximum velocities of a forklift robot taking the
current payload into account.

SARA has been used to build and run several real-world
scenarios. This includes, for example, cleaning up a table.
Several contingencies, like no object could be found on the
table, an object could not be grasped and problems in the
path-planning are handled. The objects include, for exam-
ple, cups that could be stacked into each other and have to be
thrown into the kitchen sink and beverage and crisp cans that
have to be thrown into the trash bin. A beverage can, can be
stacked into a crisp can. The left open variation point which
objects to stack into each other is bound by the symbolic task
planner Metric-FF depending on the set of recognized objects
and the constraints stored in the KB.

3 Conclusion and Future Work

This work contributes to a novel approach for robotic sys-
tem engineering bridging the gap between design-time and
run-time model-usage for exploiting purposefully left open
variation points for run-time decisions. Using a sequencer as
the central coordination mechanism proved to accomplish the
goal to flexibly manage and orchestrate available skills and
resources to master the huge amount of execution variants at
run-time. Future work will extend the task coordination and
selection process and further integrate run-time model usage
as well as Quality of Service (QoS) aspects.
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