
Multiagent Hierarchical Learning from Demonstration

Keith Sullivan

Department of Computer Science, George Mason University
4400 University Drive, MSN 4A5, Fairfax, VA USA

Programming agent behaviors is a tedious task. Typically,
behaviors are developed by repeated code, test, debug cycles.
The difficulty increases in a multiagent setting due to the in-
creased size of the design space. Density of interactions, the
number of agents and the agent’s heterogeneity (both capabil-
ities and behaviors) all contribute to the larger design space.
This makes training the agents rather than programming them
highly attractive.

One training approach is Learning from Demonstration
(LfD) in which agents learn behaviors in real-time based on
provided examples from a human demonstrator. The learned
behavior maps environmental features to agent action(s), and
is constructed from a database of state/action examples sup-
plied by the demonstrator. The database is constructed inter-
actively: initially, the agent is in “training mode,” where the
demonstrator controls the agent. Every time the demonstra-
tor changes the agent’s behavior, the agent saves an example
to the database. When the demonstrator is finished collect-
ing examples, the agent learns the behavior, and then enters
“testing mode.” The demonstrator may offer corrections to
the agent based on observation. These corrections add exam-
ples to the database, and the behavior is re-learned. LfD is a
natural way to train agents since it closely mimics how hu-
mans teach each other. Examples include sports, music, and
physical therapy.

In my LfD implementation, called Hierarchical Training
of Agent Behavior (HITAB), the agents learn behaviors rep-
resented as an automaton. HITAB is a supervised machine
learning approach which uses a classification algorithm to
learn the transitions inside the behavior automaton.

Typically, supervised machine learning requires significant
data to learn robust behaviors. This is doubly so in complex,
high dimensional design spaces. However, gathering data is
potentially expensive since each data point requires an exper-
iment (physically or in simulation) conducted in real-time.
HITAB’s behavior representation helps reduce the number of
required samples by decomposing the task into smaller, less
complex tasks. In addition, these smaller tasks might require
a reduced set of behaviors and/or features, thus further reduc-
ing the design space. Hence, HITAB rapidly learns complex
behaviors which are simple from a machine learning perspec-
tive. While this places HITAB at the edge of machine learn-
ing, it allows novices to train an agent to perform complex be-
haviors without requiring detailed programming knowledge.

1 Single Agent Model

In HITAB, agents learn a hierarchical finite state automata
(HFA) represented as a Moore machine where individual
states correspond to agent behaviors or another HFA. An
HFA is built iteratively: staring with a behavior library con-
sisting solely of atomic behaviors (e.g., turn, go forward),
the demonstrator trains a slightly more complicated behav-
ior, which is then saved to the behavior library. The now ex-
panded behavior library is then used to train an even more
complex behavior which is then saved to the library, and
so on. This process continues until the desired behavior is
trained.

Formally, an HFA is a tuple 〈S,B, F, T 〉 ∈ H:
• S = {S1, ..., Sn} is the set of states in the automaton

where S1 is the start state. One state is active at a time,
designated St.

• B = {B1, ..., Bk} is the set of basic behaviors. Each
state is associated with either a basic behavior or another
automaton from H though recursion is not permitted.

• F = {f1, ..., fm} is the set of observable features in
the environment. At any given time each feature has a
numerical value. The collective values of F at time t
is the environment’s feature vector �ft = 〈f1, ..., fm〉.
Features may describe both internal and external (world)
conditions, and may be toroidal, continuous, categorical
or boolean.

• T = �ft × S → S is the transition function which maps
the current state St and the current feature vector �ft to a
new state St+1.

Behaviors and features may be optionally assigned one or
more parameters: rather than have a behavior called go to
the ball, we can create a behavior called goTo(A), where A is
left unspecified. Similarly, a feature might be defined not as
distance to the ball but as distanceTo(B). If such a behavior
or feature is used in an automaton, either its parameter must
be bound to a specific target (such as “the ball”), or it must
be bound to some higher-level parameter C of the automaton
itself. Thus HFAs may themselves be parameterized.

The agent learns the transition function T of the automa-
ton. The transition function is broken into disjoint transition
functions Tj , one for each state in the model. During train-
ing, each time a state transition occurs, a tuple 〈St, �ft, St+1〉

2852

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



is saved into a database, consisting of the current feature vec-
tor, and the old and new states. Once enough samples are
collected, HITAB builds a classifier for each state Sk based
on examples of the form 〈Sk, �ft, Si〉. Currently, the system
uses a version of the C4.5 decision tree algorithm, however,
any classification algorithm may be used.

As the agent executes an HFA, the demonstrator may cor-
rect its behavior at any time. Correction first switches the
agent into training mode, and the demonstrator then collects
more samples with the correct behavior. Upon switching to
testing mode, the classifiers are re-built, and the agent then
executes the new HFA. This observe/correct loop continues
until the demonstrator is satisfied with the agent’s behavior.

Using this approach, we recently trained a single humanoid
robot to perform a simple visual servoing task [Sullivan et
al., 2010]. Five computer science graduate students, with no
prior experience with the robot nor HITAB, trained the robot
to search for, and approach, an orange tennis ball. Four of the
five students successfully trained the robots to approach the
ball, starting from an arbitrary position. In addition, an expert
trained the robot to perform the same behavior, but also to
stop when close to the ball. Anecdotal evidence showed that
training time for a hierarchical behavior was significantly less
than for a monolithic behavior of searching, approaching and
stopping.

2 Multiagent Model

In a multiagent setting, the size of the design space grows
exponentially due to agent interactions (and any unforeseen
emergent phenomena), the number of agents, and the agent’s
heterogeneity (both hardware and software). As a result, the
number of required samples increases dramatically. The no-
tion of an agent hierarchy1 reduces the number of samples
required by decomposing the training task into manageable
chunks, each requiring a limited number of samples. In an
agent hierarchy, agents are organized into a tree where leaf
nodes are individual agents, and non-leaf nodes are coordina-
tor agents. Coordinator agents are trained in a similar fashion
to individual agents. Having no sensors per se, the coordina-
tor agent’s “sensor” information consists of statistical infor-
mation about its children, and/or global information not avail-
able to individual agents. Coordinator HFA transitions cause
children to transition, regardless of their current state. Mem-
bership in a given coordinator agent’s group can be dynamic,
based on directions from higher level coordinator agents.

We recently conducted a demonstration which organized a
group of robots into a homogeneous swarm, where robots un-
der the same coordinator robot executed the same HFA [Sul-
livan and Luke, submitted]. Four Pioneer robots, equipped
with cameras and sonars, were trained to perform a patrol-
style task: The robots wander randomly searching for an in-
truder. Upon detecting an intruder, a robot proceeded to “cap-
ture” the intruder by approaching it. After capture, the robots
returned to a home base, then the behavior restarted with wan-
dering. At any time, if the “boss” entered the environment,
the robots would run away.

1Not to be confused with the agent’s behavior hierarchy.

This work illustrated the need for a coordinator robot: if
each robot executed the same HFA without any coordination,
the resulting group behavior would be insufficient. For exam-
ple, if two robots see the intruder and one robot “captures”
it, the other robot will search indefinitely for the now non-
existent intruder. A coordinator robot provides a solution:
once one robot “captures” the intruder, all other robots are
informed; thus, everyone correctly changes behavior.

3 Remaining Tasks

There are several remaining tasks. First, I am exploring the
idea of heterogeneous teams, where agents under a given
coordinator agent execute different HFAs. Heterogeneous
teams allow coordination between different subgroups within
a larger swarm.

The second remaining task is the notion of unlearning.
During training, it is common for the demonstrator to make a
mistake. While immediately deleting the example from the
database is relatively straightforward (e.g., an “undo” but-
ton), correcting learned behaviors may be more difficult. For
example, after training, the human demonstrator notices the
agent performing an incorrect behavior. While the human can
intervene and issue an additional datapoint, the data which
caused the erroneous behavior is still in the database. Iden-
tifying this erroneous data is a remaining challenge. In a be-
havior hierarchy this is especially difficult due to determining
not only the incorrect behavior, but the level of the hierarchy
which caused the error. A possible solution includes search-
ing the database for the “closest” example, and replacing it
with the updated example. However, due to the small number
of data samples to begin with, care must be taken to ensure
valid or critical outlier data is not deleted.

HITAB currently uses a single decision tree as a classi-
fier which ignores dependencies between features and also
assumes linearly separable data. Other classifiers such as
oblique decision trees, support vector machines (SVM) or
hidden Markov models (HMM) might prove more appropri-
ate due to their ability to account for feature interdependency
and to handle non-linearly separable data. Analysis is re-
quired to determine how performance changes with different
classification algorithms, and to examine potential computa-
tional complexity issues.

References

[Sullivan and Luke, submitted] Keith Sullivan and Sean
Luke. Hierarchical multi-robot learning from demonstra-
tion. In Proceedings of the Robotics: Science and Systems
Conference, (submitted).

[Sullivan et al., 2010] Keith Sullivan, Sean Luke, and Vit-
toria Amos Ziparo. Hierarchical learning from demon-
stration on humanoid robots. In Proceedings of Hu-
manoid Robots Learning from Human Interaction Work-
shop, Nashville, TN, 2010.

2853




