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1 Introduction

Transfer learning is the process of using knowledge gained
while solving one problem to solve a new, previously un-
encountered problem. Current research has concentrated on
analogical transfer – a mechanic is able to fix a type of car he
has never seen before by comparing it to cars he has fixed
before. This approach is typical of case-based reasoning
systems and has been successful on a wide variety of prob-
lems [Watson, 1997]. When a new problem is encountered,
a database of previously solved problems is searched for a
problem with similar features. The solution to the most sim-
ilar problem is selected, adapted and then applied to the new
problem. Similar methods exist for adapting reinforcement
learning policies [Taylor and Stone, 2009].

We refer to the above approaches as solution adaptation
algorithms – a pair of problems are matched on similarity
and the solution to the first problem, after some adaptation,
is applied to the second problem. The solution adaptation ap-
proach requires three things. First, the two problems must
be substantially similar in surface or structural features. Sec-
ond, there must exist a clear method of adapting one solution
to another. This is typically done through manually-authored
feature mappings or adaptation rules. Third, problem similar-
ity must imply solution similarity.

The “similar feature, similar solution” assumption does not
hold for all domains. One such domain is tower defense.
Tower defense (TD) is a broad category of spatial reasoning
puzzles that share a common theme – a set of agents follow
a path through a maze (the map) and the player must prevent
them from making it to the exit by placing “defense towers”
at strategic locations. There are many different tower defense
games, each with their own set of towers. The majority of
these games have pieces that fit into one of five archetypes:
slow but strong, fast but weak, area of effect (AoE), dam-
age over time (DoT) and slowing. The specific traits of each
tower and their relative strengths vary from game to game.

There are hundreds of TD games, most with multiple maps,
making it a good domain for investigating multiple levels of
transfer learning. It is not, however, a good candidate for
solution-adaptation algorithms. Problem (maze) similarity
does not imply solution (piece placement) similarity. Small
differences in mazes can lead to qualitatively different solu-
tions and there is no clear way to adapt one maze’s solution
to another.

Figure 1: Training map in GopherTD. Yellow objects are
agents trying to move from Start to End. Circles show range
of three towers in three qualitatively different positions.

2 A New Approach to Transfer Learning

Through human studies we have shown that significant trans-
fer learning is possible in tower defense. Human subjects
were given two training problems, neither of which subjects
could initially solve. After subjects announced they had
learned to solve these problems, they were given six new
problems, three equally difficult and three harder. 75% of
subjects solved all equally difficult problems on their first at-
tempt and half solved at least one hard problem.

During training, subjects learned which properties of the
problem to pay attention to, the opportunities they present
and strategies for exploiting them. In this domain, proper-
ties were high-level, moderately abstract properties and fea-
tures such as U-turns, path length, region capacity, areas of
significant overwatch and degree of temporal separation of
nearby path segments. When presented with a new prob-
lem, subjects generated novel solutions by re-representing the
problem in terms of the features they had learned, identify-
ing threats and opportunities, selecting a set of general pur-
pose and opportunity-specific strategies and then using those
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strategies to make the set of decisions, either locally or holis-
tically, that constituted the solution. The process of applying
strategies included merging non-competing strategies, arbi-
trating conflicts between competing ones, mapping abstract
to concrete actions and making tradeoff decisions in the face
of limited resources. As new problems were solved, new rep-
resentations and strategies were added to the existing set.

The ability to learn strategies during problem solving and
apply them to new, qualitatively different problems is, in
computer science, an unexplored method for transfer learn-
ing. We are using a combination of human studies and com-
puter models to investigate how this might be implemented in
a computer.

3 Work to Date

In the first phase of our work, we collected data from human
subjects on solutions, strategies, features, representations and
performance as well as between and within subject variabil-
ity. Subjects solved problems under a think aloud protocol
and were then interviewed in an after-action review. Problems
were presented in GopherTD, an instrumented tower defense
game created for this research.

We were not surprised to see that a subject’s strategies, fea-
tures and performance were relatively stable while their solu-
tions were not – when asked to repeat a given solution, sub-
jects were unable to recreate their previous solutions exactly,
although the new solutions were qualitatively similar in that
solutions had roughly the same shape, distribution and den-
sity of pieces and that placement decisions were explained
with the same justifications.

What we did not expect was the variance between subjects.
Although we had believed the task to have a single dominant
strategy, eight subjects came up with eight substantially dif-
ferent sets of strategies, some of which solved problems we
had previously believed to be unsolvable. There was moder-
ate overlap in features, goals and strategies but overall solu-
tions differed significantly.

In the second phase, we investigated how well a human
could recognize a problem solver from their solution and how
well they could infer the strategies used to generate a solution.
The answer to both questions is quite well. This information
was required to evaluate the results of the third phase.

Subject descriptions were often not directly implementable
and certainly not complete. In the third phase, we created a
set of computational representations that we believed neces-
sary to support the reported strategies. We attempted to find
the minimal set of features necessary to cover all strategies re-
ported by all subjects, balancing the abstraction necessary for
generalization and transfer against the concreteness necessary
to make the data actionable. To test these representations, we
manually created agents that simulated specific subjects and
used a Turing-like test (double-blind classification task) to de-
termine whether a human expert could distinguish a subject’s
solutions from ones generated by a computer imitating the
subject. For the subjects modeled so far, the answer is no.

4 Negative Transfer

An unexpected finding was that 25% of subjects performed at
or below chance. Further research determined that this poor
performance was due to transfer learning.

Subject had no previous experience with GopherTD but
had mastered one or more other tower defense games. All
of the subjects who did well in GopherTD used five or more
slowing towers. Subjects who did poorly did not. These sub-
jects had previous experience with TD games where slowing
towers were less useful and as a result transferred the high-
level knowledge “slowing towers are weak” to GopherTD.
Although the slowing towers in each game are different, their
high-level abstractions (”a tower that slows enemies”) are not,
leading to negative transfer.

Although there are many benefits to transfer learning, we
believe that, outside of a researcher’s carefully controlled ex-
periments, it is just as likely to harm as help. Before transfer
learning can find widespread success, there are many ques-
tions that need to be answered such as how to determine when
transfer learning is appropriate, whether performance is ben-
efitting or being harmed by transfer learning and how to se-
lectively apply (and stop applying) knowledge.

5 Future Work

We continue to bring in new subjects, collecting data and
modeling subjects.

Our current work focuses on finding representations that
allow for knowledge transfer. In addition to being compre-
hensive and actionable, these representations must allow for
learning, meaning that they must serve as a learning target.

Our next step is to model strategy inference - given a set of
solutions, the computer must infer what strategies the solver
used in enough detail that the computer can predict what so-
lutions that solver would generate on related but qualitatively
different problems (e.g., on different maps).

6 Conclusions

We believe this approach to be quite novel and consequently
unexplored. Despite the amount of work we have done, there
are numerous open questions and attendant risk. The rewards,
however, are significant. For example, we believe that the
strategy learning and application approach described here is
capable of achieving true level eight transfer performance on
DARPA’s 10-level transfer learning scale [DARPA, 2005].
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