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Abstract
We present a bimodal method for online planning
in partially observable multiagent settings as for-
malized by a finitely-nested interactive partially ob-
servable Markov decision process (I-POMDP). An
agent planning in an environment shared with an-
other updates beliefs both over the physical state
and the other agents’ models. In problems where
we do not observe other’s action explicitly but must
infer it from sensing its effect on the state, obser-
vations are more informative about the other when
the belief over the state space has reduced uncer-
tainty. For typical, uncertain initial beliefs, we
model the agent as if it were acting alone and utilize
fast online planning for POMDPs. Subsequently,
the agent switches to online planning in multiagent
settings. We maintain tight lower and upper bounds
at each step, and switch over when the difference
between them reduces to less than ε.

1 Introduction
Online planning involves deliberating on optimal actions to
perform in a limited amount of time given beliefs that evolve
as the agent acts and observes. The limited-time aspect puts
an emphasis on reduced planning time, which is achieved by
trading off optimality and relying on approximations. Atten-
tion to online planning has predominantly focused on single-
agent settings [Ross et al., 2008] albeit isolated approaches
for cooperative problems do exist [Wu et al., 2011].

We attend to planning in the presence of an interacting
agent, which complicates the process. In this space, the
finitely-nested interactive partially observable Markov deci-
sion process (I-POMDP) [Gmytrasiewicz and Doshi, 2005;
Doshi, 2012] is a recognized approach for performing the de-
liberations by modeling the other agent. Approaches such
as the interactive particle filtering [Doshi and Gmytrasiewicz,
2009] offer a way to plan online given a belief. However, this
is time consuming and does not scale well.

Within the I-POMDP framework, an agent simultaneously
updates its beliefs over both the physical state and the mod-
els of other agent based on its actions and observations. The
∗We acknowledge support from NSF CAREER grant, #IIS-

0845036.

distribution over the models is updated based on the pre-
dicted action, whose effect on the state is observed by the
agent. These observations become more informative when
the agent’s belief over the physical state has reduced uncer-
tainty (entropy). For example, in the context of the well-
known multiagent tiger problem [Gmytrasiewicz and Doshi,
2005], let the agent strongly believe that the tiger is on the
left but on listening hear a growl from the right. If the ob-
servation is reliable with a high probability, the agent infers
that the other agent likely opened the door causing the tiger
to change its location.

We present a novel two-stage approach that focuses first
on online planning as if the agent is alone, in order to re-
duce uncertainty in its belief over the physical state. In this
mode, the agent is modeled as a POMDP and utilizes a fast
POMDP-based planning technique, SARSOP [Kurniawati et
al., 2008], that takes orders of magnitude less time to execute
as compared to the I-POMDP solver. Subsequently, the agent
switches to the I-POMDP model combining its updated belief
over the state and the initial belief over the models. It now
performs online planning using interactive particle filtering.

A key question is when should the agent switch from the
POMDP to the I-POMDP mode? In order to answer this, the
agent at every step computes lower and upper bounds on the
optimal decision at that step. The agent switches to the latter
mode when the fractional difference between the lower and
upper bounds at any step become less than a parameter, ε.
Because of the convexity property of the lower-bound value
function, the difference between the two typically reduces as
beliefs become less uncertain. Nevertheless, the bounds may
not converge, and very small ε values may not cause a switch.

We estimate the error that this approach entails. The com-
putational savings result because during the initial steps of
online planning, a fast and scalable single-agent approach is
utilized. We illustrate this approach on the multiagent tiger
problem and show that the total time elapsed over several
steps is significantly less compared to using an I-POMDP
model only at the expense of reduced cumulative reward.

2 Overview of Finitely-Nested I-POMDPs
A finitely-nested I-POMDP [Gmytrasiewicz and Doshi,
2005] for an agent i with strategy level, l, interacting with
another agent j is defined using the tuple:
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I-POMDPi,l = 〈ISi,l, A, Ti,Ωi, Oi, Ri, OCi〉
• ISi,l denotes the set of interactive states at strategy

level, l, defined as, ISi,l = S ×Mj,l−1, where S is the
set of physical states, and Mj,l−1 is the set of models
ascribed to the other agent.
• A = Ai ×Aj is the set of joint actions of all agents.
The remaining parameters – Ti (transition function), Ωi

and Oi (observation space and function respectively), Ri
(reward function), and OCi (optimality criterion) – are de-
fined analogously to POMDPs with the generalization that
the functions are conditioned on the joint actions, and the
states are the physical states only. We focus on optimizing
the summation of the discounted reward over a finite number
of remaining steps, called the horizon.

Agent i’s 0-th level belief is a probability distribution over
the physical states only, and the 0-th level models, Mj,0, con-
sist of the set of computable intentional models of level 0,
Θj,0, and the subintentional models, SMj . An intentional
model, θj,0 = 〈bj,0, θ̂j〉, where bj,0 is j’s level 0 belief, bj,0
∈ 4(S) – 4(S) is the set of all distributions over S – and
θ̂j = 〈A, Tj ,Ωj , Oj , Rj , OCj〉, is j’s frame. Here, j is as-
sumed to be Bayes-rational. 0-th level intentional models are
POMDPs. An agent’s level 1 beliefs are probability distribu-
tions over the physical states and level 0 models of the other.
First-level models include level 1 intentional models and level
0 models of the agent, and so on up to level l.

We limit our attention to intentional models only, and sim-
plify the interactive state space to include intentional mod-
els of the other agent that are of level one less than that of
the modeling agent. We assume that the frame of agent j is
known and remains fixed; it need not be the same as that of i.

An agent’s belief over its interactive states, bi,l, fully sum-
marizes the agent’s observation history. We may factor the
agent’s belief as: bi,l(is) = bi,l(s) bi,l(θj,l−1|s). Beliefs are
updated after the agent’s action and observation using Bayes
rule. First, as the state of the physical environment depends
on the actions performed by both agents, the prediction of
how it changes has to be made based on the probabilities of
various actions of the other agent. Probabilities of other’s ac-
tions are obtained by solving its models. Second, changes in
the models of the other agent have to be included in the up-
date. The changes reflect the other’s observations and, when
modeled intentionally, the update of other agent’s beliefs.

Given the generalized belief update, solution to an I-
POMDPi,l is a policy, analogous to that in a POMDP. Gmy-
trasiewicz and Doshi (2005) provide additional details on I-
POMDPs, and the Bellman operator for backup, H .

One approach for online planning in settings formalized by
I-POMDPi,l involves sampling the interactive state space and
projecting the samples, called particles, across time in order
to simulate the belief update. The interactive particle filter
(I-PF) [Doshi and Gmytrasiewicz, 2009] propagates, weights
and resamples a nested set of particles of level l. A reacha-
bility tree is generated where the sampled representations of
beliefs at the nodes are obtained by running the I-PF. Value it-
eration using sample sets on the reachability tree is performed
to obtain the approximately-optimal action at the given belief.

3 Bimodal Online Planning
Let b0i,l be agent i’s initial belief over the interactive state
space. Agent i initially views the problem as a single-agent
POMDP and its belief is the distribution over the physical
states only, b0i,l(s). Conditional beliefs over the models given
the state, b0i,l(·|s), are held fixed. Subsequently, the agent
switches to updating the conditionals as well after some steps.

We show that in problems where direct (including noisy)
observations about the other agent’s actions are not available
and its actions are inferred by sensing the next state, perhaps
noisily, knowing the current state provides greater informa-
tion about the true model of the other agent.
Definition 1 (Unobservable actions). Actions of agent j
are directly unobservable to agent i iff observations of i are
conditionally independent of j’s action, Oi(s, ai, aj , oi) =
Oi(s, ai, oi); ∀ aj ∈ Aj , oi ∈ Ωi, ai ∈ Ai, s ∈ S.

Let Pr(θ̇t+1
j,l−1|o

t+1
i , ati, b

t
i,l) be i’s probability of the true

model of the other agent, θ̇t+1
j,l−1, on observing, ot+1

i , and per-
forming action, ati, given belief, bti,l. We may write it as,

Pr(θ̇t+1
j,l−1|o

t+1
i , ati, b

t
i,l) =

∑
st+1

Pr(st+1, θ̇t+1
j,l−1|o

t+1
i , ati, b

t
i,l)

Notice that the term on the right is agent i’s updated belief
over a state and true model of j, which is obtained using the
I-POMDP belief update. Under Def. 1 applied to both agents,

Pr(θ̇t+1
j,l−1|o

t+1
i , ati, b

t
i,l) =

∑
st+1

∑
st
bti,l(s

t)
∑

θt
j,l−1

bti,l(θ
t
j,l−1|st)∑

atj

Pr(atj |θtj,l−1) Ti(s
t, ati, a

t
j , s

t+1) Oi(s
t+1, ati, o

t+1
i )∑

ot+1
j

Oj(s
t+1, atj , o

t+1
j ) τ(θtj,l−1, a

t
j , o

t+1
j , θ̇t+1

j,l−1)

(1)
where τ is an indicator function that is 1 when model, θtj,l−1,
updates to θ̇t+1

j,l−1 on performing action, atj , and receiving ob-
servation, ot+1

j ; otherwise 0. Equation 1 shows that i’s belief
over j’s true model at t + 1 is influenced by j’s predicted
actions from its models, the observations that j may likely
receive and agent i’s transition and observation functions.

Let agents i and j perform actions, ati and atj respectively,
due to which the state transitions from st to st+1. As j’s
actions are unobservable, state transitions allow valuable in-
ference of j’s actions.
Definition 2 (Maximally informative transition). The
above state transition is maximally informative about j’s ac-
tion iff Ti(st, ati, a

t
j , s

t+1)≥ Ti(s̄t, ati, atj , st+1) for any other
state, s̄t, and T (st, ati, a

t
j , s

t+1) > T (st, ati, ā
t
j , s

t+1) for all
other actions, ātj , of j.

Consider domains where the other agent’s actions are un-
observable (Def. 1). In such settings, observations are more
informative about the other agent’s models if the uncertainty
over the physical state is mitigated. In order to show this,
let the transition that occurs from the current state, ṡt, due
to joint actions be maximally informative (Def. 2). Let j’s
performed action solely lead to its true model. Agent i then
receives the observation, ot+1

i , that is most likely. Then, the
following proposition holds:
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Proposition 1. If bt,1i,l is a belief which assigns probability
1 on the current state, ṡt, then, Pr(θ̇t+1

j,l−1|o
t+1
i , ati, b

t,1
i,l ) ≥

Pr(θ̇t+1
j,l−1|o

t+1
i , ati, b

t,2
i,l ), for any other belief, bt,2i,l , under the

assumption that the conditional distributions over the models
of j in both beliefs are identical and do not change with state.

Proof. For convenience, we may rewrite Eq. 1 as,

Pr(θ̇t+1
j,l−1|o

t+1
i , ati, b

t
i,l) =

∑
st
bti,l(s

t) X (st, ati, o
t+1
i , θ̇t+1

j,l−1)

where X (st, ati, o
t+1
i , θ̇t+1

j,l−1) denotes the remaining terms
of Eq. 1 as a function of st, ati, o

t+1
i , and θ̇t+1

j,l−1. Un-
der the assumption that i’s conditional distribution over
the models is identical for any state, if the current
state is ṡt, then X (ṡt, ati, o

t+1
i , θ̇t+1

j,l−1) is greater than
X (s̄t, ati, o

t+1
i , θ̇t+1

j,l−1) for any other state, s̄t. This is
because,

∑
st+1

Ti(s̄
t, ati, a

t
j , s

t+1) Oi(s
t+1, ati, o

t+1
i ) ≤

∑
st+1

Ti(ṡ
t, ati, a

t
j , s

t+1) Oi(s
t+1, ati, o

t+1
i ), as any transition to a

possible next state, st+1, is maximally informative about j’s
action given i’s action, from the current state, ṡt. While some
other action of j could result in a next state, st+1, from some
s̄t, it does not lead to the true model of j as per τ . As bt,1i,l puts
a probability 1 on ṡt, it follows that X (ṡt, ati, o

t+1
i , θ̇t+1

j,l−1) is
greater than

∑
st
bt,2i,l (s

t) X (st, ati, o
t+1
i , θ̇t+1

j,l−1), for any other

belief, bt,2i,l , which differs from bt,1i,l in its distribution over the
physical states only.

While we sought to reduce some of the possibilities due
to uncertainty, Proposition 1 formalizes the intuition that in
domains where behavioral information about the other agent
must be inferred by sensing the dynamic state, received ob-
servations (that are not noise) tend to be more informative
about the other’s model when the uncertainty over the current
physical state is as less as possible.

If agent i’s conditional belief over models is decoupled
from its belief over the physical state, the proposition be-
comes useful as the beliefs, bt,2i,l and bt,1i,l , could be those that
are in the sequence of beliefs that i may have as it acts and
observes. Consequently, in problems where j’s actions are
unobservable, it motivates that we update the distributions
over the models as late as possible in the game. Of course,
the trade off is that the conditional distributions over models
are held fixed for a longer time affecting early predictions.

3.1 POMDP model with noise
Our formulation of the POMDP model [Kaelbling et al.,
1998] for agent i, POMDPi, uses as its state space the set
of physical states, S, in the I-POMDPi,l. The action and ob-
servation spaces are identical to those in I-POMDPi,l. The
transition, observation, and reward functions are marginals of
those in I-POMDPi,l, obtained by summing out j’s actions
from the functions. The optimality criterion remains a sum of
discounted rewards over the finite horizon.

In order to sum out j’s actions from the functions, we be-
gin by mapping j’s model space to a set of nodes, Nj,l−1.
Each node in this set corresponds to a distribution over j’s ac-
tions. If j is at level 0, we obtain these nodes by performing
bounded policy iteration (BPI) [Poupart and Boutilier, 2003]
on the level 0 POMDP, which is a technique for obtaining a
controller of fixed size. Our BPI begins with a single node
that corresponds to a random action followed by one step of
full backup. Subsequently, the controller is improved using
BPI until convergence. Let Nj,l−1 be the set of nodes of this
converged controller. Associated with each node is also a
value vector that gives the expected reward of performing the
action(s) corresponding to the node from each state, and then
following the remaining controller until the values converge.

Nodes inNj,l−1 partition the continuous model space: For
a belief, bj,0, in each model, compute the inner product be-
tween the belief and the value vector for each node. Then,
map the model to the node with the largest value breaking
ties randomly. Note that multiple models may be mapped to
a single node. For j’s models at a level, l − 1, greater than
0, we may perform interactive BPI [Sonu and Doshi, 2012]
resulting in a (nested) controller of level l − 1. A benefit of
this approach of mapping models to nodes is that the count-
ably infinite model space is reduced to a finite set of nodes,
Nj,l−1. We may obtain the distribution over j’s actions for
summing out as:

Pr(aj |s) =
∑

nj,l−1∈Nj,l−1

b0i,l(nj,l−1|s) Pr(aj |nj,l−1) (2)

where Pr(aj |nj,l−1) is the probability assigned to action,
aj , by the node, nj,l−1, and b0i,l(nj,l−1|s) is the conditional
probability mass in i’s initial belief over models that get
transferred to nj,l−1 due to the mapping: b0i,l(nj,l−1|s) =∑
θj,l−1 7→nj,l−1

b0i,l(θj,l−1|s).

Equation 2 provides the distribution over the other agent’s
actions used for formulating the marginal functions. This dis-
tribution is static and the resulting POMDPi models the other
agent as noise in the environment. Solution of this POMDP is
obtained by using SARSOP [Kurniawati et al., 2008], which
is a fast and scalable POMDP solution technique that pro-
duces a policy graph.

Next, we show that the expected reward from our formu-
lation of POMDPi is a lower bound to the expected reward
from I-POMDPi,l in which the model space, Θj,l−1 has been
substituted with the space, Fj,l−1. Here, fj,l−1 ∈ Fj,l−1 is,
fj,l−1 = 〈nj,l−1, f̂j,l−1, θ̂j〉, where nj,l−1 is a node in the set
of nodes in j’s level l − 1 controller, nj,l−1 ∈ Nj,l−1; f̂j,l−1
includes the set of edge labels, distributions of actions for
each node and the edge transition function of the controller;
and θ̂j is j’s fixed frame. In other words, treating the other
agent as noise is less valuable than correctly modeling it.

In order to compare between the two value functions, we
obtain the value of i’s marginal belief over the physical state
in the I-POMDPi,l as: V (bi,l(s)) = max

α̂

∑
s∈S

bi,l(s)α̂(s).
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Here,
α̂(s) =

∑
nj,l−1

b0i,l(nj,l−1|s) α(s, nj,l−1) (3)

where b0i,l(nj,l−1|s) is the initial conditional belief over nodes
as defined previously, and α(s, nj,l−1) is an alpha vector that
composes the value function for I-POMDPi,l.
Proposition 2 (Lower bound). Let V denote the value func-
tion of I-POMDPi,l. Let H and H be the backup operators
for POMDPi and I-POMDPi,l, respectively. Then, it holds
that HV ≥ HV .

Proof. Let bi,l(s) be a belief over the physical states, and
bi,l(s, nj,l−1) = bi,l(s) b

0
i,l(nj,l−1|s), where b0i,l(nj,l−1|s) is

the initial conditional distribution.
We begin by showing that for horizon 1, for any bi,l(s),

value of this belief given by POMDPi is the same as the value
of the belief, bi,l(s, nj,l−1), shown previously:

V (b̂i,l) = max
ai∈Ai

∑
s
bi,l(s)R̂i(s, ai)

where R̂i(s, ai) is agent i’s reward function in POMDPi. In-
troducing aj gives,

V (bi,l) = max
ai∈Ai

∑
s
bi,l(s)

∑
aj
Ri(s, ai, aj)Pr(aj |s)

= max
ai∈Ai

∑
s
bi,l(s)

∑
aj

Ri(s, ai, aj)
∑

nj,l−1

b0i,l(nj,l−1|s)

Pr(aj |nj,l−1) (from Eq. 2)
= max
ai∈Ai

∑
s,nj

bi,l(s, nj,l−1)
∑
aj

Ri(s, ai, aj) Pr(aj |nj,l−1)

= V (bi,l)

Next, we move to the case where the horizon is 2, and apply
the I-POMDPi,l backup operator to the value function, V :

HV (bi,l) = max
ai∈Ai

∑
s,nj,l−1

bi,l(s, nj,l−1)ERi(s, ai)

+
∑
oi

Pr(oi|ai, bi,l)max
α

b′i,l · α

= max
ai∈Ai

∑
s

∑
nj,l−1

bi,l(s)b
0
i,l(nj,l−1|s)

∑
aj

Pr(aj |nj,l−1){
Ri(s, ai, aj) +

∑
oi

∑
s′
Pr(s′, oi|s, ai, aj)

∑
oj

Oj(s
′, aj , oj)

∑
n′
j,l−1

Pr(n′j,l−1|nj,l−1, ai, oj) α
k(s′, n′j,l−1)


where k is the index of the alpha vector that provides

the maximal value at the updated belief, b′i,l. We may
rewrite the above dynamic programming update by not-
ing that

∑
oj

Oj(s
′, aj , oj)

∑
n′j,l−1

Pr(n′j,l−1|nj,l−1, ai, oj) rep-

resents the updated belief over the models conditioned on the
updated state, b′j,l−1(n′j,l−1|s′).

HV (bi,l) = max
ai∈Ai

∑
s

∑
nj

bi,l(s)b
0
i,l(nj,l−1|s)

∑
aj

Pr(aj |nj,l−1)Ri(s, ai, aj) +∑oi ∑s′ Pr(s′, oi|s, ai, aj)∑n′j b′j,l−1(n
′
j,l−1|s′)

αk(s′, n′j,l−1)



≥ max
ai∈Ai

∑
s

∑
nj,l−1

bi,l(s)b
0
i,l(nj,l−1|s)

∑
aj

Pr(aj |nj,l−1){
Ri(s, ai, aj) +

∑
oi

∑
s′
Pr(s′, oi|s, ai, aj)

∑
nj′

b0j,l−1(n
′
j,l−1|s′)

α̂k(s′, n′j,l−1)


The above holds because αk(s′, n′j,l−1) is maximal at b′i,l =

b′i,l(s
′)b′i,l(n

′
j,l−1|s′). For the belief in the above equation,

b′i,l(s
′)b0i,l(n

′
j,l−1|s′), it may continue to remain maximal if

b′i,l(n
′
j,l−1|s′) and b0i,l(n

′
j,l−1|s′) are identical, otherwise it’s

suboptimal. Using Eq. 3, above equation may be rewritten.

HV (bi,l) ≥ max
ai∈Ai

∑
s

∑
nj

bi,l(s)b
0
i,l(nj,l−1|s)

∑
aj

Pr(aj |nj,l−1){
Ri(s, ai, aj) +

∑
oi

∑
s′
Pr(s′, oi|s, ai, aj)α̂k(s′)

}
= max
ai∈Ai

∑
s

bi,l(s)
∑
aj

∑
nj,l−1

b0i,l(nj,l−1|s)Pr(aj |nj,l−1){
Ri(s, ai, aj) +

∑
oi

∑
s′
Pr(s′, oi|s, ai, aj)α̂k(s′)

}
= max
ai∈Ai

∑
s

bi,l(s)
∑
aj

Pr(aj |s)
{
Ri(s, ai, aj)

+
∑
oi

∑
s′
Pr(s′, oi|s, ai, aj)α̂k(s′)

}
(Using Eq. 2)

= max
ai∈Ai

∑
s

bi,l(s)

{∑
aj

Ri(s, ai, aj)Pr(aj |s)

+
∑
oi

∑
s′

∑
aj

Pr(s′, oi|s, ai, aj)Pr(aj |s)α̂k(s′)

}

= max
ai∈Ai

∑
s

bi,l(s)

{
R̂i(s, ai) +

∑
oi

∑
s′
Pr(s′, oi|s, ai)α̂k(s′)

}
= HV (bi,l)

Here, R̂ is the reward function in POMDPi as defined pre-
viously, Pr(s′, oi|s, ai) is the joint observation and transition
functions, and H is the corresponding backup operator.

As V = V , we also get, HV ≥ HV from the above
proof, and furthermore, H(HV ) ≥ H(HV ). Because the I-
POMDPi,l backup operator is isotonic, H(HV ) ≥ H(HV ).
This implies, H(HV )≥H(HV ). Thus, repeatedly applying
the two backup operators maintains the lower bound.

This is intuitive and demonstrates the benefit of closely
tracking the other agent’s dynamic models.

3.2 I-POMDPi,l with perfectly observable state
As we mentioned previously, agent i utilizes the policy graph
resulting from solving POMDPi using a fast and scalable
technique. The value of the action given by POMDPi for
any i’s belief over the physical states is guaranteed to be a
lower bound to the optimal approach of using I-POMDPi,l.
Eventually, the agent switches to using an online solution of
I-POMDPi,l for acting. In order to facilitate the switching,
an upper bound value for its belief over the physical states is
additionally needed.
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If an observation reveals the physical state perfectly to
agent i in an I-POMDPi,l, the proposition below shows that
the resulting value of bi,l is an upper bound to the general
value. Notice that despite the physical state being perfectly
observable, the resulting model does not collapse into an
MDP because the model of the other agent continues to re-
main uncertain. Let V be the value function of this model,
which we denote as I-POMDPSi,l. The value function is com-
posed of possibly multiple vectors for each state, s. For each
state, we obtain the maximal value of the inner product be-
tween the initial conditional belief, bi,l(nj,l−1|s), and the up-
dated alpha vectors for that state. These values form a single
alpha vector over the physical states.
V (bi,l) =

∑
s bi,l(s) maxαs

∑
nj,l−1

bi,l(nj,l−1|s)αs(nj,l−1)

=
∑
s bi,l(s) maxai∈Ai

∑
nj,l−1

bi,l(nj,l−1|s)
∑
aj
Pr(aj |nj,l−1){

Ri(s, ai, aj) +
∑
s′ Pr(s

′|s, ai, aj)
∑
oj
Oj(s

′, aj , oj)∑
n′j,l−1

Pr(n′j,l−1|nj,l−1, ai, aj)αs
′,k′(n′j,l−1)

}
(4)

Proposition 3 (Upper bound). Let H be the backup opera-
tor for the value function of I-POMDPSi,l as defined in Eq. 4.
Then, it holds that HV ≤ HV , where H is the backup oper-
ator for I-POMDPi,l as defined previously.

Proof. Value of a belief, bi,l, for horizon 1 in I-POMDPi,l is,
V (bi,l) = max

ai∈Ai

∑
s,nj

bi,l(s, nj,l−1)Ri(s, ai, aj)Pr(aj |nj,l−1)

= max
ai∈Ai

∑
s

bi,l(s)
∑
nj

bi,l(nj,l−1|s)Ri(s, ai, aj)Pr(aj |nj,l−1)

≤
∑
s

bi,l(s)max
ai∈Ai

∑
nj

bi,l(nj,l−1|s)Ri(s, ai, aj)Pr(aj |nj,l−1)

= V (bi,l)

For a horizon greater than one, we obtain,
HV (bi,l) = max

ai∈Ai

∑
s bi,l(s)

∑
nj,l−1

bi,l(nj,l−1|s)∑
aj

Pr(aj |nj,l−1)
{
Ri(s, ai, aj) +

∑
oi

∑
s′ Pr(s

′, oi|s, ai, aj)∑
oj
Oj(s

′, aj , oj)
∑
n′
j,l−1

Pr(n′j,l−1|nj,l−1, ai, aj)

αs
′,k′(n′j,l−1)

}
The alpha vector, αs

′,k′(n′j,l−1), is the one in the set of vec-
tors for the next state, s′, that gives the largest value for the
updated conditional belief over the models. Its selection from
the set does not depend on the observation, oi, unlike in I-
POMDPi,l. Therefore, the equation above simplifies to,

HV (bi,l) = max
ai∈Ai

∑
s bi,l(s)

∑
nj,l−1

bi,l(nj,l−1|s)∑
aj
Pr(aj |nj,l−1)

{
Ri(s, ai, aj) +

∑
s′ Pr(s

′|s, ai, aj)∑
oj
Oj(s

′, aj , oj)
∑
n′
j,l−1

Pr(n′j,l−1|nj,l−1, ai, aj)

αs
′,k′(n′j,l−1)

}
≤
∑
s bi,l(s)maxai∈Ai

∑
nj,l−1

bi,l(nj,l−1|s)∑
aj
Pr(aj |nj,l−1)

{
Ri(s, ai, aj) +

∑
s′ Pr(s

′|s, ai, aj)∑
oj
Oj(s

′, aj , oj)
∑
n′
j,l−1

Pr(n′j,l−1|nj,l−1, ai, aj)

αs
′,k′(n′j,l−1)

}
= HV

Under the isotonicity property of the I-POMDP backup op-
erator and V ≤ V , we obtain, H(HV ) ≤ H(HV ). Sim-
ilarly, H(HV ) ≤ H(HV ). We may reapply the above
proof and assert that, H(HV ) ≤ H(HV ). This implies
that, H(HV ) ≤ H(HV ), which means that the upper bound
is maintained over any number of applications of the two
backup operators to their respective value functions.

3.3 Bimodal switching
Let the difference between the upper and lower bound val-
ues for a belief, bi,l, over the physical states be, Diff =

V i(bi,l) − V i(bi,l). Let Rmin and Rmax be the smallest
and highest rewards in agent i’s reward function, Ri. Sub-
sequently, Rmin 1−γH

1−γ and Rmax 1−γH

1−γ are the minimum and
maximum rewards that agent i could obtain over a finite hori-
zon of H with a discount factor of γ. These may be easily
calculated from the model definition.

Because of the piecewise linear and convexity property of
the value function of POMDPi, and the relatively flat value
function of I-POMDPSi,l, we expect Diff to reduce as the
uncertainty in agent i’s belief over the state space reduces
and the belief approaches the edges of the belief simplex.
Our approach switches from online planning using POMDPi
to planning using I-POMDPi,l when Diff·(1−γ)

(1−γH)·(Rmax−Rmin)

drops to below a parameter, ε ∈ [0, 1]. In other words, ε is the
fraction of the largest possible difference in value, which trig-
gers the switch. However, not all values of ε may be reached.
Specifically, there is no guarantee that the upper and lower
bounds converge near the edges of the belief simplex. Conse-
quently, small values of ε may not cause a switch.

3.4 Computational Savings and Error Bound
Instead of solving a multiagent planning problem from the
start, our approach exploits single-agent planning in the
early stages subsequently switching to multiagent planning
on reaching a belief distribution that admits reduced error
bound. Consequently, computational savings occur due to
the steps when single-agent planning is performed. In or-
der to obtain an estimate of the savings, let us suppose that
we use an exact POMDP-based approach for online plan-
ning that generates a perfect reachability tree of H − 1 steps
whose branching factor is (|Ai||Ωi|), from a belief. The
tree contains (|Ai||Ωi|)H − 1 nodes each of which is asso-
ciated with a single real number whose computation takes
time O(|Ai||S|) if the node is a leaf node, otherwise it takes
O(|Ai||Ωi||S|2). On the other hand, let us suppose that
we use an exact I-POMDPi,l-based approach for the plan-
ning. The reachability tree from a belief over the inter-
active state space would continue to have a branching fac-
tor of (|Ai||Ωi|) and as many nodes as mentioned previ-
ously. However, calculating the value of the belief associ-
ated with each leaf node takes time O(|Ai||S||Nj,l−1||Aj |)
and the time for calculating the value at a non-leaf node takes
O(|Ai||S|2|Nj,l−1||Aj |Ωi||Ωj |). The difference in computa-
tion time at each node is due to modeling the other agent, and
the savings at all the nodes accumulates over the number of
steps for which planning uses POMDPi, which may vary.
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Our choice of SARSOP – a state of the art approach – mini-
mizes the time taken to perform the POMDP-based planning.
SARSOP generates a policy graph that is near-optimal for
a given horizon from any belief, and the initial computation
time is amortized over the multiple steps for which the graph
is used. The I-POMDPi,l-based online planning utilizes I-PF
and generates a reachability tree for a given horizon from a
given belief resulting in an approximate action.

If an exact approach is utilized for online multiagent plan-
ning after the switch, error is incurred until the approach
switches when ε is achieved. At this point, the difference be-
tween the upper and lower bounds is, ε· (1−γ

H)·(Rmax−Rmin)
1−γ ,

which bounds the error as well. If T steps were per-
formed before switching, then the error is at least, T · ε ·
(1−γH)·(Rmax−Rmin)

1−γ . This also serves as a reasonable esti-
mate of the error because our bounds are tight resulting in
small ε values, as we illustrate next.

4 Experimental Evaluation
In Figure 1, we illustrate the lower and upper bound values
for changing beliefs of agent i over the physical states for the
multiagent tiger problem [Gmytrasiewicz and Doshi, 2005].
We modify this problem by removing creaks thereby making
j’s actions unobservable (Def. 1) and let the tiger persist with
a probability of 0.75 in its original location after a door is
opened. Furthermore, we mitigate the amount of noise in j’s
observations of the state as modeled by i to 0.05.

-20

-10

 0

 10

 20

 30

 40

 50

 0  1  2  3  4  5

E
x

p
ec

te
d

 R
ew

ar
d

Upper bound: I-POMDPi,l
S

Lower bound: POMDPi

+ b  (TR)
i,l0.5

0.85

0.96

0.73

0.93

0.97

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

 0  1  2  3  4  5

F
ra

ct
io

n
 o

f 
w

o
rs

t 
d

if
f.

Time Step

Figure 1: (top) Beginning with bi,l(TR) = 0.5, we show the
lower and upper bound values obtained from POMDPi and I-
POMDPSi,l, respectively, for a run of the multiagent persistent
tiger problem. (bottom) The fraction of the largest difference
in bounds is shown as agent i acts, observes and its beliefs
update, in simulation.

Beginning at a belief of bi,1(TR) = 0.5 indicating that the
tiger is believed to be behind the right door with a probability
of 0.5, the beliefs are updated as the agent listens and receives
observations. We obtained j’s controller using BPI, which
has 5 nodes. Agent i’s initial distribution over these nodes

is obtained by mapping a distribution over level 0 models of
j to a distrbution over the nodes. Notice that the fraction, ε,
becomes smaller as the beliefs show less uncertainty although
not monotonically. The increase from steps 2 to 3 occurs due
to i opening the left door causing the uncertainty in its beliefs
to increase and reducing the lower bound value.
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Figure 2: (top) Average time taken per simulation run for dif-
ferent values of ε (Xeon i3 2.6GHz, 4GB with Linux). (bot-
tom) Cumulative rewards averaged over the 300 runs with
differing ε.

Taking an online planning horizon ofH = 5, we simulated
agent i’s play of the tiger problem for 30 steps. We vary ε and
show the time and cumulative reward averaged over 5 trials
of 300 simulation runs each. Notice the low values of ε in-
dicating that our bounds are tight. The feasible range of ε is
[0.075,0.1], with the approach unable to reach ε < 0.075 and
degenerating into POMDPi for all the steps, while satisfying
ε < 0.1 at the first step itself thereby running using I-PF for
all the steps. For the smallest ε value which causes a bimodal
switch, the average time is about 50% less than I-PF albeit ob-
taining average reward that is significantly lower. However,
as ε increases, POMDPi runs for less steps and both the time
and rewards increase approaching that of I-PF.

5 Conclusion
We presented a new approach for online planning in multi-
agent settings where actions of the other agent are not di-
rectly observable and must be inferred from the state transi-
tions. For typical initial beliefs with high uncertainty over the
physical states, our approach utilizes POMDP-based plan-
ning and switches over to online multiagent planning. The
mode changes when the fraction of the difference between
the upper and lower bounds reduces to less than a parameter.
This technique of utilizing bounds is analogous to previous
approaches such as HSVI [Smith and Simmons, 2004] and
SARSOP, although these compute bounds relevant to single
agent settings. Our demonstration on a toy problem domain
indicates that the bimodal approach is flexible and signifi-
cantly saves on time while obtaining improved rewards.
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