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Abstract

We present a new approach to token-level causal
reasoning that we call Sequences Of Mechanisms
(SoMs), which models causality as a dynamic se-
quence of active mechanisms that chain together
to propagate causal influence through time. We
motivate this approach by using examples from Al
and robotics and show why existing approaches are
inadequate. We present an algorithm for causal
reasoning based on SoMs, which takes as input a
knowledge base of first-order mechanisms and a set
of observations, and it hypothesizes which mecha-
nisms are active at what time. We show empirically
that our algorithm produces plausible causal expla-
nations of simulated observations generated from a
causal model.

We argue that the SoMs approach is qualitatively
closer to the human causal reasoning process, for
example, it will only include relevant variables in
explanations. We present new insights about causal
reasoning that become apparent with this view. One
such insight is that observation and manipulation
do not commute in causal models, a fact which we
show to be a generalization of the Equilibration-
Manipulation Commutability of [Dash(2005)].

1 Introduction

The human faculty of causal reasoning is a powerful tool
to form hypotheses by combining limited observational data
with pre-existing knowledge. This ability is essential to un-
covering hidden structure in the world around us, perform-
ing scientific discovery and diagnosing problems in real time.
Enabling computers to perform this kind of reasoning in an
effective and general way is thus an important sub-goal to-
ward achieving Artificial Intelligence.

The theoretical development of causality in Al has
up to now primarily been based on structural equation
models (SEMs) [Strotz and Wold(1960); Simon(1954);
Haavelmo(1943)], a formalism which originated in econo-
metrics and which is still used commonly in the economic
and social sciences. The models used in these disci-
plines typically involve real-valued variables, linear equa-
tions and Gaussian noise distributions. In Al this theory has
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been generalized by [Pearl(2000)] and others (e.g., [Spirtes
et al.(2000)Spirtes, Glymour, and Scheines]) to include dis-
crete propositional variables, of which (causal) Bayesian net-
works (BNs) can be viewed as a subset because they are
acyclic. Yet, despite decades of theoretical progress, causal
models have not been widely used in the context of core Al
applications such as robotics.

Because causality in econometrics operates at the pop-
ulation level, important human causal faculties that oper-
ate on single entities may have been neglected in current
causality formalisms. Such single-entity cases are com-
mon in Al: A robot gets stuck in a puddle of oil, a person
has chest pains and we want to know the specific causes,
etc. This distinction between population-level and individual-
level causation is known in the philosophical literature as
type-level versus token-level causation (e.g., [Eells(1991);
Kleinberg(2012)]) or general versus singular causation (e.g.,
[Hitchcock(1995); Davidson(1967)]). For example, a type-
level model for lung cancer might include all the possible
causes, such as: CigaretteSmoking, AsbestosExposure, Ge-
neticFactors, etc., whereas a token-level explanation contains
only actual causes: “Bob’s lung cancer was caused by that
time in the 80s when he snorted asbestos.”

Models in econometrics rely less on token causality and
more on type-level reasoning. Causality-in-AI’s evolution
from these disciplines may explain why token-level causal
reasoning has been less studied in AIl. However, in many Al
tasks such as understanding why a robot hand is stuck in a
cabinet, this ability may be crucial to posing and testing con-
crete causal hypotheses. This disconnect may further explain
why causal reasoning has up to now not been widely used in
the context of robotics and Al applications.

In this paper, we consider the tasks of producing token-
level explanations and predictions for causal systems. We
present a new representation for these tasks which we call Se-
quences of Mechanisms (SoMs). We motivate SoMs with sev-
eral examples for how they improve causal reasoning in typi-
cal Al domains. We present an algorithm for the construction
of SoMs from a knowledge base of first-order causal mecha-
nisms, and we show empirically that this algorithm produces
good causal explanations. The first-order nature of our mech-
anisms facilitates scalability and more human-like hypotheses
when the possible number of causes is large.

There has been some work on representation and al-



gorithms for token-level causal reasoning. In particular,
[Halpern and Pearl(2005)] present a definition of causal
explanation which uses the concept of actual cause from
[Halpern and Pearl(2001)], based on functional causal mod-
els of [Pearl(2000)], to produce sets of variables which are
deemed to be possible explanations for some evidence. We
discuss some shortcomings of token causality with functional
causal models such as BNs in Section 2. In particular, we
show that in order for this representation to be general, it
must essentially be reduced to the approach presented in this
paper. [Kleinberg(2012)] discusses token causality explicitly
and presents a measure of significance for a token-level im-
mediate cause given logical formulae which are similar syn-
tactically to our mechanisms; however she does not attempt
to find optimal chains of causation which could serve as non-
trivial hypotheses. Furthermore, both Halpern and Pearl’s
and Kleinberg’s approaches are fundamentally propositional
in nature, so lack our ability to scale when the number of pos-
sible causes is large.

2 Sequences of Mechanisms

To illustrate the type of reasoning we would like to enable,
consider the following simple running example of “human-
like” causal inference:

While you are in a business meeting with Tom, Bob
suddenly bursts into your office and punches Tom in
the face. Tom falls to the ground, then gets up and
punches Bob back.

In this example, which we will refer to as the Office Brawl
example, there are three main events spaced out in time:
Punch(Bob,Tom, T} ), Fall(Tom,T>), and Punch(Tom,Bob,T3)
with 77 < 15 < T3. Humans, given their wealth of back-
ground knowledge might construct the graph of Figure 1(a).
They may also be able to expand on these observed events to
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Figure 1: (a) A simple causal explanation. (b) A more elabo-
rate causal explanation with hypothesized events.

include hidden events, such as Angry, of which a causal graph
is displayed in Figure 1(b).

Although the explanations in Figure 1 take the form of a
directed graph, there is much more to the causal explana-
tion. The edges from Angry——> Punch refers to a physical
mechanism whereby a person succumbs to his sense of anger
and punches someone. There could be many other mecha-
nisms that result in a Punch without being Angry, such as
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a boxing match, and we would like to identify a specific
mechanism that is becoming active when someone delivers
a Punch. We argue in this section that mechanisms such as
these are more fundamental than a state-space representation
which only deals with sets of variables and their states.

In many real-world problems, having a first-order represen-
tation for token-level reasoning is essential. For example, the
method of [Halpern and Pearl(2005)] can generate explana-
tions, but only once a “complete” causal graph enumerating
all possible causal ancestors of an event is specified. In the
office brawl scenario as well as other real-world simple sce-
narios such as a pool table where there are an intractable or
even infinite number of possible events that could cause other
events to happen, building this “complete” causal model may
be impossible or impractical.

This limitation aside, in BNs and SEMs, something similar
to token-level reasoning can be performed by instantiating
variables in the model to values based on the specific
instance at hand. For example, in the lung cancer case of
Section 1, one might instantiate LungCancer to True and
AsbestosExposure to True to indicate the token-level hypoth-
esis that Bob’s asbestos snorting adventure caused his lung
cancer. However, this state-space approach is incomplete:
being able to reason only about states and possible causes
is different from creating specific hypotheses about how
an event was caused. For example, it could very well be
that Bob was a smoker, but the smoking was not the cause
of his lung cancer. In this case, the BN model is unable
to distinguish (and score) between the three hypotheses:
Smoking— LungCancer,  AsbestosExposure— LungCancer
and Smoking & AsbestosExposure— LungCancer.

This problem becomes exacerbated in a more realistic
causal model where the number of nodes would be much
higher, and where nodes would combine in nontrivial ways.
Consider, for example, the BN causal model of Figure 2(a)
where all nodes are binary. Given some evidence we can ob-
tain beliefs about the states of all the nodes in the graph (say
dark represents False and light represents True). This repre-
sentation of a type-level causal graph plus specific states does
not necessarily provide us with a clear token-level picture of
what is happening causally in this system. On the other hand,
a token-level explanation represented by a subgraph (such as
that shown in Figure 2(b) showing the likely causal ancestors
of the event of interest provides a much clearer causal picture.
If one wanted to consider, for example, which manipulations
might change the outcome of the event of interest, the graph
of Figure 2(b) would be much more informative. This sug-
gests one possible algorithm to achieve such a token-level ex-
planation which looks strikingly similar to a structure search
given data, with two important differences: (1) the data of in-
terest here is a single record, and (2) we have strong priors
on the structure, being provided by the full type-level causal
model.

Starting with a “complete” BN model and looking for ac-
tive sub-graphs as possible token-level hypotheses still lacks
the expressiveness required for producing many token-level
hypotheses. As an example, if some effect can be caused by
two mechanisms involving the same set of causes, then unless
those mechanisms are explicitly represented, the state-space
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Figure 2: The state-space description of specific events (a)
and a token-level explanation (b). Dark nodes are believed to
be false and light nodes are believed to be true).

representation will lump both mechanisms together. Any hy-
pothesis generated from this model will consist of some kind
of mixture of two very different mechanisms. It may be possi-
ble to construct a BN in such a way that the individual mech-
anisms are preserved, but the point is, the mechanisms must
be preserved to do token-level reasoning, and therefore, the
mechanisms themselves should play an explicit role in the
representation used.

2.1 Representation

We advocate a representation that consists of a collection of
causal mechanisms that capture the causal interactions in a
dynamic system. These causal mechanisms are formulae en-
coding and quantifying causal implication, i.e., what is the
probability that an effect is true given that all its causes are
true. The mechanisms are assumed to work independently of
each other and the probability specificied with each formula
encodes the likelihood of that mechanism causing the effect
given that all other mechanisms are absent. We say that a for-
mula matches when all its causes are present, and when these
causes actually bring about the effect we say that it is active.

For the example of Figure 1, we have a set of
predicates consisting of  Angry(Person, Person, Time),
Punch(Person, Person, Time), and Fall(Person, Time). Each
predicate is indexed by a discrete time index. The set of
formulae could be chosen as

0.25 :Angry(Py, P2, Tl)—>Punch(P1, P, TQ) (1)
0.4 :Punch(Py, Py, T1)—Fall(P2, T5) 2)
0.9 :Punch(P1, P2, T1)—Angry(Ps, P1,T2) 3)

0.95 :Punch(Py, Py, T1)—>—Angry(P1,P2,T2)  (4)
0.2 :Angry(Py, P2, T1)—>—Angry(P1,P2,T3)  (5)

1 :Fall(P1, T)—s—Fall(Py, T) ©6)

The above formulae express causal relationships that gov-
ern the self-perpetuating cycle of violence between two indi-
viduals. We assume that times present on the left side of a
formula occur at an earlier time than all times on the right,
and in this paper we will assume that T = 77 + 1. For sim-
plicity, we assume that causal formulae are drawn from the
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subset of first-order logic that includes formulae containing a
conjunction of (possibly negated) causes relating to a single
(possibly negated) effect. We intend to relax these constraints
on formulae in future work. It is assumed that the state of a
predicate persists over time if there are no mechanisms ac-
tively influencing it, so Formula 6 prevents repeated falling
behavior. A causal formula is called promoting if the effect
predicate is not negated. A causal formula is called inhibiting
if it is not promoting.

If no formula matches a predicate we assume that it will
maintain its state. If there is exactly one formula that matches,
the probability of the effect is simply defined by the probabil-
ity associated with the formula; however if a set F of several
mechanisms are active for the same effect, we use a combi-
nation rule to produce the probability of the effect. When
all mechanisms F; € F being combined are of the same
type (promoting or inhibiting), then we apply the well-known
noisy-or [Good(1961); Peng and Reggia(1986)]:

PEF) =1- [] (- p0),

F;eF

where p; is the probability associated with formula F;. When
F is made up of inhibiting formulae, then the noisy-or com-
bination determines the complement of E. In the case where
we are combining inhibiting formulae (F~) with promoting
formulae (F), we average the noisy-or combination of all
promoters with the complement of the noisy-or combination
of all inhibitors:

P(E|FT) +1—
2

P(E|Ft F7) = PCEIFT)

As we make observations about our system, these formulae
provide possible explanations that can tie those observations
together causally. In Section 3 we present an algorithm that
accomplishes this by searching for a structure that explains
all the observations.

Probabilistic first-order representations have been widely
studied in the past decade in the context of graphical models,
giving rise to an entire sub-field of Al called statistical rela-
tional AI' with many variants. Many of these variants might
be adaptable to produce mechanistic interpretations simply by
demanding that rules are comprised of isolated mechanisms,
and by producing causal hypotheses that only include lists of
ground formulae which relate predicates over time.

One representation in particular, the CP-Logic formal-
ism of [Vennekens et al.(2009)Vennekens, Denecker, and
Bruynooghe] combines logic programming with causal-
ity, and they explicitly discuss this representation in the
context of counterfactuals and manipulation [Vennekens
et al.(2010)Vennekens, Bruynooghe, and Denecker]. Our
representation is very similar to CP-Logic, with tempo-
ral rules and slightly different syntax. To our knowl-
edge CP-Logic has not been used for token-level explana-
tion/prediction previously.

'A good overview of this field is provided by [Getoor and
Taskar(2007)].



2.2 Reasoning

Causal reasoning as we define it produces hypothesized
sequences of causal mechanisms that seek to explain or
predict a set of real or counterfactual events which have
been observed or manipulated. We therefore maintain that
there are three independent dimensions to causal reason-
ing: explanation/prediction, factual/counterfactual, observa-
tion/manipulation. In this section, we look at causal expla-
nation, prediction, counterfactuals, and manipulations. Al-
though these types of reasoning have been discussed at length
elsewhere (e.g., [Pearl(2000)]), here we relate these concepts
to token-based causality and we raise several new issues that
arise in this context such as the commutability between ob-
servation and manipulation.

In general, causal reasoning is the act of inferring a causal
structure relating events in the past or future. The events
themselves can be observed, hypothesized (i.e., latent) or ma-
nipulated. Given a causal model C' and a sequence of events
Eq1,E,, ..., E,, all causal reasoning can be cast into the

problem of finding a most-likely sequence of mechanisms S
given a set of information:

S = argmax P(S|C,Eq,Ea, ... Ey) (7
S
We consider sequences of events rather than one big set of
events E = U,;E; because when we consider manipulation
of the system, then it will sometimes be the case that manip-
ulation does not commute with observation. So we need to
preserve the sequence in which events are observed and ma-
nipulated. We discuss this issue more in Section 2.3 below.
Causal Explanation is the act of explaining a set of obser-
vations in terms of a set of mechanisms. This is defined by
Equation 7 where the sequence of events E only contains ob-
servations and no manipulations. Causal Prediction is the act
of predicting what sequences of cause and effect will occur
in the future given evidence observed in the past. For exam-
ple, we may predict, given that Bob punches Tom at time 2
that at time 3 Tom will be angry with Bob and at time 4 Tom
will punch Bob. This may in turn cause Bob to get Angry
at Tom, thus repeating the cycle indefinitely. This graph is
shown in Figure 3(a). Prediction is not restricted to only in-
ferring events in the future. In practice, the events in the past
that led to the observations in the present may be relevant for
predicting future variables as well, so we must perform in-
ference on past events in order to better predict the future.
In general, the distinction between explanations, predictions,
and counterfactuals is somewhat arbitrary and can be com-
bined in various ways and will be discussed next.

2.3 Observation-Manipulation Commutability

One key concept in causal reasoning is understanding the ef-
fects of manipulating variables in the model. When a com-
plete causal model is specified, then this can be accomplished
with the Do operator of Pearl, which modifies the fixed causal
structure by cutting all arcs coming into a node that is being
manipulated to a value. Inference results can change depend-
ing on whether the state of some evidence is determined by
mere observation or by active manipulation, but the effect on
the structure is always the same.
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However, when the complete model cannot be specified,
we must re-generate the causal explanation after some ma-
nipulation is performed. Thus, in SoMs, rather than operating
on graphs, manipulation in SoMs operates on formulae: if a
variable X is manipulated to some value, then all formulae
that normally would cause X to achieve that value get struck
from the model, and formulae that required X as a cause are
also removed. This can have very non-local effects on the
most likely structure S that results.

For conciseness, in the rest of this section, we use, e.g.,
P(B,T,t) to indicate Punch(Bob, Tom,t), etc. Figure 3(a)
shows a typical causal explanation when P(B,T,2) and
P(T, B,5) (circular gray nodes) are observed given the Of-
fice Brawl system presented in Section 2.1. The circular clear
nodes are hypothesized states that connect the observed states

A(BT,1) A(BT,2) —A(BT,3)
(a)
P(B,T,2) P(T,B,5)
A(T,B,3) A(TB4)
A(BT1) ABT2) A(BT3) ABT4) @ observed
(b}
O O hypothesized
—P(B,T,2) [0 manipulated
A(B,T,1) ABT.2) A[BT3) —A(BT4)

(c) O

—P(B,T,2)

Figure 3: An example of three explanations given (a) two
observed events, (b) two observed events followed by ma-
nipulation, and (c) two observed events, followed by manip-
ulation, followed by a repeated observation of P(T, B,5).
A = Angry, P = Punch, B = Boband T = Tom.

and thus increase the probability of the evidence. In Fig-
ure 3(b), we manipulate the system by setting P(B,T,2) =
False. In this example, since Bob does not punch Tom, then
his anger persists based on the “persistence” formula given in
Equation 5. Furthermore, all the formulae that were fulfilled
by P(B,T,2) = True are now no longer valid, so all the
children of P(B,T,2) are altered in addition to its parents.
What is left is a causal structure that looks quite different
from the one prior to manipulation. This feature of token-
level causality that very different structures can be obtained
from different manipulations seem to square much better with
human causal reasoning than the method of fixed graphs.
Another important observation comes out of this exam-
ple: manipulation and observation do not commute. This
fact becomes apparent with SoMs, because we can observe
the difference so vividly in the causal structure. To see
this, imagine that after manipulating P(B,T,2) = False



we then still proceeded to observe P(T, B,5), as in Fig-
ure 3(c). In this case, given Bob’s persistent state of anger, a
likely explanation may very well be that Bob punched Tom
in a later time causing Tom to get angry and punch back.
Thus, the probability of say, P(B,T,3) given that we ob-
served O, = {P(B,T,2),P(T, B,5)} followed by manip-
ulating M, = —P(B,T,2) is lower than if we observe O,
followed by manipulating M; followed by observing again
P(T, B,5). This lack of commutation is why we must spec-
ify events as a sequence instead of a set, as in Equation 7.
It should also be emphasized that this lack of commutation
holds in BNs as well, as a trivial exercise will reveal.

To our knowledge, the issues of the lack of commutabil-
ity between observation and manipulation in general has
not been addressed elsewhere. The issue of Equilibration-
Manipulation Commutability presented in [Dash(2005)], is
similar, and in fact is a special case of what we call
Observation-Manipulation Commutability. In the former
case, the observation being made results from the equilibra-
tion of certain variables. When a manipulation is made, it
changes the downstream causality, which in turn can change
the equilibrium values of some variables.

3 Algorithm

In this section we present an algorithm for causal reasoning
based on SoMs, shown in Figure 4, which takes as input (a) a
knowledge-base of mechanisms and a set of observations, and
outputs a hypothesis (d) about which mechanisms were active
at what time. The basic idea is to convert a causal model and
a set of evidence into a BN (b), find (¢) the Most Probable
Explanation (MPE) for that evidence, and select all the for-
mulae that are consistent with the MPE states to recover (d)
the final sequence of grounded mechanisms. We will call this
last step pruning because it effectively removes all formulae
from the explanation/prediction that are not relevant. We will
now describe each of the three steps in detail.

Step (a) to (b): A set of formulae and a set of evidence
are converted into a Bayesian network in the following way.
First, for each evidence predicate all the formulae that (par-
tially) match that predicate are instantiated in all possible
ways. Consequently, this results in an expanded set of pred-
icates that can then be used to find additional formulae that
match, just like in the first step. We call formulae that are
added to the model instantiated formulae (because all their
free variables are bound). This process continues until no
more predicates can be added, and to make this finite, time
bounds are used. The CPTs are constructed by following the
procedure described in Section 2.1.

Step (b) to (c): The Most Probable Explanation is a state
assignment for all variables that is the most likely out of all
possible assignments. This is a well known problem and
many algorithms have been developed to efficiently find so-
lutions.

Step (c) to (d): The pruning step selects all the instantia-
tions of formulae that are true given the states of the predi-
cates identified in the MPE. Conceptually speaking, we could
iterate through each family of nodes in the BN, and try to in-
stantiate the assignment for the family in each formulae. If
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Figure 4: A high-level flow of our SoM algorithm.

all the variables in the formula are bound, we can assess the
truth value of the formula (each predicate in the formula is
either true or false because of the MPE step). If the formula
is true it will be part of the causal explanation/prediction. If
the formula is false or not all variables are bound it will not
be part of the causal explanation/prediction.

In the next section we show that our algorithm produces
plausible causal explanations/predictions of simulated obser-
vations generated from a causal model. Although an expla-
nation/prediction found by our algorithm consists of a set of
mechanisms instead of just a set of states, which is an im-
provement over existing algorithms, it always includes all the
mechanisms that are consistent with the MPE states. It is thus
possible that a subset of these mechanisms constitute an even
better explanation in terms of Occam’s Razor; some formu-
lae may be removed from the explanation/prediction leading
to fewer parameters in the model and retaining (almost) all
the explanatory power. Thus there may be room for improve-
ment of our first SoM algorithm.

4 Experiments

In this section we present an evaluation of our algorithm. The
main idea is to start out with a full (ground-truth) causal ex-
planation, and present parts of this explanation as evidence
to our algorithm to fill in the gaps. More specifically, we
constructed a causal model from which we generated a set of
SoMs. For each of the SoMs we then selected a set of predi-
cates that were presented to our causal explanation algorithm
to recover the original SoMs. The reconstructed explanations
were evaluated by using the precision-recall curve (PR-curve)
as a measure of performance.

We examined the algorithm’s performance on two levels:
1) recovering exact matches, requiring all the recovered for-
mulae to exactly match the formulae in the original SoMs,
and 2) time-invariant matches, where errors are allowed in the
time variable, i.e., having the recovered formula occur earlier
or later than in the correct SoMs.

4.1 The Airport Model

We evaluated our algorithm’s performance using the Airport
model. We used this model to describe several events at an
airport, such as collisions, explosions, and terrorist threats.
We model aircraft (A), vehicles (V'), and time (T°). We de-
fined a set of formulae that link several events together to
form SoMs, e.g., an aircraft colliding with a tug vehicle might
cause a fuel leak to occur, possibly leading to an explosion.



Here are the main formulae:

0.01 :SameLocation(Ay, V1, T1)—Collision(A1, V1, T2)
0.1 :Collision(A1, V1, T1)—>FuelLeak(T>)

0.05 :FuelLeak(T1)—sExplosion(Tz)
0.2 :MaintenanceLapse(A1, T1)—>MechDefect(A1, T2)

0.005 :MechDefect(A1, T1)—sExplosion(Tz)

0.01 :Terrorist(T1) — Threat(T2)

0.01 :Terrorist(T1)—>Bomb(T2)

0.95 :Bomb(T1) — Explosion(T2)

4.2 Methodology

All experiments were performed with SMILE, a Bayesian in-
ference engine developed at the Decision Systems Laboratory
and available at http://genie.sis.pitt.edu/. The simulation was
written in Python. To evaluate the performance of our algo-
rithm we used the following procedure:

1. Use the airport model to generate 1000 SoMs.

2. For each SoMs select a subset of predicates to present to
the algorithm. These included Explosion, Threat, Same-
Location, and MaintenanceLapse. The original SoMs
were stored for evaluation.

Run the algorithm on the samples.

Calculate the PR-curve using the original SoMs and the
SoMs constructed by the algorithm. SoMs are com-
pared up until the first explosion in the orginal SoM:s.
We calculate 2 types of Precision/Recall scores: 1) Ex-
act Matches: formulae in the recovered SoMs have to
exactly match the original SoMs, and 2) Time-Invariant
Matches: formulae from recovered SoMs are allowed to
occur earlier or later than in the original SoMs.

The predicates that were available for selection as starting
predicate were SameLocation, MaintenanceLapse, and Ter-
rorist. We ran our evaluation procedure three times, varying
the number of starting predicates from the set [1, 2, 3] at each
run.

4.3 Results

Figure 5 shows the precision-recall results for the three runs
and for the two levels of comparison of our experiment.
In some cases processed samples would result in identical
precision-recall pairs. In our figure, a larger dot size corre-
sponds to a larger number of samples that have the exact same
precision-recall outcome.

We found that in any of the examined cases (number of
starting predicates vs. Exact Match/Time-Invariant Match)
the algorithm was able to achieve high Precision/Recall
scores for the majority of the samples, scoring extremely
well with Time-Invariant matching and very well with Ex-
act matching, despite its increased difficulty. In cases where
our algorithm did poorly, visual inspection showed that little
or no informative evidence was actually presented to the al-
gorithm. In those cases the algorithm picked the mechanism
with the highest prior probability, as one would expect.
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Figure 5: Precision-Recall for Exact Matches (left) and Time-
Invariant matches (right) for 1,2, or 3 starting predicates (top,
middle, and bottom).

5 Conclusions and Future Work

In this paper we presented a new approach to token-level
causal reasoning that we call Sequences Of Mechanisms
(SoMs), which models causal interactions not as sequences
of states of variables causing one another, but rather as a dy-
namic sequence of active mechanisms that chain together to
propagate causal influence through time. This has the advan-
tage of finding explanations that only contain mechanisms
that are responsible for an outcome, instead of just know-
ing a set of variables that constitute many mechanisms that
all could be responsible, which is the case for Bayesian net-
works. We presented an algorithm to discover SoMs, which
takes as input a knowledge base of mechanisms and a set of
observations, and it hypothesizes which mechanisms are ac-
tive at what time. We showed empirically that our algorithm
produces plausible causal explanations of simulated observa-
tions generated from a causal model.

We showed several insights about token causality and
SoMs: Performing manipulations on SoM hypotheses leads
to qualitatively different results than those obtained by the
Do operator, possibly causing sweeping changes to the down-
stream causal mechanisms that become activated. This vivid
change in structure made evident the fact that in general ma-
nipulation and observation do not commute, and we related
this fact to the EMC condition. While only a first step, we
hope this work will begin to bridge the gap between causality
research and more applied Al such as that for robotics.
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