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Abstract

There are not very many existing logics of be-
lief which have both a perspicuous semantics and
are computationally attractive. An exception is
the logic SL, proposed by Liu, Lakemeyer, and
Levesque, which allows for a decidable and often
even tractable form of reasoning. While the lan-
guage is first-order and hence quite expressive, it
still has a number of shortcomings. For one, be-
liefs about beliefs are not addressed at all. For an-
other, the names of individuals are rigid, that is,
their identity is assumed to be known. In this pa-
per, we show how both shortcomings can be over-
come by suitably extending the language and its
semantics. Among other things, we show that de-
termining the beliefs of a certain kind of fully in-
trospective knowledge bases is decidable and that
unknown individuals in the knowledge base can be
accommodated in a decidable manner as well.

1 Introduction
One of the long-standing aims in the area of Knowledge
Representation and Reasoning has been to devise computa-
tionally attractive reasoning mechanisms for very expressive
knowledge bases (KBs). The need for an expressive represen-
tation language arises when one needs to deal with incom-
plete information. For example, a KB may know1 that either
Sue or Sam is a teacher or that Sid is not a teacher without
knowing for any particular person that he or she is a teacher.
While first-order logic (FOL) is able to represent such in-
completeness, it is well known that reasoning in FOL based
on classical logical entailment is undecidable. A principled
way to arrive at weaker forms of entailment is to come up
with appropriate models of limited belief [Levesque, 1984b;
Konolige, 1986; Vardi, 1986; Fagin and Halpern, 1988; Fa-
gin et al., 1990; Lakemeyer, 1996; Cadoli and Schaerf, 1992;
Delgrande, 1995; Liu et al., 2004], where reasoning can be
studied as the question of which beliefs follow logically from
believing the sentences in the KB. In order to be able to study

1Throughout the paper, we will use the terms knowledge and
belief interchangeably.

the properties of such a model of belief, it seems particularly
desirable to have a perspicuous semantics.

Despite many years of research in this area, there have not
been that many proposals of this kind. One notable excep-
tion is the work by Liu, Lakemeyer, and Levesque [2004]
(henceforth abbreviated as LLL), which is also the starting
point of this paper. Based on earlier work by Lakemeyer and
Levesque [Lakemeyer and Levesque, 2002], LLL propose the
logic SL, which uses as semantic primitive a setup, which is a
possibly infinite set of ground clauses closed under unit prop-
agation. Roughly, the clauses in a setup can be viewed as
those which the agent believes explicitly. They then consider
a sequence of modalities Bk, for k ≥ 0, where Bkφ should
be read as “φ is believed at level k.” For example, given a
clause c, B0c is satisfied by a setup s just in case there is a
clause in s contained in c. In other words, at level 0, belief
essentially reduces to retrieval wrt. s. At level 1, the agent
believes everything that is believed at level 0 and, in addition,
the agent is able to reason by cases allowing to split a single
clause in s. At belief level 2, the number of possible case
splits increases to 2, and so on.

For example, consider a setup s consisting of a single
clause (Teacher(sue) ∨ Teacher(sam)). Then s satisfies
B0(Teacher(sue) ∨ Teacher(sam) ∨ Teacher(zoe)) by sub-
sumption, but s does not satisfy B0∃x.Teacher(x) because
there is no name n for which B0Teacher(n) holds at s. On the
other hand, s does satisfy B1∃x.Teacher(x) because we can
split the clause in s, and in one case we can choose n = sue
and in the other n = sam. LLL present other, more compli-
cated examples which demonstrate that this kind of existen-
tial reasoning may easily require many case splits in classical
FOL. In fact, this problem alone is known to be undecidable
in general [Patel-Schneider, 1985].

In this setting, a reasoning service for a KB can be defined
as the problem of computing, for a given k, whether Bkφ is
logically implied by B0KB. LLL show that for a certain kind
of so-called proper+ KBs, this reasoning service is decidable
and indeed tractable in the propositional case.

While this work is an interesting contribution towards a
computationally attractive and a semantically well-founded
reasoning service, it still has a number of limitations. For one,
the beliefs considered by LLL may not themselves refer to be-
liefs, which is needed to account for introspective agents. For
example, continuing the above example, we may want to say
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that s satisfies B1(∃x.Teacher(x) ∧ ¬B0(∃x.Teacher(x)))
and B1(∃x.Teacher(x) ∧ ¬B1Teacher(x)). The latter is par-
ticularly interesting as it expresses that the agent believes at
level 1 that someone is a teacher but it does not know who
that teacher is. In other words, introspection allows the agent
to distinguish between de dicto and de re beliefs. Another
shortcoming of SL directly related to this distinction is the
assumption that all constants of the language are rigid, that
is, they are standard names whose identity is known by defi-
nition. For example, B0Teacher(bestFriendOfSue) logically
entails ∃x.B0Teacher(x), which seems too strong.

In this paper we will address both of these issues by extend-
ing the logic SL to the new logic LB. The idea of a setup and
how beliefs at different levels come about will be lifted from
SL. Full introspection will be built into the new logic allow-
ing an arbitrary nesting of beliefs at all levels and in any order.
One of the main results of this paper will be that introspective
reasoning remains decidable and that reasoning about nested
beliefs is reducible to reasoning about non-nested beliefs in
SL. Our proposal to deal with unknown individuals is in-
spired by recent work by De Giacomo et al [2011]. Again
we will provide a decidable reduction to reasoning in SL. To
keep the technical treatment of unknown individuals simple,
we will consider them only for non-nested beliefs.

Considering introspection is perhaps most interesting when
an agent is able to draw conclusions about what it does not
believe. To specify a reasoning service with this feature, the
assumption of B0KB turns out to be too weak, as it only says
that at least the sentences of the KB are believed explicitly
so that nothing is entailed about what is not believed. What
is needed instead is a notion that the sentences in the KB are
all that is believed or that the KB is only-known. For this
purpose we will introduce another operator O so that the rea-
soning service is then characterized by the beliefs which are
entailed by OKB. To simplify matters for the purposes of this
paper, we only consider O at level 0 and hence leave out the
subscript altogether.

1.1 Related Work
Modelling belief has had a long tradition starting with
Hintikka’s possible-world approach [Hintikka, 1962] (see
also [Halpern and Moses, 1992]). While intuitively appeal-
ing, the possible-world model suffers from the logical om-
niscience problem [Hintikka, 1975] so that reasoning ser-
vices based on this model are intractable in the proposi-
tional case and undecidable when the language is first order.
The approaches addressing the logical omniscience problem
can roughly be characterized as syntactic or semantic. The
syntactic approaches include [Konolige, 1986; Vardi, 1986;
Fagin and Halpern, 1988] and either include sets of sen-
tences as part of the interpretation of belief or use notions
such as awareness to rule out certain beliefs. Examples
of the semantic approach are [Levesque, 1984b; Cadoli and
Schaerf, 1992; Lakemeyer, 1996], which are based on tauto-
logical entailment [Anderson and Belnap, 1975; Dunn, 1976;
Patel-Schneider, 1985] using four truth values instead of the
usual two. While the syntactic approach can be criticized
for being perhaps too fine-grained and not providing enough
guidance as to which beliefs to include and which to leave

out, the semantic approaches are much more in line with
the possible-world tradition, but they also have a significant
downside: the beliefs that follow from believing the sentences
in a knowledge base are extremely weak, as Modus ponens is
completely ruled out. For example, from p and p ⊃ q it is
not possible to infer q. Moreover, these approaches also need
to deal with the fact that reasoning about existentials is unde-
cidable even without Modus ponens [Patel-Schneider, 1985].
Hence reasoning becomes even weaker once decidability is
restored. The model of belief underlying the logic SL can
be seen as a compromise between the two camps. On the
one hand, there is a syntactic flavour in that setups consist of
clauses. On the other hand, there are well-motivated seman-
tic rules which determine the beliefs at any level. Most im-
portantly, reasoning becomes more and more powerful with
increasing belief levels while remaining decidable. For these
reasons, SL is an attractive starting point for further investi-
gations into limited, semantically coherent reasoning.

The rest of the paper is organized as follows. In the next
chapter, we introduce the logic LB and demonstrate its con-
nection to SL and further properties. In Section 4 we show
how reasoning about nested beliefs in the context of proper+
KBs can be reduced to reasoning in SL. In Section 5, we
consider unknown individuals and then we conclude.

2 The Logic LB
The language is a first-order modal dialect with an infinite
supply of predicate symbols of every arity, including =, and
an infinite supply of standard names #1,#2,#3, . . . , which
are syntactically treated like constants but which are intended
to be isomorphic to the (fixed) domain of discourse.2 For now,
no other constants or function symbols are allowed. Besides
the usual connectives ¬,∨ and the quantifier ∃we have modal
operators Bk for k = 0, 1, 2, . . . and the modal operator O.
The terms of the language are variables and standard names.
An atomic formula is either a predicate symbol P with terms
as arguments or of the form (t = t′) where t and t′ are terms.
Formulas are the least set which contain the atomic formulas,
and if α and β are formulas and x a variable, then so are
¬α, α ∨ β,∃x.α,Bkα, and Oα, with the restriction that O
may not appear within the scope of any modal operator and
that for any Oα, α contains no modal operators. We also
allow the special symbol �, intended to represent the empty
clause, to appear as a subformula within the scope of a modal
operator. Bkα should be read as “α is believed at level k”
and Oφ as “φ is all that is known (or only-known).”

As is customary, we will freely use the logical connectives
∧,⊃,≡ and the quantifier ∀ as the usual syntactic abbrevia-
tions. Given a formula α, we write αx

n to mean the result of
replacing every free occurrence of x within α by n.

Predicate symbols applied to standard names are called
primitive formulas. Sentences are formulas without free vari-
ables. Formulas without modal operators are called objective,
formulas where all predicate symbols other than = appear

2In other words, standard names can be thought of as constants
that satisfy the unique name assumption and an infinitary version of
domain closure. See [Levesque, 1984a] for a discussion of why the
assumption of a countably infinite domain is not really a limitation.
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within the scope of a modal operator are called subjective,
and formulas which do not mention O are called basic.

As clauses play an essential role in the semantics, we in-
troduce them here together with some other conventions. A
clause is a disjunction of literals, where a literal is either an
atomic formula or its negation. The complement of a literal l
is often denoted as l. We will identify a clause with the set of
literals it contains. A primitive clause is a clause which con-
sists only of primitive formulas and their negations. In other
words, primitive clauses mention neither variables nor =. As
already mentioned, the empty clause is denoted as �. A unit
clause is a clause with a single literal.

Given a set s of primitive clauses, the closure of s under
unit propagation, which we denote as UP(s), is defined as the
least set s′ which contains s, and if unit clause l ∈ s′ and
{l} ∪ c ∈ s′, then c ∈ s′. VP(s) is defined as the set {c | c
is a primitive clause and there exists a c′ ∈ UP(s) such that
c′ ⊆ c}.

The semantics of LB is based on worlds, which determine
what is true apart from the agents beliefs, and setups, which
determine what the agent believes. A world is a mapping
from the set of all primitive formulas to {0, 1}. A setup is
a possibly infinite set of primitive clauses. Roughly, these
represent what the agent believes explicitly (at level 0). As
we will see, beliefs at higher levels will be obtained by case
splitting from the given setup.

Given a world w and a setup s, the truth of a sentence α,
written as s, w |= α is defined as follows:

1. s, w |= P (~n) iff w[P (~n)] = 1;
2. s, w |= (n = m) iff n,m are identical standard names;
3. s, w |= ¬α iff s, w |6= α;
4. s, w |= (α ∨ β) iff s, w |= α or s, w |= β;
5. s, w |= ∃x.α iff s, w |= αx

n for some standard name n;
6. s, w |= Bkα iff s, s, k |= α (defined below);
7. s, w |= Oα iff s, w |= B0α and for all s′,

if VP(s′) ( s then s′, w |6= B0α.

Compared to classical logic, only the last three rules are
non-standard. Rule 5 is somewhat special as it gives a sub-
stitutional account of quantification. This is possible because
the set of standard names is essentially the universe of dis-
course and part of the language. While there are philosophical
arguments criticizing substitutional interpretations [Kripke,
1976], it allows us to make de dicto vs. de re distinctions in a
simple manner and it greatly simplifies the overall technical
apparatus. Let us now turn to the semantics of belief.

Let the length of a basic formula α, denoted as |α|, be de-
fined in the usual way except that we let |Bkα| = (k + 1) +
|α|. It is easy to see that |Bkα| > |α| and |Bk+1α| > |Bkα|
for all k. To make sure that the following inductive definition
of s, s′, k |= α is well-founded, we need to define a measure
that not only takes into account the length of α but also k. A
simple way to achieve this is as follows: for any pair (k, α),
let ‖(k, α)‖= (k + 1) + |α|.

For any setups s, s′, any k ≥ 0 and any basic sentence
α, we let s, s′, k |= α be the least relation that satisfies the
following:

8. s, s′, k |= α if � ∈ UP(s′);
9. s, s′, k |= c if k = 0, c is a clause and c ∈ VP(s′);

10. s, s′, k |= α if k > 0 and there is a c ∈ s′ s.t.
for all l ∈ c, s, s′ ∪ {l}, k − 1 |= α.

11. s, s′, k |= (n = m) if n,m are identical std. names;
s, s′, k |= ¬(n = m) if n,m are distinct std. names;

12. s, s′, k |= ¬¬α if s, s′, k |= α;
13. s, s′, k |= (α ∨ β) if s, s′, k |= α or s, s′, k |= β;

s, s′, k |= ¬(α ∨ β) if s, s′, k |= ¬α and s, s′, k |= ¬β;
14. s, s′, k |= ∃x.α if s, s′, k |= αx

n for some n;
s, s′, k |= ¬∃x.α if s, s′, k |= ¬αx

n for all n;
15. s, s′, k |= Bk′α if s, s, k′ |= α;

s, s′, k |= ¬Bk′α if s, s′, k |6= Bk′α.

The above rules state the various ways sentences can be be-
lieved at level k. Rule 8 simply says that as soon as the empty
clause is derivable by unit propagation, then everything is be-
lieved. Rule 9 deals with the base case of belief at level 0, that
is, a clause is explicitly believed if it is a member of VP(s′) or,
equivalently, a superset of a clause in UP(s′). Rule 10 deals
with the the case where k > 0 and it is possible to establish
that α is believed at level k − 1 after splitting a clause. Rule
11 means that we have perfect reasoning about equalities and
this is independent of any setup. Rules 12–14 establish cer-
tain “obvious” beliefs, for example from either believing α
or believing β one can conclude believing α ∨ β (Rule 13).
Finally, Rule 15 deals with nested beliefs. As we will see,
the effect is a fully introspective agent. Notice that s′ is re-
placed by s on the RHS. In fact, this rule is the reason why
we require two setups. While s′ may change due to Rule 10,
s remains fixed and determines the interpretation of all nested
beliefs.

With the semantics of Bkα in hand, let us now take a brief
look at the meaning of O. Intuitively, the definition says that
to only-know α the agent believes α explicitly and no other
setup with truly fewer explicit beliefs believes α explicitly.
We will come back to O in more detail in Section 4.

To conclude the semantic definitions, we say that a sen-
tence α is valid (written |= α) iff s, w |= α for all setups s
and all worlds w. When α is subjective, the world w plays no
role and we will often write s |= α instead of s, w |= α.

3 The connection with the logic SL
We begin our investigations of the properties of LB by intro-
ducing a slight variant of SL and establishing that the two
logics agree on all sentences of SL. Its formulas consist of
all basic subjective sentences of LB yet without nesting of
beliefs.

We begin by introducing (Bkφ)↓, which, roughly, denotes
the SL formula resulting from pushing the belief operator into
φ. The purpose is to allow obvious conclusions from (Bkφ)↓
to Bkφ. For any φ ∈ L, the SL formula (Bkφ) ↓ is defined
as follows:

1. (Bkc)↓ = Bkc, where c is a clause;
2. (Bk(t = t′))↓ = (t = t′);
3. (Bk¬(t = t′))↓ = ¬(t = t′);
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4. (Bk¬¬φ)↓ = Bkφ;

5. (Bk(φ ∨ ψ))↓ = (Bkφ ∨Bkψ),
where φ or ψ is not a clause;

6. (Bk¬(φ ∨ ψ))↓ = (Bk¬φ ∧Bk¬ψ);
7. (Bk∃x.φ)↓ = ∃x.Bkφ;

8. (Bk¬∃x.φ)↓ = ∀x.Bk¬φ.

As discussed above, the semantics of SL is based on setups.
Worlds are not needed as only subjective formulas are con-
sidered. Let s be a setup. Then for any sentence α ∈ SL,
s |=SL α (read “s satisfies α in SL”) is defined inductively3 as
follows:

1. s |=SL (d = d′) iff d and d′ are the same constant;

2. s |=SL ¬α iff s 6|=SL α;

3. s |=SL α ∨ β iff s |=SL α or s |=SL β;

4. s |=SL ∃x.α iff for some constant d, s |=SL α
x
d ;

5. s |=SL Bkφ iff one of the following holds:

(a) inconsistent: � ∈ UP(s);
(b) subsume: k = 0, φ is a clause c, and c ∈ VP(s);
(c) reduce: φ is not a clause and s |=SL (Bkφ)↓;
(d) split: k > 0 and there is some c ∈ s such that for

all ρ ∈ c, s ∪ {ρ} |=SL Bk−1φ.

A sentence α is valid in SL (|=SL α) if for every setup s, we
have that s |=SL α.

We deviate slightly from the original proposal of SL by
adding the rule (5a), which says that everything is believed as
soon as � is part of the setup after unit propagation. While
this changes some properties of beliefs about =,4 it is easy to
see that all other results, including those about decidability,
remain the same.

In order to establish that LB and SL coincide on all sen-
tences of SL, the following lemma is needed.

Lemma 1 For any objective φ, setups s and s′ and k ≥ 0,
s |=SL Bkφ iff s′, s, k |= φ

Proof: The proof is by induction on k and |φ|. Let k = 0. If
φ is a clause c, then s |=SL B0c iff c ∈ VP(s) iff s′, s, 0 |= c.
The other cases for φ follow easily by induction. Here we
consider only ∃: s |=SL B0∃x.φ iff s |=SL ∃xB0φ iff s |=
B0φ

x
n for some n iff (by ind.) s′, s, 0 |= φxn for some n iff

s′, s, 0 |= ∃xφ.
Suppose the lemma holds for k−1. Here we only consider

the case for splitting a clause. (The other cases follow again
by a simple induction on |φ|.) Let s |=SL Bkφ and suppose
there is a c ∈ s such that for all ρ ∈ c, s ∪ {ρ} |=SL Bk−1φ.
Then, by induction, s′, s ∪ {ρ}, k − 1 |= φ for all ρ ∈ c and
hence s′, s, k |= φ. The reverse direction in case of clause
splitting is analogous.

Using this lemma it is easy to show that

3LLL demonstrate that the induction is indeed well defined.
4For example, while Bke ≡ e is valid in the original SL for all

e mentioning only =, we only have that ¬Bk� ⊃ (Bke ≡ e) is
valid.

Lemma 2 For every α ∈ SL, setup s, and world w,
s |=SL α iff s, w |= α.
As an immediate consequence, we obtain
Theorem 1 |=SL α iff |= α.

In other words, for basic non-nested sentences, LB inherits
all the properties of SL. For example, we have that for any
i, j there is a k s.t. |= Biφ ∧Bj(φ ⊃ ψ) ⊃ Bkψ.5

We now consider proper+ KBs, which were originally in-
troduced in [Lakemeyer and Levesque, 2002] and are an ex-
tension of the proper KBs proposed in [Levesque, 1998]. Let
θ denote a substitution of all variables by standard names. We
write αθ as the result of applying the substitution to α. We
use ∀α to mean the universal closure of α. We let e range
over ewffs, which are quantifier-free formulas containing no
predicate symbols other than =.

Let e be an ewff and c a clause. Then a formula of the form
∀(e ⊃ c) is called a ∀-clause. A KB is called proper+ if it is
a finite non-empty set of ∀-clauses. Given a proper+ KB, we
define gnd(KB) as the possibly infinite setup {cθ | ∀(e ⊃ c)∈
KB and |= eθ}. In the following we will use KB both as a set
of sentences and as a conjunction of the sentences it contains.

An example proper+ KB is {∀x, y.(x = #1 ∧ y = #2) ⊃
(Teacher(x) ∨ Teacher(y),∀x.x 6= #1 ⊃ Female(x)}.

LLL established that determining the beliefs at any level k
of a proper+ KB is decidable.
Theorem 2 (LLL) For any proper+ KB and objective φ,
|=SL B0KB ⊃ Bkφ is decidable.
Given Thm. 1, we obtain the same decidability result for LB:
Corollary 1 For any proper+ KB and objective φ, the valid-
ity of B0KB ⊃ Bkφ is decidable in LB.

LLL proved that the reasoning service as defined by the
above implications, is always sound with respect to classical
reasoning and they showed tractability in the propositional
case. Given the undecidability of classical reasoning, reason-
ing is also necessarily incomplete. For example, we have that
|6= B0p ⊃ Bk(q ∨ ¬q) for all k.

Let us now go beyond SL and consider nested beliefs.

4 Nested beliefs
We begin by generalizing a result by LLL, which says that
anything that is believed at level k is also believed at levels
higher than k.
Proposition 1 For any basic α, |= Bkα ⊃ Bk+1α.
Proof: Suppose s, w |= Bkα. We need to consider two
cases for s. If s is empty, then a simple induction on |α|
shows that for all k, j, s, s, k |= α iff s, s, j |= α, from
which the lemma follows. Now let s be non-empty. Again,
a simple induction on |α| shows that for all s, s′ and literal
ρ, if s, s′, k |= α then s, s′ ∪ {ρ}, k |= α. By assumption,
we have s, s, k |= α. We can then pick an arbitrary clause
c ∈ s such that for all ρ ∈ c, s, s ∪ {ρ}, k |= α, from which
s, w |= Bk+1α follows using Rule 15 of the semantics.

5We remark that, given our slight change of the semantics of SL,
this property holds for all objective ψ and not just equality-free ψ as
in the original SL.
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It is easy to see that our model of belief is fully introspec-
tive. For example, if p is believed at some level k then at any
level j it is believed that p is believed at k. We also obtain the
Barcan formula since standard names are the fixed universe
of discourse.
Proposition 2

1. |= Bkα ⊃ BjBkα

2. |= ¬Bkα ⊃ Bj¬Bkα

3. |= ∀xBkα ⊃ Bk∀xα.
Proof: Here we only prove (1.). Let s, w |= Bkα. Then
s, s, k |= α. By Rule 15, we then also have s, s, j |= Bkα
from which s, w |= BjBkα follows.

4.1 A reasoning service for introspective KBs
We now turn to the issue of specifying a reasoning service
for introspective proper+ knowledge bases in LB. As we ar-
gued already in the beginning, being able to draw conclusions
about its own ignorance, an agent needs to assume that its KB
is all that it knows, and it is for this purpose that we included
the only-knowing operator O in our logic. The specification
of the reasoning service will then be in terms of the valid sen-
tences of the form

OKB ⊃ Bkα for proper+ KBs and basic α.
Let us begin by considering which setups s only-know a
proper+ KB. It turns out that there is essentially a unique
s with this property:
Theorem 3 s, w |= OKB iff VP(s) = VP(gnd(KB)).
Proof: For the only-if direction, let s |= OKB. Then
s |= B0KB. Hence s |= B0c for all c ∈ gnd(KB)
and, therefore, c ∈ VP(s). As shown by LLL, this im-
plies VP(gnd(KB)) ⊆ VP(s). To show that VP(s) ⊆
VP(gnd(KB)), suppose otherwise. Then VP(gnd(KB)) (
VP(s). However, VP(gnd(KB)) |= B0KB, contradicting the
assumption that s |= OKB.

Conversely, let VP(s) = VP(gnd(KB)). Then clearly s |=
B0KB. Now consider a setup s′ with VP(s′) ( VP(s). Then
there is a c ∈ gnd(KB) such that c 6∈ VP(s′). But then s′ |6=
B0c and hence s′ |6= B0KB.

Hence it suffices to consider only the possibly infinite setup
gnd(KB) when determining whether implications of the form
OKB ⊃ Bkα are valid. As a consequence, O can be replaced
by B0 in the case of objective beliefs.
Theorem 4 For any proper+ KB and objective φ,
|= OKB ⊃ Bkφ iff |= B0KB ⊃ Bkφ.
Proof: The if direction is immediate since |= OKB ⊃
B0KB. Conversely, let |= OKB ⊃ Bkφ and s |=
B0KB. Then VP(gnd(KB)) ⊆ VP(s). By Theo-
rem 3, VP(gnd(KB)) |= OKB. Thus, by assumption,
VP(gnd(KB)) |= Bkφ. By Prop. 4 of LLL, s |= Bkφ.

We are now ready to consider nested beliefs of a KB. For
example, suppose sam and sue are standard names and let
KB = (Teacher(sue) ∨ Teacher(sam)), which can easily be
massaged into proper+ form. As expected, we have
|= OKB ⊃ B1(∃x.Teacher(x) ∧ ¬B1(Teacher(x))),

that is, the KB believes at level 1 that someone is a teacher
but does not know who it is.
Proof: By Theorem 3, it suffices to consider s |= OKB with
s = {Teacher(sue)∨Teacher(sam)}. Then we have s, s, 1 |=
∃x.Teacher(x) because we can split the clause in s and obtain
s, s∪{Teacher(sam)}, 0 |= ∃x.Teacher(x) (choose x = sam)
in one case and s, s ∪ {Teacher(sue)}, 0 |= ∃x.Teacher(x)
(choose x = sue) in another.

However, s, s ∪ {Teacher(sam)}, 0 |= ¬B1Teacher(sam)
because s, s, 1 |6= B1Teacher(sam), and similar for x = sue.

Putting things together, we therefore have that s |=
B1(∃x.Teacher(x) ∧ ¬B1(Teacher(x))).

Note also that |= OKB ⊃ ¬B0(∃x.Teacher(x)) since at
level 0 we are not allowed to reason by cases.

The main question now is how to automate introspective
reasoning for proper+ KBs. As we will see, we can leverage
an idea originally proposed by Levesque [1984a] for a clas-
sical modal reasoner, where reasoning about nested beliefs is
reduced to reasoning about objective beliefs.

The key idea is to replace occurrences of nested beliefs
such as B1(Teacher(x)) by a description of the known teach-
ers. In our example, there are no known teachers and hence
the formula is replaced by FALSE.6 As we will see, nested be-
liefs such as B1¬B0(Teacher(x)) can be handled recursively.

The approach then is to define, given an objective formula
φ with free variables ~x, a function RES[k, φ,KB], which pro-
duces an ewff e which describes for which standard names ~n
the sentence φ~x~n is believed at level k.

Let φ be an objective formula and KB be proper+. Suppose
that n1, . . . , nk, are all the names in φ or in KB, and that
n′ is some name that does not appear in φ or in KB. Then
RES[k, φ,KB] is defined by:

1. If φ has no free variables, then RES[k, φ,KB] is
TRUE, if |= B0KB ⊃ Bkφ, and FALSE, otherwise.

2. If x is a free variable in φ, then RES[k, φ,KB] is
((x = n1) ∧ RES[k, φxn1

,KB]) ∨ . . .
((x = nk) ∧ RES[k, φxnk

,KB]) ∨
((x 6= n1) ∧ . . . ∧ (x 6= nk) ∧ RES[k, φxn′ ,KB]n

′

x ).

For KB = (Teacher(sue) ∨ Teacher(sam)) and φ =
Teacher(x) we obtain RES[1, φ,KB] = (x = sam∧FALSE)∨
(x = sue ∧ FALSE) ∨ (x 6= sam ∧ x 6= sam ∧ FALSE),
which simplifies to FALSE. If instead KB = Teacher(sue)
then RES[0, φ,KB] = (x = sue∧TRUE)∨(x 6= sue∧FALSE),
which simplifies to x = sue.

The correctness of our definition of RES is reflected in the
following result.

Lemma 3 For any proper+ KB, any objective φ with free
variables x1, . . . , xl, and standard names n1, . . . , nl,
|= B0KB ⊃ Bkφ

x1
n1
· · ·xl

nl
iff |= RES[k, φ,KB]x1

n1
· · ·xl

nl
.

The proof is by induction on l and closely follows a similar
argument in [Levesque, 1984a].

The following definition gives us the means to deal with
arbitrary nestings of beliefs.

6We write TRUE as shorthand for ∀x.(x = x) and FALSE as
shorthand for ¬TRUE.
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Given a proper+ KB and a basic formula α, ||α||KB is the
objective formula defined by

||α||KB = α, when α is objective;

||¬α||KB = ¬||α||KB;

||(α ∨ β)||KB = (||α||KB ∨ ||β||KB);

||∃x.α||KB = ∃x.||α||KB;

||Bkα||KB = RES[k, ||α||KB,KB].

Thus, given our example KB about Sue and
Sam, ||∃x.Teacher(x) ∧ ¬B1Teacher(x)||KB results in
∃x.Teacher(x) ∧ ¬FALSE (after simplification), which
further simplifies to ∃x.Teacher(x).

Lemma 4 Let s = gnd(KB), α any basic formula with free
variables x1, . . . , xl, and n1, . . . , nl standard names. Then
s, s, k |= αx1

n1
· · ·xl

nl
iff s, s, k |= ||α||KB

x1
n1
· · ·xl

nl

With this lemma it is easy to show that

Theorem 5 |= OKB ⊃ Bkα iff |= OKB ⊃ Bk||α||KB.

Since ||α||KB is objective, and together with Theorem 4, we
obtain immediately:

Corollary 2 |= OKB ⊃ Bkα iff |= B0KB ⊃ Bk||α||KB.

Finally, given the decidability result for objective beliefs
(Corollary 1) of proper+ KBs and the fact that RES appeals
to this decision problem only a finite number of times, we
obtain

Corollary 3 For any proper+ KB and basic α, the validity of
OKB ⊃ Bkα is decidable in LB.

5 Unknown individuals
Let us now turn to the issue of dealing with unknown individ-
uals such as bestFriendOfSue. For that we augment the lan-
guage with an infinite set of constants, which are treated as
additional terms. The difference between constants and std.
names will be that constants can denote different std. names.
To simplify matters, we restrict the language for this section
to basic formulas without nested beliefs (i.e. similar to SL)
and call the new logic LBu.

The semantics needs to be extended to account for the new
terms. In the case of a world w, we interpret constants by
mapping them into the standard names, e.g., w[a] = #1. We
also need to extend clauses and setups. An e-clause is like a
clause except that it may contain an ewff e as an additional
disjunct. A ground e-clause is an e-clause without free vari-
ables, but it may contain constants. An e-setup is a possibly
infinite set of ground e-clauses. This allows us, for example,
to model knowledge of the kind ∀x.a 6= x ⊃ T (x) as the infi-
nite e-setup {(a = n) ∨ T (n) | for all std. names n}. Let a c-
map ν be a mapping from constants into standard names. We
write αν to mean α with every constant a replaced by ν(a).
Given an e-setup s, let sν = {cν | {e} ∪ c ∈ s, where |=
¬eν}. In words, sν is a setup containing the clause part of
those e-clauses in s with constants replaced by std. names,
where e comes out false. For the above example, if ν(a) = #1
then sν = {T (#2), T (#3), . . .}.

The truth of a formula α is now defined wrt. a world w and
an e-setup s. Compared to the previous semantics of LB, only
Rules 1,2, and 6 need to be changed. Rules 1 and 2 need to
deal, in the obvious way, with the denotation of constants as
specified by the world w (details omitted). Rule 6 is replaced
by the following:

6′. s, w |= Bkα iff for all c-maps ν, sν, sν, k |= αν.

Note that the RHS talks only about setups in the old sense and
formulas without constants, that is, we can use the existing
semantic rules 8–15 of LB to evaluate its truth value. Validity
in LBu is defined as truth in all worlds and e-setups.

We now address the problem of deciding the beliefs of a
proper+ KB, where constants are allowed in ∀-clauses. Since
we do not deal with nested beliefs, it suffices to consider the
validity of formulas of the form B0KB ⊃ Bkφ for objective
φ. E.g., let KB = {(P (a) ∨ Q(a),∀x.x 6= #1 ⊃ ¬P (x)},
where a is a const. Then |= B0KB ⊃ B0(a 6= #1 ⊃ Q(a)).

Let gnde(KB) = {{¬eθ} ∪ cθ | ∀(e ⊃ c) ∈ KB}, that is,
gnde(KB) is a grounding of KB where the ewffs are kept as
part of the resulting e-clauses. We then have

Lemma 5 |= B0KB ⊃ Bkφ iff gnde(KB) |= Bkφ.

(The proof is similar to an analogous result by LLL for SL.)
We then have a result similar to one by De Giacomo et
al. [2011] (Theorem 5) for proper KBs with unknowns:

Theorem 6 Let s = gnde(KB). Let a1, . . . , am be the con-
stants in KB and φ. Let H be the set of those c-maps ν s.t.
ν(a1) ranges over all std. names in KB and φ plus one more,
and for all 1 ≤ i < m, ν(ai+1) ranges over all names that
ν(ai) ranges over plus one more. Then
for all ν, sν, sν, k |= φν iff for all ν ∈ H , sν, sν, k |= φν.

This result establishes that finitely many substitutions of con-
stants by std. names suffice to determine the beliefs of a KB.
Using Lemma 5 and the fact that gnde(KB)ν = gnd(KBν)
we then obtain

Theorem 7 Let KB, φ,H be as in the previous theorem.
|= B0 ⊃ Bkφ iff |=SL B0KBν ⊃ Bkφν for all ν ∈ H .

Note that this reduces the problem of determining the beliefs
of a KB with unknown individuals to a finite number of de-
cidable validity problems in SL. Hence

Corollary 4 For any proper+ KB and objective φ, the valid-
ity of B0KB ⊃ Bkφ is decidable in LBu.

6 Conclusions
The paper has established that the decidable reasoning service
for proper+ KBs proposed by LLL can be faithfully extended
to deal with introspection. Moreover, unknown individuals
can also be accommodated without sacrificing decidability.
As for future work, an immediate task is to combine the re-
sults on introspection and unknown individuals. Besides de-
cidability it will also be interesting to identify special cases
where reasoning remains tractable for a fixed k. Finally, go-
ing beyond constants and allowing function symbols in some
way is yet another challenge.
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