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Abstract

Product defects and rework efforts due to flawed
specifications represent major issues for a project’s
performance, so that there is a high motivation
for providing effective means that assist designers
in assessing and ensuring a specification’s quality.
Recent research in the context of formal specifi-
cations, e.g. on coverage and vacuity, offers im-
portant means to tackle related issues. In the cur-
rently underrepresented research direction of diag-
nostic reasoning on a specification, we propose a
scenario-based diagnosis at a specification’s opera-
tor level using weak or strong fault models. Draw-
ing on efficient SAT encodings, we show in this
paper how to achieve that effectively for specifica-
tions in LTL. Our experimental results illustrate our
approach’s validity and attractiveness.

1 Introduction

When a project’s efficiency and the related return on invest-
ment are considered, rework efforts increasing consumed re-
sources and time-to-market are a crucial factor. Industrial
data show that about 50 percent of product defects result from
flawed requirements and up to 80 percent of rework efforts
can be traced back to requirement defects [Wiegers, 2001].
Surprisingly enough, traditionally, research has been focusing
on using a (presumably correct) specification for design veri-
fication, and seldom aimed at assisting designers in their for-
mulation or verifying their quality. However, and specifically
for specification-driven development flows like proposed for
Electronic Design Automation (EDA) by [PROSYD home-
page, 2013], a specification’s quality is crucial as design de-
velopment/verification/synthesis depend on it.

Recently, specification development has been gaining spe-
cific attention in a formal context. Coverage and vacuity
can pinpoint to specification issues [Fisman er al., 2009;
Kupferman, 2006], and specification development tools like
IBM’s RuleBase PE [RuleBasePE homepage, 2013] or the
academic tool RAT [Pill et al., 2006; Bloem et al., 2007]
help by, for example, letting a designer explore a specifica-
tion’s semantics. RAT’s property simulation (a similar feature
was designed for RuleBase PE as well [Bloem et al., 2007]),
for instance, lets a user explore a specification’s evaluation
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along sample behavior (a trace). The temporal evolution for
all subformulae is visualized via individual waveforms, pre-
sented according to a specification’s parse tree. While indus-
trial feedback was very good [Bloem et al., 2007], this still
involves manual reasoning and intervention.

We aim to increase the level of automation via diagnos-
tic reasoning that pinpoints to specification issues more di-
rectly. RuleBase PE offers a very interesting feature in this
respect, explaining counterexamples using causality [Beer ef
al., 2009]. Reasoning about points in the trace where the
prior stem’s satisfiability status differs from its extension in
distinctive ways, critical signals and related failure causes are
identified and marked with red dots in the visualized wave-
form for this time-step. [Schuppan, 2012] offers unsatisfiable
cores in the clauses he derives for specifications in the Linear
Temporal Logic (LTL) [Pnueli, 1977].

In contrast to [Beer et al., 2009] we aim at the specifica-
tion rather than the trace, and on a set of diagnoses instead
of a flat list of affected components. That is, accommodating
Reiter’s theory of diagnosis in the context of formal specifi-
cations (in LTL as a first step), we derive diagnoses that de-
scribe viable combinations of operator occurrences (subfor-
mulae) whose concurrent incorrectness explains a trace’s un-
expected (un-)satisfiability, both in the context of weak and
strong fault modes. Our diagnoses address operator occur-
rences rather than clauses (a diagnosis covers all unsat cores,
and we can easily have 10° clauses even for small specifi-
cations), so that we effectively focus the search space to the
items and granularity level the designer is working with.

Adopting the interface of the established property simula-
tion idea, we consider specific scenarios in the form of in-
finite lasso-shaped traces a designer can define herself or re-
trieve, for example, by model-checking. We use a specifically
tailored structure-preserving SAT encoding for our reason-
ing, exploiting known trace features and weak or strong fault
models. For strong fault models that include descriptions of
“alternative” behavior, our diagnoses directly suggest repairs
like “there should come a weak instead of a strong until”.

Extending [Pill and Quaritsch, 2012], our paper is struc-
tured as follows. We cover preliminaries in Section 2, and dis-
cuss our SAT-based diagnosis approach for LTL in Section 3.
Following experimental results in Section 3.1, we draw con-
clusions and depict future work in Section 4. Related work is
discussed throughout the paper where appropriate.



2 Preliminaries

Reiter’s theory of diagnosis [Reiter, 1987] defines the
consistency-oriented model-based diagnosis [Reiter, 1987;
de Kleer and Williams, 1987] of a system as follows: A sys-
tem description SD describes the behavior of a set of interact-
ing components COMP. SD contains sentences ~AB(c;) =
NominalBehavior(c;) encoding a component’s behavior un-
der the assumption that it is not operating abnormally (the
assumption predicate AB(c;) triggers a component ¢;’s ab-
normal behavior, and NominalBehavior defines correct be-
havior in first order logic). As there are no definitions regard-
ing abnormal behavior, the approach is considered to use a
weak fault model (WFM). Given some actually observed sys-
tem behavior OBS, a system is recognized to be faulty, iff
SD U OBS U {—AB(c¢;)|c; € COMPY is inconsistent. A
minimal diagnosis explaining the issue is defined as follows.

Definition 1. A minimal diagnosis for (SD, COMP, OBS)
is a subset-minimal set A C COMP such that SD U OBS U
{—A4B(c;)|c; € COMP \ A} is consistent.

Reiter proposes to compute all the minimal diagnoses as
the minimal hitting sets of the set of not necessarily minimal
conflict sets for (SD, COMP, OBS).

Definition 2. A conflict set C'S for (SD, COMP, OBS) is a
set CS C COMP such that SDUOBSU{—=AB(¢;)|c; € CS}
is inconsistent. If no proper subset of CS is a conflict set, C'S
is a minimal conflict set.

Using a theorem prover capable of returning conflicts, Re-
iter’s algorithm [Reiter, 1987] is able to obtain the sets of
conflict sets and minimal diagnoses on-the-fly, where appro-
priate consistency checks verify a diagnosis A’s validity, and
a set of pruning rules ensures their minimality. [Greiner et
al., 1989] presented an improved version, HS-DAG, that uses
adirected acyclic graph (DAG) instead of a tree and addresses
some minor but serious flaws in Reiter’s original publication.

For a strong fault model (SFM) approach, also abnormal
behavior is defined [de Kleer and Williams, 19891, which has
the advantage that diagnoses become more specific. On the
downside, with n the number of assumptions and m the max-
imum number of modes for any assumption, the search space
grows significantly from 2™ to O(m™).

For our definitions of an infinite trace and the Linear Tem-
poral Logic (LTL) [Pnueli, 1977], we assume a finite set of
atomic propositions AP that induces alphabet ¥ = 247,
Complementing the in- and output signals, we add further
propositions for the subformulae to encode their evaluation.
It will be evident from the context when we refer with a trace
to the signals only. LTL is defined in the context of infinite
traces, which we define as sequence as is usual. A sequence
of letters with finite space (of finite length &) can describe an
infinite computation only in the form of a lasso-shaped trace
(with a cycle looping back from k to 0 < I < k) as follows (or
it could describe all traces that have the sequence as prefix):

Definition 3. An infinite trace T is an infinite sequence
over letters from some alphabet % of the form T =
(tom1 ... mi—1)(miTig1 ... TR) with Ik € NI < k, 1y €
Y forany 0 < i < k, (...)* denoting infinite repetition

of the corresponding (sub-)sequence, (ToT1 ...Ti—1) refer-
ring to T’s finite stem, [ fo the loop-back time step, and
(TiTi41 - . - Tk ) representing the trace’s (k,1)-loop [Biere et al.,
1999]. We denote the infinite suffix starting at i as 7', and T;
refers to T’s element at time step i, where for any i > k we
have T; = Ty (i—1)%(k—1+1)-

Definition 4. Assuming a finite set of atomic propositions
AP, and § to be an LTL formula, an LTL formula ¢ is de-
fined inductively as follows [Pnueli, 1977]:

e foranyp € AP, pis an LTL formula
e —p, NI, VI, Xy, and o U are LTL formulae

Similar to 7; and a trace, we denote with ¢; a formula’s
evaluation at time step . We use the usual abbreviations § —
gandd < o for =6 Vo and (6 — o) A (o — §) respectively.
For brevity, we will also use p to denote the negation of some
atomic propositionp € AP, aswell as T /L for pvV—p/pA—p.

Note that the popular operators  Ro, F o, Gy, and W o
not mentioned in Def. 4 are syntactic sugar for common for-
mulae ~((—=J) U (=0)), TUg, LRy, and 6 Uo VG § respec-
tively. Their semantics are thus defined only due to their use
in the arbiter example depicted later on:

Definition 5. Given a trace T and an LTL formula o, 7(=7°)
satisfies o, denoted as T |= o, under the following conditions

T Ep iffp € 7

TEoe T e

T'"EdNe iffT'EdandT =0

TESVe iffttEdorti =0

TEXe ffr e

r'=6Uo iff3j >l EoandVi<m < jrt™ =6
TESRe iffVi>iri Eoordi<m<jrmES
TEFe  iff3jzir Eo

TGy ifviziTi Eg

T ESWo iffr'=EdUcort |=G6

3 Model-Based Diagnosis at the Operator
Level for LTL Specifications

Explanations why things went wrong are always welcome
when facing unexpected and surprising situations, for exam-
ple, when a supposed witness contradicts a specification as in
the following example taken from [Pill ez al., 2006]: Assume
a two line arbiter with two request lines 71 and 5 and the cor-
responding grant lines g; and g,. Its specification consists of
the following four requirements: Ry demanding that requests
on both lines must be granted eventually, Ro ensuring that no
simultaneous grants are given, R3 ruling out any initial grant
before a request, and finally R4 preventing additional grants
until new incoming requests. Testing her specification, a de-
signer defines a supposed witness 7 (i.e. a trace that should
satisfy the specification) featuring a simultaneous initial re-
quest and grant for line 1 (line 2 is omitted for clarity).
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Ry :Vi:G(r; = Fg)

Ry : G=(g1 A g2)
Rs:Vi:(—g;Ur;)

Ry :Vi:G(gi = X (—gi Ury))

()
(2 € {1,2})

As pointed out by RAT’s authors, using a tool like RAT, the
designer would recognize that, unexpectedly, her trace con-
tradicts the specification. However, diagnostic reasoning of-
fering explanations why this is the case, would obviously be a
valuable asset for debugging, which is exactly our challenge.

The specific problem in the scenario above is the until op-
erator —g; U r; in Ry that should be replaced by its weak ver-
sion =g; Wr;: While the idea of both operators is that —g;
should hold until r; holds, the weak version does not require
r; to hold eventually, while the “strong” one does. Thus, R4
in its current form repeatedly requires further requests that
are not provided by 7, and which is presumably not in the
designer’s intent. Evidently, the effectiveness of a diagnostic
reasoning approach depends on whether a diagnosis’ impact
on a specification is easy to grasp, and can pinpoint the de-
signer intuitively to issues like the one in our example.

Before describing our diagnosis approach for LTL speci-
fications, we now introduce our general temporal reasoning
principles for LTL, which we are going to adapt accordingly.

For an LTL formula ¢, we can reason about its satis-
faction by a trace 7 via recursively considering 7’s current
and next time step in the scope of ¢ and its subformulae.
While this is obvious for the Boolean connectives and the
next operator X, the until operator is more complex. The
well known expansion rules as immanently present also in
LTL tableaus and automata constructions [Clarke et al., 1994;
Somenzi and Bloem, 2000] capture this line of reasoning. We
can unfold 6 Uo to o V 6 A X(dUo), which basically en-
codes the options of how to satisfy  in the current time step
(considering Def. 5 this is the case where j = 7) and the op-
tion of pushing the obligation (possibly iteratively) to the next
time step (j > 7). Considering acceptance, we have to ver-
ify whether the obligation would be pushed infinitely in time.
Like [Biere et al., 1999] suggested for LTL model-checking,
we use a SAT solver for our reasoning, with the advantage
that & is known. Similar to their encoding or [Heljanko er al.,
2005], we encode our questions into a satisfiability problem,
where, as in our case also the loop-back time step [ is given,
we can check for pushed obligations very efficiently in our
structure-preserving variant.

In Table 1, column 2 lists our unfolding rationales that con-
nect ¢; to the evaluations of ¢’s subformulae and signals in
the current and next time step. A checkmark in the third col-
umn indicates whether a rationale is to be instantiated for all
time steps (remember that 7,11 = 7; due to Def. 3, so with
our encoding wx41 = ¢;), whereas in the last column we list
the corresponding clauses as added to our conjunctive normal
form (CNF) encoding. In the clauses, ¢; represents the corre-
sponding time-instantiated variable that we add for each sub-
formula in order to derive a structure-preserving encoding.
Given these clauses, we can directly obtain a SAT problem
for 7 |= ¢ in CNF from ¢’s parse tree and 7 as follows.

Clauses

V(@) /P,

v (b1) ¥; V6

Vi (b2) p; Vo

v (b3) ¢; VI, VT,
v (1) iV

v (c2) pi VT

v (c3) @7;\/5,'\/0'1'
v (d1) B; V9,

v (d2) @i V6
vo(er) ¥ Vi
v o(e2) @i Vit1
oUo <pl—>(01\/(51/\<p2+1)) \/(fl) @Z\/Jl\/(sl
v (f2) ©;Voi Vi

¢ Unfolding rationales I

T/J_ <pi<—)—|—/J_
ONC (pi<—>((5i/\0’i)

oVo <p1<—)((52\/0'1)

) Qi _|(Si

X6 @i > 0541

oi = i V(g TiVei
0i N iy1 = @i v (h) iz V@i Vi
Pk = Vi<i<k O D) PV Vicicr0i

Table 1: Unfolding rationales and CNF clauses for LTL op-
erators. A checkmark indicates that the clauses in the corre-
sponding line must be instantiated over time (0 < ¢ < k).

Definition 6. In the context of a given infinite trace with
length k and loop-back time-step |, E1(v) encodes an LTL
formula 1) using the clauses presented in Table 1, where we
instantiate for each subformula ¢ a new variable over time,
denoted ; for time instance i. Please note that we assume
that k and | are known inside E and R.

R(e) NE1(8) NEy(0) for p=dor0
Eqi(p) = { R(p) A E1(5) for o =00
R(y) else

with o1 € {A,V,U}, o € {=,X} and R(yp) defined as the
conjunction of the corresponding clauses in Table 1.

Definition 7. For a given infinite trace T (with given k),

E2(7) = No<ich |Npier Pi NN\picaryr, ﬂpz} encodes the
signal values as specified by T.

Theorem 1. An encoding E(p,7) = E1(p) A Eo(T) of an
LTL formula ¢ and a trace T as of Definitions 6 and 7 is
satisfiable, SAT (E(p, 7)), iff T = ¢.

Proof. (Sketch). The correctness regarding the Boolean op-
erators and the temporal operator next (X (4)) is trivial, so
that we concentrate on the operator until (5 U o).

We will start with the direction (7¢ = ) — ¢;: Accord-
ing to Def. 5, 7¢ |= ¢ implies that there exists some j > i,
such that 77 = o, and for the time steps ¢ < m < j we
have 7 = ¢. Clause (g) then requires ¢; to become T,
and Clause (h) propagates that backward to ;. For the di-
rection ; — (7 = ¢) Clauses (f;) and (fy) require either
the immediate satisfaction by o; or postpone (possibly itera-
tively) the occurrence of ¢ in time (in the latter case requiring
w;+1 and ;). According to Def. 5, the first option obviously
implies 7° = ¢, while for the second one it is necessary to
show that the obligation is not postponed infinitely such that
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the existential quantifier (see Def. 5) would not be fulfilled.
This is ensured by Clause (i), that, if the satisfaction of o is
postponed until k, requires there to be some o,,,, with m in
the infinite k, ! loop, such that 7™ |= o. Thus we have that
©; implies 7¢ = ¢, and in turn (7% = @) <> @;. O

Via Theorem 1, we can verify whether an infinite signal
trace T is contained in a specification ¢ or not. Our encoding
E(p,7) forms a SAT problem in CNF that is satisfiable iff
T |= . An affirmative answer is accompanied by a complete
evaluation of all subformulae along the trace. For counterex-
amples, we obtain such an evaluation by encoding the negated
specification. Via F(p, ) we can also derive (or complete)
k,l witnesses (by encoding () and counterexamples (encod-
ing ), due to the fact that concerning Theorem 1 we only
weaken the restrictions regarding signal values for this task.

As today’s SAT solvers are able to compute (minimal) un-
satisfiable cores [Lynce and Silva, 2004] (MUCs) in the CNF
clauses, we could implement a diagnosis approach at clause
level adopting Reiter’s theory. Scalability would however be
a severe issue: The diagnosis space would be exponential in
the number of clauses, where we can easily have 106 clauses
for |7| = |¢| = 200 (see Table 3). We thus introduce for any
subformula ¢ of ¢ an assumption op,, encoding whether the
correct operator was used for 1. Focusing on these assump-
tions, the diagnosis space is exponential in the length of ¢,
and furthermore, we argue that the smaller diagnosis set at
operator level (at which a designer works) is more intuitive.

For a WFM diagnosis we extend our encoding as follows:

Theorem 2. Assume an updated Table 1, where each clause
¢ is extended to 0p, V ¢, and an assignment op to all as-
sumptions op,, on @’s various subformulae 1’s correctness.
An encoding Ewry (¢, 7) = E1(p) A Ex(7) of an LTL for-
mula @ and a trace T as of Definitions 6 and 7 is satisfiable,
SAT(Ewrn (@, 7)), iff T = @ under assumptions op.

For an SFM diagnosis, each operator assump-
tion toggles between various behavioral (sub-)modes
€ {nominal, modey, ..., mode,_1}, where, like for the
nominal one, the actual behavior has to be defined for any
mode via mode; = clause. A good example for an effective
fault mode for the strong until operator (U) is suggested by
our running example; use a weak until (W) instead. We
extend Theorem 2 as follows, where we introduce for any
subformula 1 with n modes 1d(n) assumption bits op,, ;:

Theorem 3. Assume for a formula ¢ with n modes 1d(n)
variables op,, ;, and for a mode 0 < m < n the correspond-
ing minterm M (m) in these variables. Furthermore assume
an updated Table 1 where each clause c describing the behav-
ior of mode m for o is extended to =M (m) V ¢, an assign-
ment op to all assumptions op,, on @’s various subformulae
1’s modes, and a CNF formula E3 consisting of the conjunc-
tion of all negated minterms in the operator mode variables
that don’t refer to a behavioral mode (for all v)). Then, an
encoding Espp (@, 7) = E1(¢) A E2(7) A E3 of an LTL for-
mula @ and a trace T as of Definitions 6 and 7 is satisfiable,
SAT(Espym (o, 7)), iff T |E © under assumptions op.

The correctness of both extensions to Theorem 1 follows
from that for Theorem 1 and the constructions.
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G (g1 = X(=g1Wr1))
X(g1 — X(=g1Ur1)

) Flg1 = X(=g1Ury)
)

G (91 — X (TlR_Iglg)
)

)

G (g1 = X(=g1Ug2))
G (91 — X (7’1 U—-gl))
G(g1 = X(=g1Urz2))  G(g1 = X (r1W=gy))

G (g1 — F(=g1Ury)

Table 2: The nine SFM diagnoses for the arbiter.

With m the number of signals, n the size of ¢, o the max-
imum number of modes for any operator, and p the maxi-
mum number of clauses for any operator mode, upper bounds
for the number of variables and clauses for Ewrpm (¢, 7) and
Espm(p, T) can be estimated as O((m +n)k +n -1d(o)) and
O((m-k+mn-1d(o) +p-o- k- n) respectively. While the
terms can obviously be simplified, they illustrate the origins
of the variables and clauses.

Using our encodings, and varying the assumptions on the
operators’ correctness, we can obviously compute LTL spec-
ification diagnoses that have the desired focus on operator
occurrences using various diagnosis algorithms, i.e., based
on hitting conflicts like Reiter’s approach or computing di-
agnoses directly as, e.g., suggested by [Metodi et al., 2012].

For our proof-of-concept tests, we used HS-DAG which
has several interesting features for our setting. Besides be-
ing complete, due to its support of on-the-fly computations
(including the conflict sets themselves), it is very efficient
when limiting the desired diagnosis size. Furthermore, as di-
agnoses are continually found during computation, they can
be reported to the user instantly, which is an attractive feature
for interactive tools. For SFM models, we made HS-DAG
aware of strong fault modes adopting a notion of conflicts
similar to [Nyberg, 2011]. We implemented basic fault mod-
els like confusion of Boolean operators, confusion of unary
temporal operators, confusion of binary temporal operators,
twisted operands for binary temporal operators and “use vari-
able v; instead of v;”. Using a SAT solver that is able to
return MUCs, we extract those unit clauses from the returned
core that assign operator assumptions. Those sets represent
our (not necessarily minimal) conflict sets on the operators.

For the arbiter, our WFM approach results in five single
fault diagnoses. All five concern (faulty) R, for line 1, and
when rewriting the implication, they are the bold-faced oper-
ators in G(—g; V X(—g; Ur;)). Intuitively, when considering
the parse tree, those diagnoses farthest from the root should
be prioritized during debugging, which would be the incorrect
until for our arbiter example. Our SFM approach derived the
nine diagnoses listed in Table 2, where the first one “replace
=91 Ury by =g1 W ry” catches the actual fault.

While we considered operators F, G, W, and R as (eas-
ily rewritable) syntactic sugar for the Theorems, we actu-
ally translate these operators directly, reducing the number of
variables and clauses, and without rewriting, our diagnoses
directly address the operators as originally specified by the
designer. Due to lack of space we do not report the cor-
responding clauses (see [Pill and Quaritsch, 2012]), which
however can be easily constructed (with further optimization
potential) from those for the until operator via the correspond-
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Figure 1: Diagnosis performance for random samples.

ing rewrite rules. For the weak until operator, e.g., clause (i)
is replaced by ¢ V \/, ;<. 0i-

Sharing/reusing subformulae in an encoding (for example
if the subformula a U b occurs twice in a specification) could
save variables and entail speedups for satisfiability checks.
However, this would be counterproductive in a diagnostic
context due to situations when only one instance is at fault.

Similarly to instrumenting the specification, we could take
the specification as granted (with no instrumenting assump-
tions) and ask what is wrong with the trace. Via filtering those
unit clauses in F(7) from the unsat core defining the signals
in 7, there is even no need for any instrumentation when con-
sidering the weak fault model (which is a strong model in the
sense that then the value should be flipped).

3.1 Experimental Results

While the exemplary diagnoses for the arbiter illustrate the vi-
ability of our approach, in the following we discuss results for
larger samples. We implemented our specification diagnosis
approach using Python (CPython 2.7.1) for both the encoding
and the HS-DAG algorithm. As SAT solver, we used the most
recent minimal unsat core-capable PicoSAT [Biere, 2008]
version 936. We ran our tests on an early 2011-generation
MacBook Pro (Intel Core i5 2.3GHz, 4GiB RAM, SSD) with
an up-to-date version of Mac OS X 10.6, the GUI and swap-
ping disabled, and using a RAM-drive for the file system.

As already mentioned, the on-the-fly nature of HS-DAG al-
lows us to report diagnoses to the user as soon as their validity
has been verified. In this context, we investigated the tempo-

run-time (sec) RSS (MiB) SAT DAG
ID |AP| encoding total total #clauses #nodes #A
SAT SAT #vars
1 36 11.62 1168.72 531.91 1274676 813 262
1073.36 131.84 47894
2 39 12.81 1465.12 579.93 1382874 939 342
1344.26 139.79 48500
3 37 9.08 429.01 526.46 1260855 296 126
387.57 130.46 48076
1 36 046  36.12 76.16 83980 56 52
6.51 13.50 34737
2 39 047  43.67 77.62 83587 68 61
7.84 13.49 34935
3 37 045 19.26 77.07 84383 28 27
3.56 13.69 35339

Table 3: Run-time, memory and SAT statistics for 3 samples
(Il = |7| = 200) and SFM (top) as well as WFM (bottom).

ral distribution of solutions for both WFM and SFM diagno-
sis runs. Figure 1(a) shows the number of diagnoses found
for any fraction of the total computation time of a single run
with a random formula of length 100, derived as suggested
in [Daniele ef al., 1999] with N = ||p|/3] variables and a
uniform distribution of LTL operators. We introduced a sin-
gle fault in order to derive ,, from ¢, and using our encoding
we derived an assignment for 7 A ¢ A =, that defines 7 for
k = 200 and [ = 100. We then solved the diagnosis prob-
lem E (¢, 7). For a WEM, the computation finished in 3.3
seconds discovering 7 single fault diagnoses (note that the x-
axis is given in logarithmic scale). For an SFM, we stopped
HS-DAG after 10 hours, with 118 diagnoses computed with a
memory footprint of 1 GiB. It is important to note, however,
that within one minute, all 40 single fault diagnoses were
found, more than can be presumably investigated by a user
in this time. All the 63 double fault diagnoses were identified
after 9 minutes, and thus the majority of the 10 hours were
spent for another 15 diagnoses with cardinality 3 or 4.

In Figure 1(b) we show some results regarding diagnosis
scalability for random samples with varying sizes. For any
|| in {50,100,...,300} we generated 10 random formu-
lae as above, and restricted the search to single fault diag-
noses. Restricting the cardinality of desired solutions is com-
mon practice in model-based diagnosis, and as can be seen
from the last column in Table 3, we still get a considerable
amount of diagnoses. In Figure 1(b), we report the average
total run-time, as well as the maximum resident set size (RSS)
of our whole approach and the part for PicoSAT (PS). The
performance using a WFM is very attractive, with average
run-times below 50 seconds and a memory footprint of ap-
prox. 100 MiB (1 MiB = 220 bytes vs. 1 MB = 10° bytes)
even for samples with |p| = 300. As expected, the perfor-
mance disadvantage for SFM against WFM is huge; up to two
orders of magnitude for the run-time and up to one for mem-
ory (maximum resident size). Identifying an effective mode-
set, and tool options to focus the diagnosis on certain opera-
tors/subformulae (avoiding the instrumentation of all others)
seem crucial steps to retain resources for large samples.
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mulae taken from [Somenzi and Bloem, 2000].

LTL-SAT
#V
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640
920

LTL-SAT WFM
#vV  #C

118 255
650 1325 0.043
927 2262 0.070

1003 1430 0.076 1554 8984
4442 7023 0.311 6385 45425
.092 8918 14058 0.602 12659 89950

029 2175 2877 0.202 3507 23949
.097 12302 14075 0.819 17553 116395
185 30685 29142 1.630 43901 234125

LTL-SAT SFM
#V #C

178 1144
949 6145
1349 10516

ol I

#C

247
1317
2255

922 1386
4365 6978
100 .082 8840 14012

10 .025 1995 2785
100 50 .086 12080 13982
100 .172 30400 29045

I-t.
0.014

r-t.

.007
.013
018

017
048

r-t.
.006

.012
.016

.015
.044

10
10 50
100

10
50 50

Table 4: Rounded # of variables(V) / clauses(C) and run-time
for varying ||, |7| (averaged over 100 traces/10 formulae).

s

Table 3 offers run-time (total and those parts for the SAT
solver and creating the encoding), memory and encoding de-
tails for WFM and SFM single fault diagnosis of three sam-
ples with || = |7| = 200. Apparently the majority of com-
putation time is spent in the SAT solver tackling a multitude
of encoding instances, and most of the memory footprint is
related to the diagnosis part (the DAG). Thus we report also
results for solving a single encoding instance in the following.

Figure 2 shows the run-times for a set of 27 formulae taken
from [Somenzi and Bloem, 2000] for 100 random traces with
k = 100 and [ = 50. These traces were generated such that
each signal is true at a certain time step with a probability of
0.5. The graph compares different variants of our encoding
and the effects of enabling MUC computation, where Table 4
reports variable and clause numbers when scaling || and |7|.

Compared to an uninstrumented encoding, a WFM one is
only slightly slower and an SFM variant experiences a penalty
of about factor 5. Apparently, the computation of unsat cores
is very cheap, making the “+C” lines nearly indistinguish-
able from the standard ones. Lacking the space to report cor-
responding numbers, we experimented also with other SAT
solvers (MiniSAT 2.2 [Eén and Sorensson, 2003] and Z3
4.1 [de Moura and Bjgrner, 2008]), comparing LTL-SAT to
encoding LTL semantics as an SMT problem with quantifiers
over uninterpreted functions in Z3. Regardless of the SAT-
solver, LTL-SAT outperformed the “naive” SMT approach,
with Z3 in the lead. Presumably due to the returned cores, Z3
proved to be significantly slower than PicoSAT in the diagno-
sis case, so that we chose the latter for our diagnosis runs.
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4 Summary and Future Work

In this paper, we proposed a novel diagnostic reasoning ap-
proach that assists designers in tackling LTL specification de-
velopment situations where, unexpectedly, a presumed wit-
ness fails or a presumed counterexample satisfies a given for-
mal specification. For such scenarios, we provide design-
ers with complete (with respect to the model) sets of diag-
noses explaining possible issues. Using the computationally
cheaper weak fault model (there are no obligations on faulty
operators), a diagnosis defines (a set of) operator occurrences,
whose simultaneous incorrectness explains the issue. Defin-
ing also abnormal behavior variants in a strong fault model
makes computation harder, but diagnoses become more pre-
cise in delivering also specific repairs (e.g., “for that occur-
rence of the release operator flip the operands”).

Our implementation for the Linear Temporal Logic, which
is a core of more elaborate industrial-strength logics such as
PSL and is used also outside EDA, e.g. in the context of
Service Oriented Architectures [Garcia-Fanjul et al., 2006],
showed the viability of our approach. In contrast to Schup-
pan’s approach [Schuppan, 2012], a designer can define sce-
narios and ask concrete questions (via the trace), and is sup-
plied with (multi-fault) diagnoses addressing a specification’s
operator occurrences, rather than unsatisfiable cores of de-
rived clauses. Compared to RuleBase PE’s trace explana-
tions via causality reasoning [Beer et al., 2009], we address
the specification rather than the trace and provide more detail
compared to the set of “red dots” on the trace.

Based on Reiter’s diagnosis theory, we use a structure-
preserving SAT encoding for our reasoning about a presumed
witness’ or counterexample’s relation to a specification, ex-
ploiting the knowledge about a trace’s description length &
and loop-back time step [. While we used HS-DAG for our
tests, our WFM or SFM enhanced encoding obviously sup-
ports also newer algorithms like [Stern er al., 2012], and
can also be used in approaches computing diagnoses di-
rectly [Metodi et al., 2012].

Extending our implementation optimizations, the latter
also suggests directions for future encoding optimizations,
like transferring the concept of dominating gates to specifica-
tions. Exploring incremental SAT approaches [Shtrichman,
2001] will also provide interesting results.

Compared with synthesizing a fix for an operator by solv-
ing a game, (our) individual strong fault model variants pre-
cisely define the corresponding search space. While this is
good in a computational sense, it could lead to missed op-
tions, where an elaborate evaluation of fault mode-sets will
be interesting future work.

Future research will aim also at accommodating multiple
traces in a single diagnosis DAG, while our main objective
is supporting constructs from more elaborate languages, like
regular expressions (SEREs in PSL) and related operators,
i.e., suffix implication and conjunction.
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