
Forgetting for Answer Set Programs Revisited

Yisong Wang
Department of Computer Science,

Guizhou University, China
550025

Kewen Wang
School of Information

and Communication Technology,
Griffith University, QLD 4111, Australia

Mingyi Zhang
Guizhou Academy of Sciences,

Guiyang, China
550001

Abstract
A new semantic forgetting for answer set programs
(ASP), called SM-forgetting, is proposed in the pa-
per. It distinguishes itself from the others in that
it preserves not only skeptical and credulous con-
sequences on unforgotten variables, but also strong
equivalence – forgetting same variables in strongly
equivalent logic programs has strongly equivalent
results. The forgetting presents a positive answer
to Gabbay, Pearce and Valverde’s open question –
if ASP has uniform interpolation property. We also
investigate some properties, algorithm and compu-
tational complexities for the forgetting. It shows
that computing the forgetting result is generally in-
tractable even for Horn logic programs.

1 Introduction
The ability of discarding or hiding irrelevant information has
been recognized as an important feature for logic-based agent
systems and is named variable forgetting or variable elimi-
nation in Artificial Intelligence [Lin and Reiter, 1994]. For-
getting has been applied in cognitive robotics [Lin and Re-
iter, 1994; Liu and Wen, 2011], resolving conflicts [Lang
et al., 2003; Zhang and Foo, 2006; Eiter and Wang, 2008],
and ontologies [Wang et al., 2010; Konev et al., 2012]. In
particular, forgetting has recently received much attention in
logic programs under answer sets/stable models semantics -
- Answer Set Programming (ASP) [Zhang and Foo, 2006;
Eiter and Wang, 2008; Wong, 2009; Wang et al., 2012],
which is one of the major nonmonotonic paradigms for
declarative problem solving in Knowledge Representation
and Reasoning [Baral, 2003; Brewka et al., 2011].

It is well-known that ASP has two major notions of equiv-
alence: strong equivalence and equivalence. Formally speak-
ing, given two logic programs Π1 and Π2, they are equivalent
if they have the same stable models; they are strongly equiva-
lent if Π1∪Π and Π2∪Π have the same stable models for ev-
ery logic program Π. The notion of strong equivalence plays
an important role in ASP. It acts the same role of equivalence
in classical logic and allows to simplify logic programs. By
treating a logic program Π as a logical theory Π̂, the answer
sets of Π exactly correspond to the equilibria of Π̂ in equilib-

rium logic; two logic programs Π and Π′ are strongly equiva-
lent whenever Π̂ and Π̂′ are equivalent in the monotonic logic
here-and-there (HT) [Lifschitz et al., 2001]. This naturally
defines the entailment relationship between logic programs,
viz, Π entails Π′ if Π̂ entails Π̂′ in HT.

Based on the two notions of equivalence in ASP, sev-
eral desirable properties have been proposed for forgetting
in logic programs, including irrelevance, persistence, ex-
istence and so on [Eiter and Wang, 2008; Wong, 2009;
Wang et al., 2012], that are outlined in the following. Let
L be an ASP language on a signature A, Π a logic program
in L, V ⊆ A and f(Π, V) a result of forgetting about V in Π.
(E) Existence: f(Π, V) is expressible in L.

(IR) Irrelevance: f(Π, V) is irrelevant to V , i.e., it needs not
mention any variables in V .

(W) Weakening: Π entails f(Π, V).
(PP) Positive Persistence: if Π entails Π′ which is irrelevant

to V then f(Π, V) entails Π′.
(NP) Negative Persistence: if Π does not entail Π′ which is

irrelevant to V then f(Π, V) does not entail Π′.
(SE) Strong Equivalence: If Π and Π′ are strongly equivalent,

then f(Π, V) and f(Π′, V) are strongly equivalent.
(CP) Consequence Persistence: f(Π, V) has an answer set X ′

whenever Π has an answer set X such that X ′ = X \V .
Zhang and Zhou (2009) firstly proposed (W), (PP), (NP)

and (IR) for knowledge forgetting in modal logic S5. Wang
et al. (2012) adapted them for HT-forgetting in logic pro-
grams, for which both (E) and (SE) were proved being sat-
isfied. However, HT-forgetting fails for (SE). The property
(CP) is originally proposed by Eiter and Wang (2008) for a
semantical forgetting in disjunctive logic programs in which
X ′ must be minimal under set inclusion in order to guarantee
(E). The semantic forgetting satisfies (IR), but none of (W),
(PP), (NP) and (SE).

Skeptical reasoning and credulous reasoning are two major
reasoning tasks in ASP1. The property (CP) means that the
forgetting operator f preserves skeptical and credulous con-
sequences. Recall that strong equivalence allows for simpli-
fication of logic programs. The properties (SE) and (CP) are

1An atom p is a credulous (resp. skeptical) consequence of a
logic program Π if p belongs to one (resp. all) answer set(s) of Π.

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

1162

important and useful for various applications, such as con-
flict resolving [Zhang and Foo, 2006; Eiter and Wang, 2008;
Lang and Marquis, 2010].

Since ASP is based on the answer sets semantics which is
nonmonotonic, there is no consensus about a suitable set of
criteria for forgetting in ASP. This phenomenon is also evi-
denced by the existence of several different definitions of for-
getting in ASP. A fundamental question comes out: is there
a rational forgetting in logic programs that satisfies all of the
seven desirable properties above? The answer is negative, i.e.,
it is impossible to define a notion of forgetting that satisfies
all of the desirable properties listed above. Especially, for any
notion of forgetting in ASP, (W) and (NP) will be violated if
(IR), (E) and (CP) are satisfied (cf. Proposition 3 in the pa-
per). So, if we want a notion of forgetting in ASP to satisfy
the set of desirable properties

F = {(E), (IR), (CP), (PP), (SE)},

then we have to sacrifice (W) and (NP). Due to the non-
monotonicity of ASP, it would be acceptable for a notion of
forgetting in ASP not to satisfy (W) and (NP).

Therefore, we argue that F consists of a suitable set of de-
sirable properties for forgetting in ASP. However, none of the
extant definitions of forgetting for ASP satisfies all proper-
ties in F . For instance, the semantic forgetting in [Eiter and
Wang, 2008], the strong and weak forgetting in [Zhang and
Foo, 2006] do not enjoy (SE). Among these three notions
of forgetting, the first preserves only skeptical consequence
but the other two notions of forgetting preserve neither skep-
tical nor credulous consequence in ASP. In this sense they do
not satisfy (CP). Wong (2009) presented two forgetting op-
erators FW and FS for disjunctive logic programs and Wang
et al. (2012) defined the HT-forgetting for logic programs.
While these proposals satisfy the property (SE), they do not
satisfy the desirable property (CP). Some of these issues are
illustrated in the following example.

Suppose Eve has a diet recipe which is represented by a
logic program Π consisting of

plum← banana; apple ∨ pear;
apple← not pear; pear ← not apple.

The logic program has two stable models {apple} and
{pear}, which correspond to Eve’s two diet schemes. In the
case that pear is not available any more, her diet schemes nat-
urally turn into {apple} and {}. According to Π, if banana
is provided, then plum should be provided too.

In terms of forgetting, if pear is forgotten in Π, we obtain
the following results under the semantic forgetting, FW , FS
and the HT-forgetting, respectively:

{apple← not not apple}, {plum← banana},
{plum← banana; apple}, {plum← banana}.

One can see that the information “plum ← banana” is lost
in the semantic forgetting; in terms of FW and HT-forgetting,
the only diet scheme is {}; it is {apple} in terms of FS .

Therefore, it is an interesting but yet open problem to in-
troduce a notion of forgetting for ASP that obeys all criteria
in F .

In this paper, we tackle this problem by proposing a new
semantic forgetting for general answer set programs, named
SM-forgetting. Our new notion of (semantic) forgetting ful-
fils all criteria in F while it also satisfies some other useful
properties. By this forgetting, we present a positive answer
to Gabbay, Pearce and Valverde’s open question: can gen-
eral answer set programs have uniform interpolation property
[Gabbay et al., 2011]? We also develop an algorithm for com-
puting SM-forgetting and study complexities for several rea-
soning tasks induced by SM-forgetting.

2 Preliminaries
We assume a propositional language LA on a finite set A of
propositional variables. A is also referred to as the signature
of LA. The formulas of LA are inductively constructed using
connectives ⊥,∧, ∨ and ⊃ as the following:

ϕ ::= ⊥ | p | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ ⊃ ϕ (1)

where p ∈ A. The formula ¬ϕ stands for ϕ ⊃ ⊥, while
> for ⊥ ⊃ ⊥. A theory is a set of propositional formulas.
In what follows we assume the signature of a formula/theory
consisting of the atoms occurring it, unless stated otherwise.

Let S be a finite set of formulas. We denote
∨
S (resp.∧

S) the disjunction (resp. conjunction) of all formulas in S.
Particularly,

∨
∅ (resp.

∧
∅) is ⊥ (resp. >). By ¬S (resp.

¬¬S) we mean {¬φ | φ ∈ S} (resp. {¬¬φ | φ ∈ S}).

2.1 HT logic and stable models
The syntax of HT is the same as propositional language but
its semantics is different from propositional logic. An HT-
interpretation is a pair 〈H,T 〉 such that H ⊆ T ⊆ A. The
satisfiability relation in HT, written |=HT, is recursively de-
fined in the following,

• 〈H,T 〉|=HTp if p ∈ H; 〈H,T 〉 6|=HT ⊥;

• 〈H,T 〉|=HTϕ ∨ ψ if 〈H,T 〉|=HTϕ or 〈H,T 〉|=HTψ;

• 〈H,T 〉|=HTϕ ∧ ψ if 〈H,T 〉|=HTϕ and 〈H,T 〉|=HTψ;

• 〈H,T 〉|=HTϕ ⊃ ψ if both (i) T |= ϕ ⊃ ψ, and (ii)
〈H,T 〉|=HTϕ implies 〈H,T 〉|=HTψ

where p ∈ A, ϕ and ψ are formulas. An HT-interpretation
〈H,T 〉 is an HT-model of a formula ϕ if 〈H,T 〉|=HTϕ. We
denote ModHT(ϕ) the set of all HT-models of ϕ. An HT-
model 〈T, T 〉 of a formula ϕ is an equilibrium model of ϕ if
there is no T ′ ⊂ T such that 〈T ′, T 〉|=HTϕ.

Given two formulas ϕ and ψ, ϕ entails ψ in HT, written
ϕ |=HT ψ, if ModHT(ϕ) ⊆ ModHT(ψ); ϕ 6|=HT ψ means
that ϕ does not entail ψ in HT; ϕ and ψ are HT-equivalent,
written ψ≡HTϕ, if ModHT(ϕ) = ModHT(ψ). A formula ϕ
is HT-irrelevant to a set V of atoms, denoted IRHT(ϕ, V), if
there is a formula ψ not containing any atoms from V such
that ϕ≡HTψ. In this case we assume ϕ does not mention any
atoms from V , unless explicitly stated otherwise.

A formula of the following form is called a rule:∧
¬¬D ∧

∧
¬C ∧

∧
B ⊃

∨
A (2)

1163

where A = {a1, . . . , al}, B = {b1, . . . , bk}, C =
{c1, . . . , cm} and D = {d1, . . . , dn}. It is also identified as

a1; . . . ; al ← b1, . . . , bk, not c1, . . . , not cm,

not not d1, . . . , not not dn, (3)

which is called a nested expression in [Lifschitz et al., 1999].
A rule r of form (3) is disjunctive if n = 0; it is normal if it
is disjunctive and l ≤ 1; it is Horn if it is normal and m = 0;
it is a constraint if l = 0. A logic program Π is a finite set
of rules of form (3). It is disjunctive (resp. normal and Horn)
if all of its rules are disjunctive (resp. normal and Horn).
The stable models/answer sets semantics of logic programs
is attributed to Gelfond and Lifschitz (1988). By identifying
every rule r of form (3) as the formula r̂ of the form (2), it is
well-known that a set T of atoms is a stable model/answer set
of a logic program Π iff 〈T, T 〉 is an equilibrium model of Π̂,
where Π̂ = {r̂|r ∈ Π} [Pearce, 1996; Ferraris, 2005].

Let Π be a logic program. By SM(Π) we denote the set
of all stable models of Π. Π is consistent if SM(Π) 6= ∅.
If Π is disjunctive then SM(Π) forms an antichain, i.e., no
two elements of SM(Π) are comparable under set inclusion.
An atom p is a skeptical (resp. credulous) consequence of
Π, denoted by Π |=s p (resp. Π |=c p), if p ∈

⋂
SM(Π)

(resp. p ∈
⋃
SM(Π)). A logic programs Π′ is equivalent to

Π, written Π′ ≡SM Π, if SM(Π′) = SM(Π); Π′ is strongly
equivalent to Π if SM(Π ∪ Π′′) = SM(Π′ ∪ Π′′) for every
logic program Π′′. It is well-established that two logic pro-
grams are strongly equivalent iff their corresponding theories
are HT-equivalent in HT [Lifschitz et al., 2001]. Since very
formula in HT can be translated into a conjunction of formu-
las of the form (2), we will not distinct logic programs from
formulas in the following.

2.2 Forgetting and HT-forgetting
By an interpretation we mean a set of atoms. The comple-
ment of an interpretation M , written M , is the set A \ M .
The complement of a collection M of (HT-)interpretations,
denoted byM, is the set of (HT-)interpretations not inM.

Let V ⊆ A and X an interpretation. An interpretation Y is
V -bisimilar to X , written Y ∼V X , if Y \ V = X \ V . The
V -extension of X , denoted by X†V , is the collection of in-
terpretations that are V -similar to X . Two HT-interpretations
〈H,T 〉 and 〈X,Y 〉 are V -bisimilar, denoted by 〈H,T 〉 ∼V
〈X,Y 〉, if H ∼V X and T ∼V Y . The V -extension of an
HT-interpretation 〈H,T 〉, denoted by 〈H,T 〉†V , is the collec-
tion of HT-interpretations that are V -similar to 〈H,T 〉. The
V -extension of a collectionM of (HT-)interpretations is the
collection

⋃
β∈M β†V .

The forgetting in propositional logic [Lin and Reiter, 1994]
can be equivalently reformulated as following:

Definition 1 (forgetting) Let ϕ be a formula and V ⊆ A.
A formula ψ is a result of forgetting V in ϕ if and only if
Mod(ψ) = Mod(ϕ)†V .

Such a forgetting result ψ is unique up to equivalence. We
denote it by Forget(ϕ, V).

Similarly, the HT-forgetting in [Wang et al., 2012] can be
equivalently reformulated as following:

Definition 2 (HT-forgetting) Let ϕ be a formula and V ⊆
A. A formula ψ is a result of HT-forgetting V in ϕ if and
only if ModHT(ψ) = ModHT(ϕ)†V .

It is proved (cf. Theorem 1 of [Wang et al., 2012]) that such
a formula ψ always exists, it is unique up to HT-equivalence
and it is HT-irrelevant to V . It is denoted by ForgetHT(ϕ, V).

3 SM-Forgetting
In this section we introduce a new notion of semantic forget-
ting for logic programs, called SM-forgetting, and study its
properties, algorithm and computational complexity.

3.1 Definition and properties
Let V ⊆ A and X an interpretation. The V -exclusion of X ,
writtenX‖V , is the setX\V . The V -exclusion of a collection
M of interpretations is {X‖V |X ∈M}, denoted byM‖V .

Definition 3 (SM-forgetting) Let ϕ be a formula and V ⊆
A. A formula ψ is a result of SM-forgetting V in ϕ if and
only if ModHT(ψ) is a maximal subset of ModHT(ϕ)†V such
that SM(ψ) = SM(ϕ)‖V .

Example 1 For the logic program Π in Section 1, the follow-
ing logic program is a result of SM-forgetting pear in Π:

{plum← banana; apple← not not apple}.

It has two stable models ∅ and {apple}, which correspond to
the two intended diet schemes for Eve after forgetting pear.
In particular, we note that the knowledge “plum← banana”
of Π, which is irrelevant to pear, is preserved in the result.

The next theorem shows that the result of SM-forgetting a
set V of atoms in a formula ϕ exists, and it is unique up to
strong equivalence. We denote it by ForgetSM(ϕ, V).

Theorem 1 (Existence of SM-forgetting) Given any for-
mula ϕ and any set V of atoms, there exists a result of SM-
forgetting V in ϕ. Moreover, if both ψ and ψ′ are results of
SM-forgetting V in ϕ, then ψ and ψ′ are strongly equivalent.

Proof sketch: We denote that

G = {〈X,Y 〉|X ⊂ Y & Y ∈ SM(ϕ)‖V }, (4)
H = {〈Y, Y 〉|Y ∈ SM(ForgetHT(ϕ, V)) \ SM(ϕ)‖V }, (5)
N = ModHT(ϕ)†V \ (G ∪ H). (6)

A collection M of HT-interpretations is called HT-valid if
there is a logic program Π such that M is the set of HT-
models of Π. It is shown in [Cabalar and Ferraris, 2007] that
a collectionM of HT-interpretations is HT-valid iff

〈X,Y 〉 ∈ M implies 〈Y, Y 〉 ∈ M. (7)

We can show that N satisfies (7) and thus, it is HT-valid. Let
ModHT(ψ) = N . Removing the HT-interpretations in G ∪H
from ModHT(ϕ)†V assures that the stable models of ψ are
exactly the elements of SM(ϕ)‖V .

Recall that ForgetHT(ϕ, V)≡HT{ξ|ϕ|=HTξ & IRHT(ξ, V)}
(cf. Theorem 3 of [Wang et al., 2012]). By the construction
of ForgetSM(ϕ, V) in the proof of the above theorem, we
have the following proposition.

1164

Proposition 1 The SM-forgetting satisfies the properties
(E), (IR), (SE), (CP) and (PP).

The next proposition shows that the SM-forgetting pre-
serves equivalence. Under an additional condition, it satis-
fies knowledge weakening in the sense that ϕ|=HTψ implies
ForgetSM(ϕ, V)|=HTForgetSM(ψ, V).

Proposition 2 Let ϕ,ψ be two formulas and V ⊆ A. Then

(i) ForgetSM(ϕ, V) ≡SM ForgetSM(ψ, V) if ϕ ≡SM ψ;

(ii) ForgetSM(ϕ, V)|=HTForgetSM(ψ, V) if ϕ|=HTψ and
SM(ϕ)‖V = SM(ψ)‖V .

The condition SM(ϕ)‖V = SM(ψ)‖V is necessary for
the statement (ii) in the above proposition. Otherwise,
let ϕ = p ∧ ¬q ⊃ ⊥ and ψ = ¬q ⊃ (p ∨ ¬p).
One can verify that ϕ|=HTψ, ForgetSM(ϕ, {q})≡HT> but
ForgetSM(ψ, {q})≡HTp ∨ ¬p.

As illustrated in the following example, the properties (W)
and (NP) may not be satisfied by SM-forgetting.

Example 2 Let us consider the following formulas.

• Let ψ = q ∧ (¬p ⊃ p). It is not difficult
to see that, on the signature {p, q}, ModHT(ψ) =
{〈{q}, {p, q}〉, 〈{p, q}, {p, q}〉} and then ψ has no sta-
ble model. One can verify that

ForgetHT(ψ, {q})≡HT¬p ⊃ p,ForgetHT(ψ, {p})≡HTq,

ForgetSM(ψ, {q})≡HT¬p ⊃ p,ForgetSM(ψ, {p})≡HT⊥.

It is evident that ψ|=HTForgetSM(ψ, {q}), but not vice
versa; and ForgetSM(ψ, {p})|=HTψ, but not vice versa.
It implies that SM-forgetting does not satisfy (W) for ψ.

• Let ϕ = (p∨¬p∨q∨¬q)∧(p ⊃ q∨¬q)∧(q ⊃ p∨¬p).
One can check that SM(ϕ) = {∅, {p, q}}, and

ForgetHT(ϕ, {p})≡HT>,
ϕ′ = ForgetSM(ϕ, {p})≡HTq ∨ ¬q.

Since 〈∅, {q}〉 is an HT-model of ϕ but ϕ′, it follows
ϕ 6|=HT ϕ′. Moreover 〈{q}, {p, q}〉 is an HT-model of
ϕ′ but not an HT-model of ϕ, it shows ϕ′ 6|=HT ϕ. Thus
ϕ is not comparable with ϕ′ in HT. It implies that SM-
forgetting falsifies (W) and (NP) for ϕ.
Actually, on the signature {q}, q∨¬q is the only formula
(up to HT-equivalence) having the stable models ∅ and
{q}. In other words, there is no ψ∗ (on the signature
{q}) satisfying ϕ|=HTψ

∗ and SM(ψ∗) = {∅, {q}}.
This example shows that, to ensure (IR), (E) and (CP) of a
forgetting in answer set programming, one cannot demand
(W) or (NP), no matter logic programs are consistent or not.

Proposition 3 There is no forgetting for ASP satisfies (W) or
(NP) that satisfies (IR), (E) and (CP).

To satisfy the property (W), the next proposition presents
a sufficient and necessary condition for the SM-forgetting.

Proposition 4 Let ϕ be a formula and V ⊆ A. Then we have
ϕ|=HTForgetSM(ϕ, V) iff, for every Y ⊆ A,

• 〈X,Y 〉 6|=HT ϕ for every X ⊂ Y if Y ∈ SM(ϕ)‖V ,

• Y |= ϕ implies 〈X,Y 〉|=HTϕ for some X ⊂ Y , other-
wise.

The following result guarantees that SM-forgetting a set V
of atoms can be done through SM-forgetting one atom by one
atom in V and it is irrelevant to the order of atoms.
Theorem 2 Let ϕ be a formula, V1, V2 two sets of atoms.
ForgetSM(ϕ, V1 ∪ V2)≡HTForgetSM(ForgetSM(ϕ, V1), V2).

Proof sketch: Let’s denote

ψ≡HTForgetSM(ϕ, V), ψ∗≡HTForgetHT(ϕ, V),

ψ1≡HTForgetSM(ϕ, V1), ψ∗1≡HTForgetHT(ϕ, V1),

ψ2≡HTForgetSM(ψ1, V2), ψ∗2≡HTForgetHT(ψ1, V2).

We can show that, if Y /∈ SM(ϕ)‖V then

(a) Y |= ψ∗ iff Y |= ψ∗2 , and
(b) 〈X,Y 〉|=HTψ

∗ iff 〈X,Y 〉|=HTψ
∗
2 for every X ⊂ Y .

The remain is to prove 〈X,Y 〉|=HTψ iff 〈X,Y 〉|=HTψ2 by
two cases Y ∈ SM(ϕ)‖V and Y /∈ SM(ϕ)‖V .

3.2 Expressibility in disjunctive logic programs
Recall that the results of SM-forgetting are expressible in
general (propositional) logic programs by Theorem 1. In
this subsection we investigate the validity of this result for
smaller classes of logic programs, including disjunctive logic
programs and Horn logic programs.

Recall that Eiter et al. (2005) and Wong (2009) showed
that a collection M of HT-interpretations is disjunctive HT-
valid, i.e., there is a disjunctive logic program Π such that
ModHT(Π) =M, iffM satisfies (7) and the condition:

〈X,Y 〉 ∈ M, 〈Y ′, Y ′〉 ∈ M, and Y ⊆ Y ′ ⇒ 〈X,Y ′〉 ∈ M.

The next example shows that SM-forgetting results for
some important classes of logic programs, including normal
programs with and without constraints, are not expressible in
disjunctive logic programs. Thus SM-forgetting results for
disjunctive logic programs may be not expressible in disjunc-
tive logic programs yet.
Example 3 Consider the following normal logic programs.
• Let Π1 consists of

p← not q; q ← not p; r ← p; r ← q.

It has two stable models {p, r} and {q, r}. We have

ForgetSM(Π1, {q})≡HT{p← not not p; r},
ForgetHT(Π1, {q})≡HT{r ← not p; r ← p}.

The stable models of ForgetSM(Π1, {q}) are {r} and
{p, r}, that cannot form an antichain. Thus, there
is no disjunctive logic program (on the signature
{p, r}) that can capture ForgetSM(Π1, {q}), even if
ForgetHT(Π1, {q}) is disjunctive.
• Let Π2 = {← p, q, r; ← p, q, not r}. Its unique stable

model is ∅. We have

ForgetSM(Π2, {r})
≡HTForgetHT(Π2, {r})
≡HT{p ∨ q ← not not p, not not q},

1165

which cannot be captured by a disjunctive logic program
(on the signature {p, q}), even if SM(Π)‖V forms an an-
tichain. The reason is that 〈∅, ∅〉 and 〈{p, q}, {p, q}〉 are
HT-models of ForgetSM(Π2, {r}), but 〈∅, {p, q}〉 is not.

We present a sufficient and necessary condition for the dis-
junctive expressibility of SM-forgetting results.

Proposition 5 Let ϕ be a formula and V ⊆ A. There is a
disjunctive logic program Π such that Π≡HTForgetSM(ϕ, V)
iff, for every HT-models 〈X1, Y1〉, 〈Y2, Y2〉 of ϕ such that
Y1 ⊆ Y2, there exists an HT-model 〈X3, Y3〉 of ϕ such that
〈X3, Y3〉 ∼V 〈X1, Y2〉 and, no M ∈ SM(ϕ) with M ∼V Y3.

For Horn logic programs, SM-forgetting has an interesting
property, which implies that SM-forgetting results in Horn
logic programs can be expressed in Horn logic programs and
thus expressible in disjunctive logic programs.

Theorem 3 Let Π be a Horn logic program and V ⊆ A.
Then ForgetSM(Π, V)≡HTForgetHT(Π, V).

Proof sketch: Firstly we can show that X is the least model
of Π iff X \ V is the least model of ForgetHT(Π, V).

Secondly we denote:
G = {〈X,Y 〉|X ⊂ Y & Y ∈ SM(Π)‖V },
H = {〈Y, Y 〉|Y ∈ SM(ForgetHT(Π, V)) & Y /∈ SM(Π)‖V },
N = ModHT(Π)†V .
It is evident thatH = ∅. We can further show N ∩ G = ∅.

As HT-forgetting results of Horn logic programs are Horn
expressible and HT-forgetting enjoys “modularity” (cf. The-
orem 2 and (vi) of Proposition 3 in [Wang et al., 2012] re-
spectively). The following corollary follows by Theorem 3.

Corollary 4 Let Π,Π′ be Horn logic programs and V ⊆ A.

(i) ForgetHT(Π, V) is Horn expressible;

(ii) ForgetSM(Π ∪ Π′, V)≡HTForgetSM(Π, V) ∪ Π′ if
IRHT(Π′, V).

3.3 Relation to other forms of forgetting
In this subsection, we first reveal a connection between SM-
forgetting and HT-forgetting and then provide two results on
relationships of SM-forgetting with the forgetting in propo-
sitional logic and a uniform interpolation for answer set pro-
grams respectively.

Proposition 6 Let ϕ be a formula and V ⊆ A. Then
we have ForgetSM(ϕ, V)≡HTForgetHT(ϕ, V) if and only if
SM(ForgetHT(ϕ, V)) = SM(ϕ)‖V .

The notion of loop formulas plays an important role in ASP
[Lin and Zhao, 2004]. As stable models of a logic program
Π can be captured by models of its loop formulas LF (Π) in
propositional logic (cf. Theorem 2 of [Ferraris et al., 2006]).
Accordingly the following proposition partly connects SM-
forgetting with the forgetting in propositional logic.

Proposition 7 Let Π be a logic program and V a set of
atoms. Then X is a stable model ForgetSM(Π, V) iff X is
a model of Forget(LF (Π), V).

Uniform interpolation. In monotonic logics, forgetting is
closely related to uniform interpolation [Visser, 1996]. Gab-
bay et al. (2011) show that the class of disjunctive logic pro-
grams enjoys the uniform interpolation property with queries
being disjunctions of literals. They first introduced a (non-
monotonic) inference |∼ between formulas in ASP:

ϕ|∼ψ if M |= ψ for every M ∈ SM(ϕ). (8)

A class of formulas in ASP has the uniform interpolation
property iff for any formula ϕ and any set V of atoms, there
is a formula ψ such that the following conditions hold:

(i) var(ψ) ⊆ var(ϕ) \ V , and
(ii) for any formula α with var(α) ∩ V = ∅,

ϕ|∼α iff ψ|∼α (9)

where var(α) is the set of atoms occurring in α.
Gabbay et al. (2011) showed that the class of disjunctive
logic programs enjoy the uniform interpolation property2 and
they raised an interesting open question: Given a signatureA,
doesLA, the class of all formulas in ASP, possess the uniform
interpolation property too?

This open question can be affirmatively answered.
Proposition 8 LetA be a set of atoms. Then LA, the class of
all formulas in ASP, has the uniform interpolation property.

3.4 Computation for SM-forgetting
According to Theorem 1 and the notion of countermodels3

in here-and-there [Cabalar and Ferraris, 2007], we present
an algorithm to compute SM-forgetting result – Algorithm
1, where the underlying signatureA consists of the atoms oc-
curring in Π and λX,Y denotes the following formula:∧

X ∧
∧
¬Y ⊃

∨
z∈(Y \X)

z ∨ ¬z. (10)

In particular, λY,Y =
∧
Y ∧

∧
¬Y ⊃ ⊥ since

∨
∅ is ⊥.

Recall that λY,Y captures the countermodel 〈Y, Y 〉 of Π,
while λX,Y captures the countermodel 〈X,Y 〉 of Π where
X ⊂ Y and 〈Y, Y 〉 is an HT-model of Π. The intuition of the
algorithm is as follows:

(1) The foreach loop (Lines 3-5) ensures all stable models
in SM(Π) are preserved when V is forgotten.

(2) The foreach loop (Lines 6-22) asserts no other stable
models for Σ by Lines 17 and 20.

(3) The foreach loop (Lines 9-15) removes the counter-
model 〈X,Y 〉 that cannot be derived from Π.
Theorem 5 Algorithm 1 outputs ForgetSM(Π, V).

In the algorithm, since SM(Π) is possibly exponential in
the size of |Π| and the foreach loop (Line 9) considers all
subsets of Y , it outputs an exponentially larger size logic pro-
gram in the worst case.
Example 4 Let’s consider Π1 from Example 3 where A =
{p, q, r}. Let V = {q}. Note thatM = {{p, r}, {q, r}} and
M‖V = {{p, r}, {r}}. Now Σ is constructed as follows:

2The query α in (9) is restricted being a disjunction of literals.
3An HT-interpretation is a countermodel of a formula ϕ if it not

an HT-model of ϕ.

1166

Algorithm 1: SM-forgetting
input : A logic program Π and a set V of atoms
output: A result of SM-forgetting V in Π

1 Σ← ∅;
2 M← SM(Π)‖V ;
3 foreach Y ∈M do
4 foreach X ⊂ Y do Σ← Σ ∪ {λX,Y };
5 ;
6 end
7 foreach Y /∈M do
8 if ∃Y ′ |= Π s.t Y ′ ∼V Y then
9 if ∃〈X ′, Y ′〉|=HTΠ s.t Y ′ ∼V Y and

X ′ \ V ⊂ Y then
10 foreach X ⊂ Y do
11 if ∃〈H,T 〉|=HTΠ s.t 〈H,T 〉 ∼V 〈X,Y 〉

then
12 Continued;
13 else
14 Σ← Σ ∪ {λX,Y };
15 end
16 end
17 else
18 Σ← Σ ∪ {λY,Y };
19 end
20 else
21 Σ← Σ ∪ {λY,Y };
22 end
23 end
24 return Σ;

(1) According to Lines 3-5 of Algorithm 1, Σ includes:

p ∨ r ∨ ¬p ∨ ¬r, p ⊃ r ∨ ¬r,
r ⊃ p ∨ ¬p, ¬p ⊃ r ∨ ¬r.

(2) For ∅ /∈ M, the two sets ∅ and {q} are not models of ϕ,
according to Lines 6-22, Σ includes ¬p ∧ ¬r ⊃ ⊥.

(3) For {p} /∈M, the two sets {p} and {p, q} are not models
of ϕ, according to Lines 6-22, Σ contains p ∧ ¬r ⊃ ⊥.

One can further verify that Σ≡HT(p ∨ ¬p) ∧ r.

3.5 Some complexity results
It is known that the credulous and skeptical reasoning prob-
lem of ASP is ΣP2 -complete and ΠP

2 -complete respectively,
and the consistency problem (i.e., deciding if a formula has a
stable model) is ΣP2 -complete (cf. Theorem 10 of [Pearce et
al., 2009]). The following corollary follows.

Corollary 6 Let Π be a (disjunctive) logic program, V a set
of atoms and p an atom not in V . The following hold:

(i) deciding if SM(ForgetSM(Π, V)) 6= ∅ is ΣP2 -complete.
(ii) deciding if ForgetSM(Π, V) |=s p is ΠP

2 -complete,
(iii) deciding if ForgetSM(Π, V) |=c p is ΣP2 -complete.

As noted in the previous section that the algorithm of com-
puting SM-forgetting result is quite expensive, this might not
be avoided generally in terms of the following theorem.

Theorem 7 Let Σ and Π be two logic programs, V ⊆ A.

(i) Deciding if Σ≡HTForgetSM(Π, V) is ΠP
2 -complete.

(ii) Deciding if Σ≡HTForgetSM(Π, V) is co-NP-complete if
both Σ and Π are Horn logic programs.

Proof sketch: (i) Membership: If Σ 6≡HT ForgetSM(Π, V)
then there exists an HT-interpretation 〈X,Y 〉 such that either
(a) 〈X,Y 〉|=HTΣ and 〈X,Y 〉 6|=HT ForgetSM(Π, V), or (b)
〈X,Y 〉 6|=HT Σ and 〈X,Y 〉|=HTForgetSM(Π, V). We con-
sider the case (a). The case (b) is similar.

Note that checking if 〈X,Y 〉|=HTΣ is feasible in polyno-
mial time of Σ. Moreover, 〈X,Y 〉 6|=HT ForgetSM(Π, V) iff
either (i.a) 〈X,Y 〉 6|=HT ForgetHT(Π, V), X ⊂ Y and Y ∈
SM(Π)‖V , or (i.b) X = Y and Y ∈ SM(ForgetHT(Π, V)) \
SM(Π)‖V . The case (i.a) is feasible in polynomial by call-
ing an NP-oracle. We consider the case (i.b). Note further
that Y ∈ SM(ForgetHT(Π, V)) iff Y |= ForgetHT(Π, V),
which is feasible in polynomial time of Π by calling an NP-
oracle, and 〈X,Y 〉 6|=HT ForgetHT(Π, V) for every X ⊂ Y ,
whose complement is 〈X,Y 〉|=HTForgetHT(Π, V) for some
X ⊂ Y iff there is 〈X ′, Y ′〉|=HTΠ such that Y ∼V Y ′ and
X ′ \ V ⊂ Y , which is feasible in polynomial time of Π by
calling an NP-oracle as well.

Note that Σ≡HTForgetSM(Π, V) iff (a)
Σ|=HTForgetHT(Π, V), (b) SM(Σ) = SM(Π)‖V and
(c) there is no Σ′ such that ModHT(Σ) ⊂ ModHT(Σ′) and
Σ′ satisfies the conditions (a) and (b) in the place of Σ.
Its hardness follows from the fact that the condition (a) is
ΠP

2 -complete (cf. (ii) of Theorem 5 in [Wang et al., 2012]).
(ii) The membership is proved by showing

〈H,T 〉|=HTForgetSM(Π, V) iff the least model M of
Π satisfies the condition M‖V ⊆ H ∩ T . Its hard-
ness follows from the fact that Σ≡HTForgetSM(Π, V) iff
Σ ≡ Forget(Π, V) which is co-NP-complete.

4 Concluding Remarks and Future Work
In this paper, we presented a new semantic forgetting for gen-
eral logic programs based on stable models semantics, called
SM-forgetting. Different from the other forgetting for logic
programs, it preserves skeptical and credulous consequence
on unforgotten variables and (strong) equivalence. This pro-
vides a positive answer to Gabbay, Pearce and Valverde’s
open question (2011). Its properties, algorithm and computa-
tional complexities are extensively explored.

Though this forgetting is developed for answer set pro-
grams, we believe that the proposed criteria should somehow
be also respected by a semantic forgetting in other nonmono-
tonic logic systems, which deserves our further efforts.

Acknowledgement
We thank reviewers for their helpful comments. This work
was partially supported by the Australia Research Council
(ARC) grants DP1093652 and DP110101042. Yisong Wang
was also partially supported by NSFC grant 60963009, Open
Funds of the State Key Laboratory of Computer Science of
Chinese Academy of Science grant SYSKF1106 and Stad-
holder Fund of Guizhou Province grant (2012)62.

1167

References
[Baral, 2003] Chitta Baral. Knowledge Representation, Rea-

soning and Declarative Problem Solving. Cambridge Uni-
versity Press, New York, NY, 2003.

[Brewka et al., 2011] Gerhard Brewka, Thomas Eiter, and
Miroslaw Truszczynski. Answer set programming at a
glance. Communications of the ACM, 54(12):92–103,
2011.

[Cabalar and Ferraris, 2007] Pedro Cabalar and Paolo Fer-
raris. Propositional theories are strongly equivalent to
logic programs. Theory and Practice of Logic Program-
ming, 7(6):745–759, 2007.

[Eiter and Wang, 2008] Thomas Eiter and Kewen Wang. Se-
mantic forgetting in answer set programming. Artificial
Intelligence, 172(14):1644–1672, 2008.

[Eiter et al., 2005] Thomas Eiter, Hans Tompits, and Stefan
Woltran. On solution correspondences in answer-set pro-
gramming. In Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, pages 97–102,
Edinburgh, Scotland, UK, 2005. Professional Book Cen-
ter.

[Ferraris et al., 2006] Paolo Ferraris, Joohyung Lee, and
Vladimir Lifschitz. A generalization of the lin-zhao the-
orem. Annals of Mathematics and Artificial Intelligence,
47(1-2):79–101, 2006.

[Ferraris, 2005] Paolo Ferraris. Answer sets for proposi-
tional theories. In Logic Programming and Nonmonotonic
Reasoning, 8th International Conference, volume 3662 of
Lecture Notes in Computer Science, pages 119–131, Dia-
mante, Italy, 2005. Springer.

[Gabbay et al., 2011] Dov M. Gabbay, David Pearce, and
Agustı́n Valverde. Interpolable formulas in equilibrium
logic and answer set programming. Journal of Artificial
Intelligence Research, 42:917–943, 2011.

[Gelfond and Lifschitz, 1988] Michael Gelfond and
Vladimir Lifschitz. The stable model semantics for
logic programming. In Proceedings of the Fifth Interna-
tional Conference and Symposium on Logic Programming,
pages 1070–1080, Seattle, Washington, 1988. MIT Press.

[Konev et al., 2012] Boris Konev, Michel Ludwig, Dirk
Walther, and Frank Wolter. The logical difference for the
lightweight description logic el. Journal of Artificial Intel-
ligence Research, 44:633–708, 2012.

[Lang and Marquis, 2010] Jérôme Lang and Pierre Marquis.
Reasoning under inconsistency: A forgetting-based ap-
proach. Artificial Intelligence, 174(12-13):799–823, 2010.

[Lang et al., 2003] Jérôme Lang, Paolo Liberatore, and
Pierre Marquis. Propositional independence: Formula-
variable independence and forgetting. Journal of Artifical
Intelligence Research, 18:391–443, 2003.

[Lifschitz et al., 1999] Vladimir Lifschitz, Lappoon R. Tang,
and Hudson Turner. Nested expressions in logic programs.
Annals of Mathematics and Artificial Intelligence, 25(3-
4):369–389, 1999.

[Lifschitz et al., 2001] Vladimir Lifschitz, David Pearce,
and Agustı́n Valverde. Strongly equivalent logic programs.
ACM Transactions on Computational Logic, 2(4):526–
541, 2001.

[Lin and Reiter, 1994] Fangzhen Lin and Ray Reiter. Forget
it! In In Proceedings of the AAAI Fall Symposium on
Relevance, pages 154–159, 1994.

[Lin and Zhao, 2004] Fangzhen Lin and Yuting Zhao. AS-
SAT: computing answer sets of a logic program by SAT
solvers. Artificial Intelligence, 157(1-2):115–137, 2004.

[Liu and Wen, 2011] Yongmei Liu and Ximing Wen. On
the progression of knowledge in the situation calculus.
In IJCAI 2011, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, pages 976–
982, Barcelona, Catalonia, Spain, 2011. IJCAI/AAAI.

[Pearce et al., 2009] David Pearce, Hans Tompits, and Ste-
fan Woltran. Characterising equilibrium logic and nested
logic programs: Reductions and complexity. Theory and
Practice of Logic Programming, 9(5):565–616, 2009.

[Pearce, 1996] David Pearce. A new logical characterisation
of stable models and answer sets. In Non-Monotonic Ex-
tensions of Logic Programming, NMELP’96, volume 1216
of Lecture Notes in Computer Science, pages 57–70, Bad
Honnef, Germany, 1996. Springer.

[Visser, 1996] Albert Visser. Uniform interpolation and lay-
ered bisimulation. In Gödel’96, pages 139–164, 1996.

[Wang et al., 2010] Zhe Wang, Kewen Wang, Rodney W.
Topor, and Jeff Z. Pan. Forgetting for knowledge bases in
dl-lite. Annuals of Mathematics and Artificial Intelligence,
58(1-2):117–151, 2010.

[Wang et al., 2012] Yisong Wang, Yan Zhang, Yi Zhou, and
Mingyi Zhang. Forgetting in logic programs under strong
equivalence. In Principles of Knowledge Representation
and Reasoning: Proceedings of the Thirteenth Interna-
tional Conference, pages 643–647, Rome, Italy, 2012.
AAAI Press.

[Wong, 2009] Ka-Shu Wong. Forgetting in Logic Programs.
PhD thesis, The University of New South Wales, 2009.

[Zhang and Foo, 2006] Yan Zhang and Norman Y. Foo.
Solving logic program conflict through strong and weak
forgettings. Artificial Intelligence, 170(8-9):739–778,
2006.

[Zhang and Zhou, 2009] Yan Zhang and Yi Zhou. Knowl-
edge forgetting: Properties and applications. Artificial In-
telligence, 173(16-17):1525–1537, 2009.

1168

