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Abstract

Constraint-based applications such as configura-
tors, recommenders, and scheduling systems sup-
port users in complex decision making scenarios.
Typically, these systems try to identify a solution
that satisfies all articulated user requirements. If the
requirements are inconsistent with the underlying
constraint set, users have to be actively supported
in finding a way out from the no solution could be
found dilemma. In this paper we introduce tech-
niques that support the calculation of personalized
diagnoses for inconsistent constraint sets. These
techniques significantly improve the diagnosis pre-
diction quality compared to approaches based on
the calculation of minimal cardinality diagnoses. In
order to show the applicability of our approach we
present the results of an empirical study and a cor-
responding performance analysis.

1 Introduction
Constraint-based applications such as configurators, recom-
menders, and scheduling systems support users in complex
decision making scenarios. Interacting with constraint-based
applications often means to specify a set of requirements (e.g.,
when interacting with a car configurator, required compo-
nents such as car type and park distance control), to adapt
inconsistent requirements, and to evaluate different alterna-
tive solutions. In this paper we focus on situations where the
constraint solver is not able to identify a solution and it is
difficult for the user (customer) to identify minimal sets of
requirements that need to be changed such that a solution for
the underlying constraint satisfaction problem (CSP) can be
identified. In order to improve the prediction quality of di-
agnosis algorithms in such contexts, we show how to exploit
personalization techniques [Felfernig et al., 2007].

Existing approaches to the determination of diagnoses for
inconsistent requirements are primarily focusing on minimal-
cardinality diagnoses [Felfernig et al., 2004] which are de-
termined on the basis of breadth-first search. In the context

∗The work presented in this paper has been partially funded by
the Austrian Research Promotion Agency (project 827587).

of recommender systems [Felfernig et al., 2007] the com-
plement of a diagnosis is denoted as maximally successful
sub-query [Godfrey, 1997; McSherry, 2004]. Such a maxi-
mally successful subquery contains maximal sets of elements
(requirements) that guarantee the identification of a solution,
i.e., elements which are not part of the minimal diagnosis.
In the context of constraint-based systems [Tsang, 1993] di-
agnoses are also interpreted as a specific type of explanation
[OSullivan et al., 2007].

Especially in interactive settings the determination of all
diagnoses is infeasible due to unacceptable runtimes of the
underlying diagnosis algorithms [Felfernig, IJCAI 2009].
Furthermore, we are not able to guarantee that standard
breadth-first search leads us to explanations that are accept-
able for the user [OSullivan et al., 2007]. The work of [OSul-
livan et al., 2007] contributes to the tailoring of diagnoses in
a way that makes the identification of acceptable diagnoses
easier for the user – [OSullivan et al., 2007] denote this type
of diagnosis representative explanations. Representative ex-
planations are diagnosis sets that fulfill the criteria that each
element contained in at least one diagnosis is also contained
in the set of diagnoses presented to the user. [Felfernig et al.,
2009] show how to exploit concepts of collaborative recom-
mendation for improving diagnosis prediction quality – the
concepts have been developed for a knowledge-based recom-
mendation environment [Burke, 2000].

On the basis of this existing work, we show how to ex-
ploit different recommendation algorithms for the personal-
ized identification of diagnoses. In our approach we ex-
ploit these algorithms for guiding best-first search in the
construction of Hitting Set Directed Acyclic Graphs (HS-
DAGs). The major contribution of this paper is the sig-
nificant improvement of diagnosis prediction quality by the
integration of state-of-the-art recommendation approaches
(similarity-based, utility-based, probability-based, ensemble-
based) with standard model-based diagnosis [Reiter, 1987;
DeKleer et al., 1992]. Furthermore, we provide an empiri-
cal evaluation on the basis of two configuration datasets.

The remainder of this paper is organized as follows. In
Section 2 we introduce a working example from the domain
of car configuration. In Section 3 we show how recommen-
dation algorithms can be exploited for personalized model-
based diagnosis. In Section 4 we present the results of eval-
uations conducted with two datasets. In Section 5 we discuss
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related work. The paper is concluded with Section 6.

2 Working Example
The configuration of cars will serve for illustration purposes
throughout this paper. A configuration task can be defined as
a constraint satisfaction problem (CSP) [Tsang, 1993]:1

Definition 1 (Configuration Task). A configuration task
can be defined as a CSP (V, D, C). V = {v1, v2, . . . , vn} repre-
sents a set of finite domain variables. D = {dom(v1), dom(v2),
. . . , dom(vn)} represents a set of variable domains dom(vk)
where dom(vk) represents the domain of variable vk. C =
CKB ∪ CR where CKB = {c1, c2, . . . , cq} is a set of domain
specific constraints (the configuration knowledge base) that
restrict the possible combinations of values assigned to the
variables in V. CR = {cq+1, cq+2, . . . , ct} is a set of customer
requirements also represented as constraints.

A simple example of a configuration task is the follow-
ing. The variable type represents the car type, pdc is the parc
distance control feature, fuel represents the average fuel con-
sumption per 100 kilometers, a skibag supports a convenient
ski stowage inside a car, and 4-wheel represents the actua-
tion type (4-wheel supported or not supported). These vari-
ables are representing all possible user (customer) require-
ments. The possible combinations of customer requirements
are restricted by CKB which is in our case {c1, c2, c3, c4, c5}.
Finally, we assume CR to be {c6, c7, c8, c9, c10}.
• V = {type, fuel, skibag, 4-wheel, pdc}
• D = {dom(type)={city, limo, combi, xdrive},

dom(fuel) = {4l, 6l, 10l}, dom(skibag)={yes, no},
dom(4-wheel)={yes, no}, dom(pdc)= {yes, no}}
• CKB = {c1: 4-wheel = yes⇒ type = xdrive, c2: skibag

= yes⇒ type 6= city, c3: fuel = 4l⇒ type = city, c4: fuel
= 6l⇒ type 6= xdrive, c5: type = city⇒ fuel 6= 10l}
• CR = {c6: 4-wheel = yes, c7: fuel = 6l, c8: type = city,
c9: skibag = yes, c10: pdc = yes}

On the basis of this simple example of a configuration task,
we can now introduce the definition of a corresponding con-
figuration (solution to a configuration task).

Definition 2 (Configuration). A configuration for a given
configuration task (V, D, C) is an instantiation I = {v1=ins1,
v2=ins2, . . . , vn=insn} where insk ∈ dom(vk).

A solution (configuration) for a given configuration task is
consistent if the assignments in I are consistent with the

⋃
ci

∈ C. A solution is complete if all vi ∈ V are instantiated.
Finally, a solution is valid if it is consistent and complete.

3 Calculating Personalized Diagnoses
Users do not want and are not able to evaluate large sets of
diagnosis alternatives. For this reason we are now introduc-
ing alternative approaches that help to systematically reduce
the number of diagnosis alternatives. Our goal is to iden-
tify diagnoses that are relevant for users and thus keep the

1Note that the presented concepts are applicable to different
knowledge representations such as SAT solving [Marques-Silva and
Sakallah, 1996] and description logics [Friedrich and Shcheko-
tykhin, 2005].

process of evaluating and selecting diagnoses as simple as
possible. The first approach to reduce the number of diag-
noses (which is the only non-personalized one we consider
here) is to perform breadth first search which returns minimal
cardinality diagnoses first [Reiter, 1987]. In addition to this
breadth first search approach we will discuss four approaches
to the personalized ranking of diagnoses: similarity-based,
utility-based, probability-based, and ensemble-based search.

Cardinality-based diagnosis (not personalized). Our ex-
ample configuration task (car configuration) is defined in a
way which does not allow the calculation of a solution, for ex-
ample, the requirements c6 and c8 are incompatible. For iden-
tifying minimal sets of constraints which have to be deleted
from the given set of customer requirements we use the
concepts of Model-Based Diagnosis (MBD) [Reiter, 1987;
DeKleer et al., 1992]. MBD diagnosis exploits the descrip-
tion of a system – in our case the configuration knowledge
base CKB which describes a set of possible configurations
(solutions). If we detect that the behavior of the system con-
flicts with its intended behavior (at least one solution can be
identified), the task of a diagnosis component is to determine
components (constraints) in the given set of customer require-
ments (CR) which, when assumed to function abnormally,
sufficiently explain the discrepancy between actual and ex-
pected system behavior. An identified minimal diagnosis is
a minimal set of faulty constraints that need to be relaxed or
deleted in order to be able to calculate a configuration.

Assuming the existence of CKB = {c1, c2, ..., cq} and
CR = {cq+1, cq+2, ..., ct} which is inconsistent with CKB ,
breadth first search based diagnosis algorithms [Reiter,
1987; DeKleer et al., 1992] determine minimal diagnoses
DIAGS = {∆1,∆2, ...,∆k} in the order of their cardinality
such that ∀∆i ∈ DIAGS : CKB ∪ (CR - ∆i) is consis-
tent. A User Requirements Diagnosis Problem (UR Diagno-
sis Problem) can be defined as follows:

Definition 3 (User Requirements (UR) Diagnosis Prob-
lem): A UR Diagnosis Problem is defined as a tuple
(CKB , CR); CKB represents the constraints of the configu-
ration knowledge base and CR is a set of user requirements.

Based on the definition of a UR Diagnosis Problem, a UR
Diagnosis can be defined as follows:

Definition 4 (UR Diagnosis): A User Requirements Diag-
nosis (UR Diagnosis) for (CKB , CR) is a set of constraints
∆ ⊆ CR such that CKB ∪ (CR−∆) is consistent. A diagno-
sis ∆ is minimal iff there does not exist a diagnosis ∆′ ⊂ ∆
s.t. CKB ∪ (CR −∆′) is consistent.

Following the basic principles of Model-Based Diagnosis
(MBD) [Reiter, 1987; DeKleer et al., 1992], the calculation
of diagnoses is based on the identification and resolution of
conflict sets. A conflict set in CR can be defined as follows:

Definition 5 (UR Conflict Set): A User Requirements
Conflict Set (UR Conflict Set) is defined as CS ⊆ CR s.t.
CS ∪ CKB is inconsistent. CS is minimal iff there does not
exist a conflict set CS’ with CS’ ⊂ CS.

In our working configuration example, CR = {c6, .., c10} is
inconsistent with CKB = {c1, .., c5}, i.e., there does not exist
a configuration (solution) that completely fulfills the require-
ments in CR. The minimal conflict sets are CS1 = {c6, c7},
CS2 = {c8, c9}, and CS3 = {c6, c8} since each of these

1991



conflict sets is inconsistent with CKB and there do not exist
conflict sets CS1’, CS2’, and CS3’ with CS1’ ⊂ CS1, CS2’
⊂ CS2, and CS3’ ⊂ CS3.

In MBD [Reiter, 1987; DeKleer et al., 1992], the stan-
dard algorithm for determining minimal diagnoses is the hit-
ting set directed acyclic graph (HSDAG). UR diagnoses
∆i ∈ DIAGS are determined by conflict resolution in the
set of requirements CR. Due to its minimality property, one
conflict can simple be resolved by deleting one of the ele-
ments from the conflict set. After one element has been re-
tracted from each of the given conflict sets, we are able to
present a corresponding diagnosis. The original HSDAG ap-
proach employs breadth-first search. In our example, the di-
agnoses derived from CS1, CS2, and CS3 are DIAGS =
{∆1 : {c6, c8},∆2 : {c6, c9},∆3 : {c7, c8}}.

The HSDAG construction for our working example is
shown in Figure 1. In our implementation we employ the
QUICKXPLAIN conflict detection algorithm which has been
developed by [Junker, 2004]. Following a strict breadth
first search regime, we resolve the first conflict set (CS1)
by checking whether one of its elements already represents
a diagnosis. Both alternatives (c6 and c7) do not lead to a di-
agnosis due to the inconsistency of (CR - {c6}) ∪ CKB and
(CR - {c7}) ∪ CKB . The next minimal conflict set returned
by QUICKXPLAIN is CS2 = {c8, c9}. CR - ({c6} ∪ {c8}))
∪ CKB allows the determination of a solution; consequently
we have identified the first minimal diagnosis: ∆1 = {c6, c8}.

[1] CS1 : {c6, c7}
c6

hhhhh
hhhhh

hhh c7

VVVVV
VVVVV

VVV

[2] CS2 : {c8, c9}
c8

qqq
qqq

q c9

MMM
MMM

M [5] CS2 : {c8, c9}
c8

qqq
qqq

q c9

MMM
MMM

M

[3] ∆1 :

{c6, c8}
√

[4] ∆2 :

{c6, c9}
√

[6] ∆3 :

{c7, c8}
√

[7] CS3 :

{c6, c8}×

Figure 1: Cardinality-based diagnosis (breadth-first): the di-
agnoses ranking is {∆1,∆2,∆3}. The expression [{c6, c8}
×] denotes containment, i.e., the node can be closed.

Similarity-based diagnosis. The similarity-based ranking
of diagnoses is based on the idea of preferring minimal di-
agnoses which lead to solutions (configurations) that resem-
ble the original set of requirements as much as possible. We
exploit the information contained in already existing configu-
rations (see, e.g., Table 1). For each configuration contained
in this table we determine its similarity with the given set of
requirements – the similarity values of our working exam-
ple are depicted in Table 3. The similarity-based determina-
tion of diagnoses is based on Algorithm 1 – a generic algo-
rithm (PDIAG) which is applicable with different node ex-
pansion strategies (in our case, cardinality, similarity, utility,
and probability-based search). This algorithm simulates the
construction of a hitting set directed acyclic graph (HSDAG)
[Reiter, 1987]. The function deleteall(∆′, H) deletes ∆′ and
all supersets of ∆′ from H, delete(∆′, H) removes only ∆′.

We determine similarity values based on three different

Algorithm 1 PDIAG(CR, CKB , crit, n): ∆

{PDIAG returns ≤ n(n ≥ 0) personalized minimal diag-
noses ∆ (bag) for a given set of inconsistent user require-
ments (CR) using the preference criteria defined in crit.}
{CKB : configuration knowledge base}
{H: paths of the diagnosis search tree}
{CS: min. conflict set returned by theorem prover (TP)}
∆ = ∅; H = ∅;
repeat

∆′ ← first(H);
CS ← TP ((CR −∆′) ∪ CKB);
if isEmpty(CS) then

∆←∆ ∪∆′;
H ← deleteall(∆′, H);
n← n - 1;

else
for all X in CS do

H ← H ∪ {∆′ ∪ {X}};
end for
H ← delete(∆′, H);
H ← sort(H, crit);

end if
until (H = ∅ or n = 0);
return ∆;

[1] CS1 : {c6, c7}
¬c6→0.6

hhhhh
hhhhh

hhh ¬c7→0.6

VVVVV
VVVVV

VVV

[2] CS2 : {c8, c9}
¬c6,¬c8→0.13

qqq
qqq

q ¬c6,¬c9→0.6

MMM
MMM

M [4] CS2 : {c8, c9}
¬c7,¬c8→0.35

qqq
qqq

q ¬c7,¬c9→0.6

MMM
MMM

M

[7] ∆1 :

{c6, c8}
√

[3] ∆2 :

{c6, c9}
√

[6] ∆3 :

{c7, c8}
√

[5] CS3 :

{c6, c8}×

Figure 2: Similarity-based diagnosis: the diagnoses order is
{∆2,∆3,∆1}. The term ¬c6 → 0.6 denotes the fact that the
highest similarity between CR and the tuples of the sessions
si in Table 1 consistent with ¬c6 is 0.6 (in our case i = 1).

attribute-level similarity measures which are predominantly
applied in knowledge-based recommender applications [Mc-
Sherry, 2004]. The attribute-level measures determine the
similarity of each attribute value ai of session sk and the cor-
responding requirement ci (e.g., the similarity between the
attribute type of session s1 and the corresponding require-
ment c8). Depending on the characteristics of the attribute,
one of the following attribute-level similarity measures has to
be selected (see Formulae 1–3): More-Is-Better (MIB), Less-
Is-Better (LIB) or Nearer-Is-Better (NIB) [McSherry, 2004].
The overall similiarity between c = CR and a tuple a in Table
1 is defined by Formula 4. The similarity between CR (c) and
a tuple a of user interaction data is represented by the sum of
weighted (w(ci) – see Table 2) attribute level similarities.2

For attributes such as fuel, the lower the value the more sat-
isfied the user is (LIB). When the user specifies a certain car

2Our preference (w(ci)) determination method is typically based
on multi attribute utility theory [Winterfeldt and Edwards, 1986].
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Table 1: Example user interaction data from already com-
pleted configuration sessions.

SESSION si TYPE FUEL SKIBAG 4-WHEEL PDC

s1 city 4l no no yes
s2 city 4l no no no
s3 xdrive 10l yes yes yes
s4 limo 6l no no yes
s5 combi 6l no no no
s6 xdrive 10l no yes yes
s7 limo 6l yes no no
s8 combi 6l yes no no

Table 2: Example importance values (w(ci) in %).
TYPE FUEL SKIBAG 4-WHEEL PDC

50.0 5.0 10.0 30.0 5.0

type (no intrinsic value scale), we suppose the most similar
is the preferred one. In such cases, the nearer-is-better (NIB)
similarity measure is used.3

MIB : s(ci, ai) =
val(ci)−min(ai)

max(ai)−min(ai)
(1)

LIB : s(ci, ai) =
max(ai)− val(ci)

max(ai)−min(ai)
(2)

NIB : s(ci, ai) =

{
1 if val(ci) = val(ai)
0 else

(3)

sim(c, a) =
n∑

i=1

s(ci, ai) ∗ w(ci) (4)

Table 3: Similarity (sim(c, a)) between requirements (c =
CR) and user interaction data (a) from configuration sessions.
si TYPE FUEL SKIBAG 4-WHEEL PDC sim(c,a)
s1 1.0 1.0 0.0 0.0 1.0 0.6
s2 1.0 1.0 0.0 0.0 0.0 0.55
s3 0.0 0.0 1.0 1.0 1.0 0.18
s4 0.0 0.67 0.0 0.0 1.0 0.08
s5 0.0 0.67 0.0 0.0 0.0 0.03
s6 0.0 0.0 0.0 1.0 1.0 0.35
s7 0.0 0.67 1.0 0.0 0.0 0.13
s8 0.0 0.67 1.0 0.0 0.0 0.13

Utility-based diagnosis. Utility-based diagnosis prefers
minimal diagnoses that are predominantly composed of re-
quirements which are of low importance (a low w(ci) value)
for the customer (user). Based on the concepts of multi at-
tribute utility theory [Winterfeldt and Edwards, 1986], indi-
vidual importance values (see Table 2) of user requirements

3For a detailed discussion of different types of similarity mea-
sures see, for example, [McSherry, 2004]. In Formulae 1 – 3,
val(ci) denotes the value of user requirement ci, min(ai) de-
notes the minimal possible value of configuration attribute ai, and
max(ai) denotes the maximal possible value of ai.

Table 4: Example diagnoses selected by users, the individual
probabilities are: p(¬c6)=0.30, p(¬c7)=0.50, p(¬c8)=0.60,
p(¬c9)=0.20 where, for example, p(¬c6)=0.30 denotes the
probability of c6 being part of a diagnosis.

∆i TYPE FUEL SKIBAG 4-WHEEL PDC

∆log1 6=city – – =no –
∆log2 – – =no =no –
∆log3 6=city 6=6l – – –
∆log4 6=xdrive – – – –
∆log5 – – =no =no –
∆log6 6=city 6=6l – – –
∆log7 6=city 6=6l – – –
∆log8 6=xdrive 6=4l – =yes –
∆log9 6=city 6=6l – – –
∆log10 6=city 6=6l – – –

that are part of a diagnosis are summed up – the lower this
sum, the lower is the overall importance of the parameters
contained in the diagnosis and the higher is the ranking of the
corresponding diagnosis. The function utility(C ⊆ CR) re-
turns a utility value for each set C which is a subset of CR

(see Formula 5). Note that in the case of our working ex-
ample the diagnosis ranking on the basis of the utility-based
approach is the same as with the discussed similarity-based
approach. The corresponding results are depicted in Figure 3.

u(C ⊆ CR) =
1∑

ci∈C w(ci)
(5)

Probability-based diagnosis. Probability-based best first
search for diagnoses prefers minimal diagnoses with a high
probability of being selected by the user. For the determina-
tion of diagnosis probabilities we rely on joint probabilities
that a particular diagnosis (or part of a diagnosis) will be se-
lected by the user. Formula 6 is used for determining the joint
probabilities for a given set of constraints C ⊆ CR. Figure
4 shows the application of this approach in the context of our
working example. The probabilities are determined on the
basis of user-selected diagnoses (see Table 4). The assump-
tion of independence of failure made here is one widely made
in model-based diagnosis [DeKleer, 1990].

p(C ⊆ CR) =
∏
ci∈C

p(ci) (6)

Ensemble-based diagnosis. In the case of cardinality-
based, similarity-based, utility-based, and probability-based
diagnosis search, diagnosis predictions (the rankings) are
based on a single hypothesis. The idea of ensemble-based di-
agnosis search is to exploit a set of hypotheses (an ensemble)
for making the prediction. For the ranking of diagnoses we
apply a basic majority voting approach (see Table 5); assum-
ing that the errors made by each individual prediction mech-
anism are not the same, ensemble-based methods can be very
useful for improving the prediction quality (see Section 4).
The determination of ensemble-based diagnoses is sketched
in Algorithm 2 (ENSPDIAG); this algorithm activates PDIAG
with each individual expansion criteria, collects the results,
and determines a set of ensemble-based diagnoses. We do not
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[1] CS1 : {c6, c7}
c6→0.03

hhhhh
hhhhh

hhh c7→0.2

VVVVV
VVVVV

VVV

[4] CS2 : {c8, c9}
c6,c8→0.012

qqq
qqq

q c6,c9→0.025

MMM
MMM

M [2] CS2 : {c8, c9}
c7,c8→0.018

qqq
qqq

q c7,c9→0.06

MMM
MMM

M

[7] ∆1 :

{c6, c8}
√

[5] ∆2 :

{c6, c9}
√

[6] ∆3 :

{c7, c8}
√

[3] CS3 :

{c6, c8}...×

Figure 3: Utility-based diagnosis search: the order of identified diagnoses is {∆2,∆3,∆1}.

[1] CS1 : {c6, c7}
p({¬c6})→.30

hhhhh
hhhhh

hhh p({¬c7})→.50

VVVVV
VVVVV

VVV

[4] CS2 : {c8, c9}
p({¬c6,8})→.18

qqq
qqq

q p({¬c6,9})→.06

MMM
MMM

M [2] CS2 : {c8, c9}
p({¬c7,8})→.30

qqq
qqq

q p({¬c7,9})→.10

MMM
MMM

M

[5] ∆1 :

{c6, c8}
√

[7] ∆2 :

{c6, c9}
√

[3] ∆3 :

{c7, c8}
√

[6] CS3 :

{c6, c8}×

Figure 4: Probability-based diagnosis: the order of identified diagnoses is {∆3,∆1,∆2}.

Table 5: Example diagnoses selected by ensemble method
(implemented as a basic form of majority voting).

METHOD / POSITION 1 2 3
utility-based ∆2 ∆3 ∆1

probability-based ∆3 ∆1 ∆2

similarity-based ∆2 ∆3 ∆1

ensemble-based ∆2 ∆3 ∆1

provide the details of the function CreateEnsembleDiagnoses
and refer to Table 5 which sketches the aggregation approach.
Note that – since ENSPDIAG activates a HSDAG construc-
tion several times (in the for-loop) – conflicts determined with
criteria X can be reused in follow-up PDIAG activations.

Algorithm 2 ENSPDIAG(CR, CKB , Crit, n): ∆

{ENSPDIAG returns ≤ n(n ≥ 0) personalized minimal
diagnoses ∆ (bag) for a given set of inconsistent user re-
quirements (CR) using the ensemble-based approach.}
{CKB : configuration knowledge base}
{Crit: set of expansion criteria (card, sim, utility, prob)}
{Γ: collection of diagnosis sets (bags)}
for all X in Crit do

Γ← Γ ∪ PDIAG(CR, CKB , X , n);
end for
∆← CreateEnsembleDiagnoses(Γ);
return ∆;

4 Evaluation
Prediction Quality. We now demonstrate the improvements
achieved by the application of our personalized diagnosis ap-
proaches on the basis of an empirical study with two datasets.

Dataset 1: Computer Configuration. This dataset has been
composed on the basis of an online user experiment con-
ducted at the Graz University of Technology. 415 subjects
participated in the study (82,4% male and 17,6% female).
Participants had to define their requirements (CR) regarding
a set of 12 computer properties. The task of the subjects was
to define their product requirements (including requirement
importance). After having completed the requirement speci-
fication phase, each participant was informed about the fact
that no solution could be found. The configurator then pre-
sented a list of max. 50 different repair configurations (solu-
tion alternatives) – at least one property of each configuration
was inconsistent with CR. The configurations were extracted
from www.dell.at. The ranking of the solution alternatives
was randomized and the subjects were enabled to navigate in
order to evaluate the solution alternatives regarding criteria
such as price, harddisk size or number of fulfilled require-
ments. The subjects then had to select one out of the pre-
sented repair configurations that appeared to be the most ac-
ceptable one for them. Since no solution has been made avail-
able for CR (only configurations inconsistent with CR were
shown) we could calculate conflicts (in CR induced by the
repair configurations) and the corresponding diagnoses with
our diagnosis techniques (the average number of diagnoses
per CR was: 5.32 (std.dev. 1.67)). Precision (see Formula 7)
was measured then in terms of how often a repair configura-
tion selected by the participant was consistent with one of the
top-N ranked diagnoses.

Dataset 2: Financial Services. This dataset belongs to
a financial service recommender. In this application, in-
consistent states and selected diagnoses had been recorded
(N=1.703 sessions out of which in 418 sessions a diagnosis
process had been activated – average number of diagnoses
per CR: 20.42 (std.dev. 4.51)). In the case of the financial
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services configurator, the importance of a user requirement
(w(ci)) was (is) determined on the basis of multi attribute
utility theory [Winterfeldt and Edwards, 1986].

Based on the two datasets (computer and financial ser-
vices) we evaluated our diagnosis approaches w.r.t. their pre-
cision (Formula 7). The idea of this precision measure is to
figure out how often a diagnosis that corresponds to a diag-
nosis selected by the user or leads to a repair configuration
selected by a user is among the top-n (N) ranked diagnoses.

precision =
#(correct predictions)

#(predictions)
(7)

As can be seen in Table 6 and Table 7, in our two empir-
ical settings the ensemble-based approach (majority voting)
outperforms the other prediction methods in terms of preci-
sion. Breadth first search has the lowest precision. Based on
a two-sample t-test we tried to figure out whether there exist
statistically significant differences between the diagnosis ap-
proaches in terms of their mean square error ( 1

n

∑n
i=1 |(1 −

diagpos(i))2|) where diagpos denotes the position of the
diagnosis selected by the user and n=#(diagnosis processes
started). In both datasets we detected a significant difference
between breadth-first search and all other approaches (com-
puter: p = 2.2e−16, financial services: p < 0.05). Further-
more, there is a significant difference between the ensemble-
based and the other personalized approaches in the case of the
computer dataset (p = 7.55e−6); in the case of the financial
services dataset we can observe a tendency (p < 0.07).

Table 6: Predictive quality (precision) of used diagnosis se-
lection methods for computer configuration dataset.

METHOD / N 1 2 3 4 5
breadth first 0.55 0.76 0.82 0.88 0.96
utility-based 0.66 0.83 0.94 0.95 0.98

similarity-based 0.65 0.81 0.90 0.93 0.98
probability-based 0.64 0.85 0.93 0.95 0.99
ensemble-based 0.68 0.86 0.94 0.96 0.99

Table 7: Predictive quality (precision) of used diagnosis se-
lection methods for financial services configuration dataset.

METHOD / N 1 2 3 4 5
breadth first 0.12 0.27 0.39 0.52 0.62
utility-based 0.17 0.37 0.48 0.65 0.74

similarity-based 0.17 0.37 0.49 0.65 0.73
probability-based 0.15 0.33 0.47 0.57 0.74
ensemble-based 0.17 0.35 0.50 0.63 0.76

Performance. The PDIAG algorithm (Algorithm 1) has
been implemented on the basis of the standard hitting set
algorithm introduced in [Reiter, 1987] – it is NP-hard in
the general case but is applicable for interactive configura-
tion settings (see the following evaluation). In PDIAG min-
imal conflict sets are determined on the basis of QUICKX-
PLAIN [Junker, 2004] – the worst case complexity in terms
of the number of consistency checks of QUICKXPLAIN is
O(2k ∗ log(n

k ) + 2k) where k represents the size of the mini-
mal conflict set and n is the number of constraints.

We conducted a performance analysis in order to show
the applicability of our approach (see Table 8). The

tests have been executed on a standard desktop computer
(Intel R©CoreTM2 Quad CPU Q9400 CPU with 2.66GHz and
2GB RAM). In addition to our datasets we evaluated our di-
agnosis algorithms with the Renault configuration knowledge
base part of the configuration benchmark suite.4 Even for
complex settings (Renault benchmark) we can expect a per-
formance acceptable for interactive settings. Note that the de-
termination of minimal cardinality diagnoses typically takes
less time due to the fact that fewer conflict sets have to be de-
termined on an average, however, in many settings minimal
cardinality diagnoses are not the preferred ones.

Table 8: Avg. runtime(msec) for determining the first-N diag-
noses (bf = breadth first, pers=all personalized approaches).

DATASET APPROACH N=1 N=5
computer configuration bf 64.1 70.0
computer configuration pers 64.2 71.1

financial services bf 23.3 36.8
financial services pers 23.9 37.1

car (Renault) bf 921.3 1510.1
car (Renault) pers 952.7 1581.9

Monotonicity Assumption. Note that the PDIAG algo-
rithm is able to determine the best n (preferred) diagnoses
under the assumption that the underlying expansion strategy
fulfills the monotonicity property of best-first search ([Rus-
sell and Norvig, 2003]) which holds for the strategies we dis-
cussed in this paper: the cardinality increases, similarity, util-
ity, and probability decrease with a growing expansion level
of the HSDAG [Reiter, 1987].

5 Related Work
The increasing size and complexity of knowledge bases led
to the application of model-based diagnosis [Reiter, 1987;
DeKleer et al., 1992] to automated knowledge base debug-
ging [Felfernig et al., 2004]. The contribution of [Felfernig
et al., 2004] has a special relationship to the concepts pre-
sented in this paper: [Felfernig et al., 2004] identify faulty
constraints in configuration knowledge bases, furthermore,
they present a first approach to the identification of mini-
mal sets of faulty user requirements (following a breadth-
first search regime). An approach to personalize diagnosis
has been presented in [Junker, 1994] where diagnoses are
determined on the basis of a HSDAG [Reiter, 1987] given
a defined preferred ordering on assumptions. In a similar
line, [DeKleer, 1990] show the application of probability es-
timates for the identification of the most relevant diagnosis.
The work presented in this paper extends existing research
results by demonstrating the application of recommendation
algorithms for improving the prediction quality of diagnosis
algorithms. In order to identify the relevant diagnoses, we
have to include intelligent estimates about preferences which
is one of the major contributions of this paper. One such ap-
proach to determine personalized diagnoses for inconsistent
requirements has been proposed for knowledge-based recom-
mendation scenarios [Felfernig et al., 2009] where repair pro-
posals for inconsistent features requests are generated on the

4www.itu.dk/research/cla/externals/clib.

1995



basis of the similarity between the feature requests and the
items in a product table. [OSullivan et al., 2007] introduce
minimal exclusion sets. On the basis of such sets, [OSul-
livan et al., 2007] discuss the concept of representative ex-
planations which can be interpreted as sets of minimal di-
agnoses covering all constraints part of at least one of the
existing diagnoses – this is an approach to take into account
diversity in diagnosis recommendation and thus also an im-
portant aspect for our future work. In contrast to the work
presented in this paper, the approach of [OSullivan et al.,
2007] does not explicitly take into account the preferences
of the current user (customer). In knowledge-based recom-
mendation maximally successful sub-queries [Godfrey, 1997;
McSherry, 2004] represent the complement to minimal diag-
noses [DeKleer et al., 1992; Reiter, 1987]. Note that our work
relies on the assumption of an open configuration (tradeoff
exploration) based scenario where the user is free to specify
preferred requirements – the configuration system then pro-
vides the corresponding feedback in terms of diagnoses.

6 Conclusions
We have introduced techniques that help to calculate per-
sonalized diagnoses. In this context we proposed different
personalization strategies which can help to significantly in-
crease prediction quality. Within the scope of an empir-
ical study we compared five search strategies (cardinality-
based, similarity-based, utility-based, probability-based, and
ensemble-based). The results show clear advantages of per-
sonalized diagnosis calculation in terms of precision. Thus
the results presented in this paper provide a solid basis for
improving existing constraint-based applications in terms of
a lower number of needed interaction cycles for the user and
a lower number of needed diagnosis calculations.
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