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Abstract
On-line portfolio selection has been attracting in-
creasing interests from artificial intelligence com-
munity in recent decades. Mean reversion, as one
most frequent pattern in financial markets, plays
an important role in some state-of-the-art strate-
gies. Though successful in certain datasets, ex-
isting mean reversion strategies do not fully con-
sider noises and outliers in the data, leading to
estimation error and thus non-optimal portfolios,
which results in poor performance in practice. To
overcome the limitation, we propose to exploit the
reversion phenomenon by robust L1-median esti-
mator, and design a novel on-line portfolio selec-
tion strategy named “Robust Median Reversion”
(RMR), which makes optimal portfolios based on
the improved reversion estimation. Empirical re-
sults on various real markets show that RMR can
overcome the drawbacks of existing mean reversion
algorithms and achieve significantly better results.
Finally, RMR runs in linear time, and thus is suit-
able for large-scale trading applications.

1 Introduction
Portfolio Selection (PS) problem is concerned with determin-
ing a portfolio for allocating the wealth among a set of assets
to achieve some financial objectives in the long run. There are
two main mathematical models for this problem: the mean-
variance model [Markowitz, 1952] and the Kelly investment
[Kelly, 1956]. In general, mean-variance theory, which trades
off between the expected return (mean) and risk (variance)
of a portfolio, is suitable for single-period (batch) PS. While
Kelly investment, which tends to maximize the expected log

∗This work was partially supported by the Research Innova-
tion Program of Shanghai MEC (13ZZ003), China PSS Foundation
(201104247) and Singapore MOE tier 1 project (RG33/11).

†Corresponding Author

return, focuses on multiple-period sequential PS. Although
these two theories, initially, generated little interest, they are
now mainstream theories whose principles are constantly vis-
ited and re-invented. One popular research is On-line PS,
which often designs algorithms following the Kelly invest-
ment because of its sequential nature, and has been actively
explored in AI [Cover, 1991; Ordentlich and Cover, 1996]

and machine learning communities [Agarwal et al., 2006;
Borodin et al., 2004; Li and Hoi, 2012].

Some state-of-the-art on-line PS strategies [Gyorfi et al.,
2006; 2008] assume that the current best performing stocks
would also perform well in the next trading day, but empirical
evidence [Jegadeesh., 1990] indicates that such trends may be
often violated, especially in the short term. This observation
leads to the strategy of buying poor performing stocks and
selling those with good performance. This trading principle,
known as ”mean reversion”, is a valid investment principle.

Recently, on-line PS [Cover, 1991; Borodin et al., 2004;
Li et al., 2013; 2012a; Li and Hoi, 2012b] has exploiting the
mean reversion principle. Though these mean reversion al-
gorithms achieve encouraging results on many datasets, they
perform poor on certain datasets, such as DJA dataset [Li et
al., 2013; 2012a]. This is because all existing mean rever-
sion strategies do not fully consider the noisy data and out-
liers, which often leads to estimation error, and thus makes
the portfolio non-optimal (see [Merton, 1980]). Furthermore,
the assumption of single-period prediction [Li et al., 2013;
2012a] also leads to estimation error, which thus makes the
performance extremely poor [Li and Hoi, 2012b].

To address the above drawbacks, we present a new multi-
period on-line PS strategy named “Robust Median Rever-
sion”(RMR). The basic idea is to exploit the reversion phe-
nomenon via robust L1-median estimator [Weber, 1909;
Weiszfeld, 1937; Vardi and Zhang, 2000], which explicitly
estimates next price relative and is more accurate than simple
mean estimator. Then we learn optimal portfolios based on
the improved reversion estimation and state of the art online
learning techniques.

To the best of our knowledge, RMR is the first algorithm

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

2006



that exploits the reversion phenomenon by robust L1-median
estimator. Though simple in nature, RMR can release better
estimation than existing algorithms and has been empirically
validated via extensive experiments on real markets. The
experimental results show that RMR significantly surpasses
a number of state-of-the-art strategies in terms of long-term
compound return. Moreover, it is robust to different param-
eter settings and it can withstand small transaction costs. Fi-
nally, RMR has linear time complexity, which is suitable for
large-scale applications.

The rest of the paper is organized as follows. Section 2 for-
mulates the on-line PS problem and Section 3 reviews some
related work. Section 4 presents the proposed algorithm and
Section 5 empirically evaluates its efficacy on real markets.
Section 6 finally summarizes the article.

2 Problem Setting
Consider a financial market with d assets for n trading pe-
riods to be invested. On the tth period, the asset prices are
represented by a close price vector pt ∈ R

d
+, and each el-

ement pit represents the close price of asset i. The changes
of asset prices are represented by a price relative vector
xt = (x1

t , . . . , x
d
t ) ∈ R

d
+, where xj

t expresses the ratio of

close price to last close price of asset j at the tth period, i.e.,

xj
t = pjt/p

j
t−1. We denote xn

1 = (x1, . . . ,xn) as the se-
quence of price relative vectors for n periods.

At the beginning of the tth period, we diversify the cap-
ital among the d assets according to a portfolio vector
bt = (b1t , . . . , b

d
t ) ∈ R

d
+, where bjt represents the propor-

tion of wealth invested in the jth asset. Typically, we as-
sume the portfolio is self-financed and no margin/short is al-
lowed, which means bt ∈ Δd, where Δd = {bt : bt ∈
R

d
+,

∑d
j=1 b

j
t = 1}. The investment procedure is represented

by a portfolio strategy, that is, b1 = 1
d1 and following se-

quence of mappings bt : (Rd
+)

t−1 → Δd, t = 1, 2, . . . ,

where bt = bt(x
t−1
1 ) is the portfolio used on the tth trading

period given past market sequence xt−1
1 = (x1, . . . ,xt−1).

We denote by bn
1 = (b1, . . . ,bn) the strategy for n periods.

On the tth trading period, a portfolio bt achieves a portfo-
lio period return st, that is, the wealth increases by a fac-

tor of st = bT
t xt =

∑d
j=1 b

j
tx

j
t . Since we reinvest and

adopt price relative, the portfolio wealth would multiplica-
tively grow. Thus, after n trading periods, a portfolio strat-
egy bn

1 produces a portfolio cumulative wealth Sn, which
increases the initial wealth by a factor of

∏n
t=1 b

T
t xt, that

is, Sn(b
n
1 ,x

n
1 ) = S0

∏n
t=1(b

T
t xt), where S0 is the initial

wealth, which is set to 1 in this paper.
Finally, we formulate the on-line PS problem as a sequen-

tial decision task. The portfolio manager aims to design a
strategy bn

1 to maximize the portfolio cumulative wealth Sn.
The portfolios are selected in a sequential fashion. On each
period t, given the historical information, the manager learns
to select a new portfolio vector bt for next price relative vec-
tor xt, where the decision criterion varies among different
managers. The resulting portfolio bt is scored based on the
portfolio period return of st. Such procedure repeats until

the end of trading periods and the portfolio strategy is finally
scored by the cumulative wealth Sn.

In the above model, we ideally assume no transaction cost,
perfect market liquidity and zero impact cost. These assump-
tions are not trivial, which has been explained in all existing
work (refer to Section 3 for detail). We will empirically ana-
lyze the effects of transaction costs in Section 5.2.

3 Related Work
On-line portfolio selection has been extensively explored fol-
lowing the principle of Kelly investment [Kelly, 1956]. One
classical strategy is Constantly Rebalanced Portfolios (CRP),
which keeps fixed weight on each asset for every period. Best
CRP (BCRP) [Cover, 1991], the best CRP strategy over a
whole market sequence, is an optimal strategy if the market is
i.i.d. [Cover and Thomas, 1991]. Successive Constantly Re-
balanced Portfolios (SCRP) [Gaivoronski and Stella, 2000]

and Online Newton Step (ONS) [Agarwal et al., 2006] im-
plicitly estimate next price relative via all historical price rel-
atives with a uniform probability1.

Besides estimation via all historical price relatives, some
strategies predict next price relatives by selecting a set of
similar price relatives. Nonparametric kernel based moving
window (BK) [Gyorfi et al., 2006] measures the similarity
by kernel method. Following the same framework, Nonpara-
metric Nearest Neighbor (BNN ) [Gyorfi et al., 2008] locates
the set of price relatives via nearest neighbor methods. Li et.al
[2011] proposed Correlation-driven Nonparametric learning
(CORN), which measures the similarity via correlation.

Moreover, another category of estimation is to predict next
price relative via a single-value prediction. Exponential Gra-
dient (EG)[Helmbold et al., 1998] estimates next price rela-
tive as last price relative. Passive Aggressive Mean Reversion
(PAMR) [Li et al., 2012a] and Confidence Weighted Mean
Reversion (CWMR) [Li et al., 2013] estimate next price as
the inverse of last price relative, which is in essence the mean
reversion principle2. Recently, Li and Hoi [2012b] proposed
On-Line Moving Average Reversion (OLMAR), which pre-
dicts the next price relative using moving averages and ex-
plores the multi-period mean reversion.

Finally, some algorithms do not focus on estimation, ei-
ther explicitly or implicitly. Universal portfolios (UP) [Cover,
1991] is the historical performance weighted average of all
CRPs. Anti-Correlation (Anticor) [Borodin et al., 2004]

adopts the consistency of positive lagged cross-correlation
and negative autocorrelation to adjust the portfolio.

3.1 Analysis of Existing Work
Now, let us focus on the estimation methods of existing
work. In practice, a Kelly portfolio manager [Kelly, 1956;
Thorp, 1971] firstly predicts x̂t+1 in terms of k possible
values x̂1

t+1, . . . , x̂
k
t+1 and their corresponding probabilities

p1, . . . , pk, where each x̂i
t+1 denotes one possible combi-

nation vector of individual price relative predictions. Then

1SCRP and ONS’s formulations are similar, while they use dif-
ferent techniques to solve the formulations.

2PAMR and CWMR adopt the same estimation, while they ex-
ploit the principle via different techniques.
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he/she can figure out a portfolio by maximizing the expected
log return on the possible combinations,

bt+1 = argmax
b∈Δd

k∑
i=1

pi log
(
b · x̂i

t+1

)
.

As different estimation methods result in different x̂i
t+1 and

pi and lead to different portfolio, an accurate estimation
method is crucial to the success of a strategy.

Below, we focus on the algorithms PAMR, CWMR and
OLMAR, which estimate next price relative via a single value
prediction based on mean reversion or moving average rever-
sion. PAMR and CWMR implicitly assume x̂1

t+1 = 1
xt

with

p1 = 100%, i.e., they estimate next price relative as the in-
verse of last price relative, which is in essence the mean re-
version principle. From the price perspective [Li and Hoi,
2012b], they implicitly assume that next price p̂t+1 will re-
vert to last price pt−1,

x̂t+1 =
1

xt
⇒ p̂t+1

pt
=

pt−1

pt
⇒ p̂t+1 = pt−1,

where x and p are all vectors and the above operations are
element-wise. Rather than p̂t+1 = pt−1, OLMAR esti-
mates the next price as a moving average at the end of tth

period, that is, p̂t+1 = MAt (w) =
1
w

∑i=t
i=t−w+1 pi where

MAt (w) denotes the moving average with a w-window.
Though empirically effective on most datasets, current esti-
mation methods in PAMR/CWMR and OLMAR cause two
potential problems. Firstly, the single-period mean reversion
assumption of PAMR and CWMR may not be satisfied in the
real world. One real example [Li et al., 2012a] is DJA dataset
[Borodin et al., 2004], on which PAMR performs the worst
among the state of the art. Secondly, all three algorithms
suffer from the frequently fluctuating raw prices,which often
contain a lot of noises and outliers. The two drawbacks thus
motivate the proposed method.

4 Robust Median Reversion
4.1 Motivation
Empirical results [Li et al., 2013; 2012a] show that if asset
price follows the normal distribution, the mean of historical
prices may better explain the markets. OLMAR, which esti-
mates next price via moving average, also achieves good re-
sults on most datasets. However, due to noises and outliers in
the data, the price distribution often has longtail, thus previ-
ous estimation methods are sub-optimal on the real markets.

To illustrate the drawbacks of mean and moving average,
let us see a toy example. The toy market consists of one
volatile stock, and ti(i ≥ 0) denotes the period that re-
quires estimation. Several sequences of market prices are
listed in Table 1. A0, A1 are single-period price sequences
and their prices change by sequent factor of 2, 1

2 , 2,
1
2 , . . ..

For example, let Pti be the price of the ith period, then
Pt1=Pt0×2=1×2=2, Pt2=Pt1× 1

2=2× 1
2=1, Pt3=Pt2×2 =

1×2=2, . . .. B0, B1 are two-period price sequences and their
prices change by sequent factor of 2, 2, 1

2 ,
1
2 , 2, 2, . . .. C0, C1

are the three-period price sequences, and the price changes

Price:t0 → t1 → . . . Acc PAMR/ OLMAR RMR
CWMR

A0 : 1, 2, 1, 2, ? 1 1 1.5 1.5
A1 : 1, 2, (10), 2, ? 1 10 3.75 2
B0 : 1, 2, 4, 2, ? 1 4 2.25 2
B1 : 1, 2, (10), 2, ? 1 10 3.75 2
C0 : 1, 2, 4, 8, 4, 2, ? 1 4 3.5 3
C1 : 1, 2, 4, 8, (10), 2, ? 1 10 4.5 3

Table 1: Illustration of different price estimation methods on toy
markets. A0, A1; B0, B1 and C0, C1 represent single-period, two-
period and three-period price sequence respectively. A0, B0, C0 are
exact price sequence, and A1, B1, C1 are price sequence contami-
nated by an outlier of 10. “Acc” is the accurate price. Other three
items represent three estimators based on three different methods.

by sequent factor of 2, 2, 2, 1
2 ,

1
2 ,

1
2 , 2, 2, 2, . . .. Moreover,

A0, B0, C0 are exact price sequences, while A1, B1, C1 are
the sequences contaminated by a outlier of 10. “?” denotes
the price to be estimated and “Acc” is the accurate price. The
estimated prices clear show that the next prices estimated by
PAMR/CWMA and OLMAR are far away from the accurate
values, which thus leads to inaccurate price relatives and sub-
optimal portfolios. Contrarily, the proposed methods release
much better estimations (the calculation will be detailed later)
and subsequent better portfolios. Note that although the toy
example is on a single asset, such estimation goodness can be
easily extended to the scenario of multiple assets.

To better exploit (multiple period) reversion property, we
proposed a new type of algorithms for on-line PS, named
“Robust Median Reversion” (RMR). The essential idea is to
exploit multiple period reversion via robust L1-median es-
timator [Weber, 1909; Weiszfeld, 1937; Vardi and Zhang,
2000] and power online machine learning. Rather than
p̂t+1 = pt−1 or p̂t+1 = MAt(w), RMR estimates next price
by robust L1-median estimator at the end of tth period, that
is, p̂t+1 = L1medt+1(w) = μ, where w is the window size,
μ denotes the value in L1-median estimator that satisfied the
Optimization Problem 1 below (see section 4.2). Then the
expected price relative with L1-median estimator is

x̂t+1(w) =
L1medt+1(w)

pt
=

μ

pt
. (1)

Without detailing the calculation, we list the estimated next
price of RMR in different toy markets in Table 1. Clearly,
for the multiple period price sequences B0, B1 and C0, C1,
RMR estimator is much closer to the Accurate estimator than
PAMR/CWMR, showing that RMR method can deal with
multiple period price sequence. For the contaminated price
sequences A1, B1, C1, RMR is also closer to the Accurate es-
timator than OLMAR and PAMR/CWMR estimators, which
shows that RMR is a robust method.

Moreover, L1-median estimator is much better than mean
estimators statistically. In fact, the L1-median has an attrac-
tive statistical properties, that is, its breakdown point is 0.5
[Lopuhaa and Rousseeuw, 1991], i.e., only if more than 50%
of the data points are contaminated, the L1-median can take
values beyond all bounds. Note that breakdown point, the
proportion of incorrect observations an estimator can handle,
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is a statistical metric of robustness. The higher the breakdown
point of an estimator is, the more robust it is. However, the
breakdown point of mean is 0, which means that the mean
estimator is sensitive to the noisy data and outliers.

Based on the expected price relative vector in Eq. (1),
RMR further adopts the idea of an effective online learning
algorithm, that is, Passive Aggressive (PA) [Grammer et al.,
2006] learning, to exploit median reversion. Generally pro-
posed for classification, PA passively keeps the previous so-
lutions if the classification is correct, while aggressively ap-
proaches a new solution if the classification is incorrect. Af-
ter formulating the proposed RMR optimization, we solve its
closed form update and design the proposed algorithm.

4.2 Formulation
The proposed formulation, RMR, is to exploit median rever-
sion via robust L1-estimator and PA online learning. The ba-
sic idea is to obtain next price relative x̂t+1 via multivariate
L1-median, and then maximize the expected return b · x̂t+1

while keeping last portfolio information via regularization.
To estimate the next price relative x̂t+1, we calculate the

multivariate L1-median of historical prices. In statistics, the
L1-median (also named spatial median) of a k-historical
price window, μ, is the solution of following optimization,
Optimization problem 1: L1-median

μ = argmin
μ

k−1∑
i=0

‖pt−i − μ‖ , (2)

where ‖·‖ denotes the Euclidean norm. In a word, L1-median
is the point with minimal sum of Euclidean distances to the
k given price data points. This problem is formulated in an
even more general form by Weber [Weber, 1909] (Fermat-
Weber problem), as he refers to location issues in industrial
contexts. If the data points are not collinear, the solution to
problem (2) is unique [Weiszfeld, 1937].

After obtaining the L1-median estimator of price, we
can calculate next price relative x̂t+1 by Eq. (1). Based
on the obtained price relative x̂t+1, we can select next
portfolio via PA online learning technique. Thus, following
the similar idea PAMR and OLMAR [Li et al., 2012a;
Li and Hoi, 2012b], we can formulate the following opti-
mization,
Optimization problem 2: RMR

bt+1 = argmin
b∈Δd

1

2
‖b− bt‖2 s.t. b · x̂t+1 ≥ ε. (3)

The above formulation attempts to find an optimal portfolio
by minimizing the deviation from last portfolio bt under the
condition of b · x̂t+1 ≥ ε. Such formulation explicitly re-
flects the reversion idea underlying the proposed RMR. In
fact, x̂t+1 is the price relative estimated via L1-median esti-
mator, while the constraint b · x̂t+1 ≥ ε means that next price
will revert to the L1-median.

4.3 Algorithm
To obtain the L1-median of historical prices, we apply the
Modified Weiszfeld Algorithm [Vardi and Zhang, 2000],

which converges monotonically to the L1-median. The so-
lution of L1-median described in Eq. (2) is illustrated below.

Proposition 1 The solution of L1-median optimization prob-
lem 1 is calculated through iteration, and the iteration pro-
cess is described as:

μ → T (μ) =

(
1− η(μ)

γ(μ)

)+

T̃ (μ)+min

(
1,

η(μ)

γ(μ)

)
μ,

where

η(μ) =

{
1 if μ = pt−i, i = 0, . . . , k − 1
0 otherwise

,

γ(μ) = ‖R̃(μ)‖, R̃(μ) =
∑

pt−i �=μ

pt−i − μ

‖pt−i − μ‖ ,

T̃ (μ) =

⎧⎨
⎩

∑
pt−i �=μ

1

‖pt−i − μ‖

⎫⎬
⎭
−1 ∑

pt−i �=μ

pt−i

‖pt−i − μ‖ .

In general, we often practically set the convergence cri-
terion during the iteration. Here, once the constraint of
‖μι−1 − μι‖1 ≤ τ‖μι‖1 is satisfied, we terminate the iter-
ation. Note that τ represents a toleration level.

We now obtain the final portfolio selection formula by
solving the Optimization problem 2, which is convex and thus
straightforward to solve via the Lagrange multiplier method
[Boyd and Vandenberghe, 2004].

Proposition 2 The solution of the Optimization problem 2
without considering the non-negativity constraint is

bt+1 = bt − αt+1(x̂t+1 − xt+1 · 1),
where xt+1 = 1

d (1·x̂t+1) denotes the average predicted price
relative and αt+1 is the Lagrangian multiplier calculated as,

αt+1 = min

{
0,

x̂t+1bt − ε

‖x̂t+1 − xt+1 · 1‖2
}
.

Note that it is possible that the resulting portfolio in Propo-
sition 2 goes out of the simplex domain since we do not con-
sider the non-negativity constraint. Thus, to ensure that the
portfolio is non-negative, we finally project the above portfo-
lio to the simplex domain [Duchi et al., 2008].

To this end, we can design the proposed algorithms based
on the above Propositions. The estimated process of price
relative x̂t+1, mainly based on Proposition 1, is illustrated in
Algorithm 1. The proposed RMR procedure, which is de-
signed up on Proposition 2, is shown in Algorithm 2. Finally,
Algorithm 3 presents the on-line portfolio selection following
the problem setting in Section 2.

4.4 Analysis
It is widely known that computational time is important to
certain trading environments, such as high frequency trad-
ing [Aldridge, 2010], which occurs in fractions of a second.
RMR’s time complexity is linear with respect to d and n,
where n is much larger than d. In the RMR implementa-
tion, the max number of loop (Line 6 in Algorithm 1) can be
implemented in O(m). Thus, Algorithm 1 take O(m) time
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Algorithm 1 L1 median (pt,pt−1, . . . ,pt−w+1,m, τ )

1: Input: data pt,pt−1, . . . ,pt−w+1; iteration maximum
m; toleration level τ

2: Output: estimated x̂t+1

3: Procedure:
4: Initialize μ1 = median(pt,pt−1, . . . ,pt−w+1).
5: for i = 2 to m do
6: μi = T (μi−1)
7: if ‖μi−1 − μi‖1 ≤ τ‖μi‖1 then
8: break
9: end if

10: end for
11: p̂t+1 = μi
12: x̂t+1 = p̂t+1/pt

Algorithm 2 RMR(ε, x̂t+1,bt)

1: Input: reversion threshold ε > 1; predicted next price
relative vector x̂t+1; current portfolio bt;

2: Output: next portfolio bt+1

3: Procedure:
4: Calculate the following variable:

αt+1 = min

{
0,

x̂t+1bt − ε

‖x̂t+1 − xt+1 · 1‖2
}

5: Update the portfolio:

bt+1 = bt − αt+1(x̂t+1 − xt+1 · 1)
6: Normalize bt+1: bt+1 = argminb∈Δd

‖b− bt+1‖2

per period. Moreover, Algorithm 2 takes O(d) per period. In
total, the whole time complexity is O(dn) + O(mn). Table
2 compares the time complexity of RMR with that of exist-
ing strategies. Clearly, the proposed RMR algorithm takes no
more time than any others.

Methods Time Complexity Methods Time Complexity

UP O
(
nd

)
/O

(
d7n8

)
ONS O

(
d3n

)

EG O (dn) Anticor O
(
N3d2n

)
PAMR/CWMR O (dn) BK/BNN O

(
N2dn2

)
/OLMAR /CORN +O

(
Ndn2

)
RMR O (dn) + O (mn)

Table 2: Summary of time complexity analysis. d denotes
the number of stocks; n is the number of trading periods; N
denotes the number of experts; m denotes the number of loop
in Algorithms 1.

5 Experiments
5.1 Datasets
We test the portfolio strategies on four public datasets from
real markets 3, which are summarized in Table 3.

Pioneered by Cover [1991], NYSE(O) is one benchmark
dataset, which consists of 36 stocks from the New York Stock

3All datasets and their compositions can be downloaded from
http://www.cais.ntu.edu.sg/ chhoi/olps/datasets.html.

Algorithm 3 Portfolio selection with RMR

1: Input: reversion threshold ε > 1; iteration maximum m;
window size w ≥ 2; toleration level τ ; market sequence
xn
1

2: Output: Sn: Cumulative wealth after nth periods
3: Procedure:
4: Initialization: b1 = 1

d1, S0 = 1,p0 = 1
5: for i = 1 to n do
6: pi = xi · pi−1

7: end for
8: for t = 1, 2, . . . , n do
9: Receive stock price: xt

10: Update cumulative return: St = St−1 × (bt · xt)
11: Predict next price relative vector:

x̂t+1 = L1median(pt,pt−1, . . . ,pt−w+1,m, τ)

12: Update the portfolio:

bt+1 = RMR(ε, x̂t+1,bt)

13: end for

Exchange. Extended from NYSE(O), NYSE(N) [Li et al.,
2013] contains 23 stocks. The dataset DJA is collected by
Borodin et al. [2004] and consists of Dow Jones 30 composite
stocks. The final dataset MSCI is a collection of 25 global
equity indices that are the constituents of MSCI World Index.

DATA SET REGION TIME FRAME #DAYS #ASSETS

NYSE(O) US 3/7/1962-31/12/1984 5651 36
NYSE(N) US 1/1/1985-30/6/2010 6431 23
DJA US 1/1/2001-14/1/2003 507 30
MSCI GLOBAL 1/4/2006-31/3/2010 1043 24

Table 3: Summary of 4 real datasets.

RMR has two possible parameters, i.e., w and ε, which can
be tuned to obtain optimal results. To consistently compare
different methods, we empirically set the parameter w=5, ε=5
and m = 200 on all settings. Our experiments on parameter
sensitivity clearly show that our empirical choice is not the
best in hindsight.

5.2 Experimental Results
Cumulative wealth
Table 4 summarizes the cumulative wealth achieved by vari-
ous methods. From the figure, we can see that RMR outper-
form the state of the art on NYSE(O), NYSE(N) and DJA. On
MSCI, RMR beats most existing algorithms, including OL-
MAR. Besides, the maximum cumulative wealth is even bet-
ter than RMR, showing the potential of the proposed method.
Finally, Table 5 shows some statistics [Grinold and Kahn,
1999] of RMR. From the results, we can observe small p-
values, which means that RMR’s excellent performance is not
due to luck but owed to the strategy principle.

Parameter sensitivity
Firstly, we examine the effect of sensitivity parameter ε on cu-
mulative wealth, in Figure 1. The cumulative wealth sharply
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Methods NYSE(O) NYSE(N) DJA MSCI

Market 14.50 18.06 0.76 0.91
Best-stock 54.14 83.51 1.19 1.50
BCRP 250.60 120.32 1.24 1.51

UP 26.68 31.49 0.81 0.92
EG 27.09 31.00 0.81 0.93
ONS 109.91 21.59 1.53 0.86

Bk 1.08E+09 4.64E+03 0.68 2.64

BNN 3.35E+11 6.80E+04 0.88 13.47
CORN 1.48E+13 5.37E+05 0.84 26.19
Anticor 2.41E+08 6.21E+06 2.29 3.22
PAMR 5.14E+15 1.25E+06 0.68 15.23
CWMR 6.49E+15 1.41E+06 0.68 17.28
OLMAR 4.04E+16 2.24E+08 2.05 16.33

RMR 1.64E + 17 3.25E + 08 2.67 16.76
RMR(max) 2.81E+17 4.73E+08 3.47 19.07

Table 4: Cumulative wealth achieved by various strategies on the
four datasets. The best results (excluding the best experts at the bot-
tom, which is in hindsight) in each dataset are highlighted in bold.

Stat. NYSE(O) NYSE(N) DJA MSCI

Size 5651 6431 507 1043
MER(RMR) 0.0077 0.0036 0.0024 0.0030
MER(Market) 0.0005 0.0005 -0.0004 0.0000
α 0.0071 0.0031 0.0030 0.0030
β 1.2718 1.1628 1.2427 1.1885

t-statistics 15.7325 7.4222 2.5217 5.8380
p-value 0.0000 0.0000 0.0060 0.0000

Table 5: Statistical Test of RMR.

grows as ε increases and then flattens when ε crosses a thresh-
old. Secondly, we examine the effect of window size w, in
Figure 2. The cumulative wealth decreases with increasing w.
Obviously, RMR’s performance with a large number of ε and
w is better than the two benchmarks. All above observations
clearly show that RMR is robust w.r.t. different parameters
and it is convenient to choose satisfying parameters.

Transaction costs
In practice, transaction cost is an important and unavoidable
issue that should be addressed. We thus test the effect of
proportional transaction cost when the transaction cost rate
γ varies from 0 to 1%. We also plot the results achieved by
two benchmarkes of BCRP and Market and the cumulative
wealth achieved by PAMR[Li et al., 2012a], OLMAR[Li and
Hoi, 2012b]. From Figure 3, we can observe that RMR can
withstand reasonable transaction cost rates, and can beat the
two benchmarks and PAMR, OLMAR.

6 Conclusions
In this paper, we propose a novel multiple period on-line
portfolio selection strategy named “robust median reversion”
(RMR), which exploits the reversion phenomenon of stock
prices by robust L1-median estimator and online learning
technologies. The proposed approach can solve the problems
of the state of the art caused by the noisy data and outliers
as well as the single-period mean reversion. Extensive ex-
periments on real markets show that the proposed RMR can
achieve satisfying performance. In future, we will study other
robust estimation methods and adaptive parameter methods
and theoretically analyze the median reversion.
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Figure 1: Parameter sensitivity of RMR w.r.t. ε with fixed w (w=5)
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