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Abstract
We propose a collaborative filtering (CF) recom-
mendation framework which is based on viewing
user feedback on products as ordinal, rather than
the more common numerical view. Such an ordi-
nal view frequently provides a more natural reflec-
tion of the user intention when providing qualita-
tive ratings, allowing users to have different inter-
nal scoring scales. Moreover, we can address sce-
narios where assigning numerical scores to differ-
ent types of user feedback would not be easy. The
framework can wrap most collaborative filtering al-
gorithms, enabling algorithms previously designed
for numerical values to handle ordinal values. We
demonstrate our framework by wrapping a leading
matrix factorization CF method. A cornerstone of
our method is its ability to predict a full probability
distribution of the expected item ratings, rather than
only a single score for an item. One of the advan-
tages this brings is a novel approach to estimating
the confidence level in each individual prediction.
Compared to previous approaches to confidence es-
timation, ours is more principled and empirically
superior in its accuracy. We demonstrate the effi-
cacy of the approach on two of the largest publicly
available datasets: the Netflix data and the Yahoo!
Music data.

1 Introduction
Collaborative filtering (CF) is a leading approach to building
recommender systems which has gained much popularity re-
cently [Ricci et. al., 2010]. CF is based on analyzing past
interactions between users and items, and hence can be read-
ily applied in a variety of domains, without requiring external
information about the traits of the recommended products.

Most CF systems view user feedback as numerical scores
or as binary scores. Such a view limits the applicability of
these systems. While in common star-rating systems (e.g.,
when user scores are between 1 star and 5 stars) viewing the

∗The paper on which this extended abstract is based was the re-
cipient of the best paper award of the 2011 ACM Conference on
Recommendation Systems (RecSys ’11) [Koren and Sill, 2011].

qualitative user feedback as numerical may be intuitive, this
is not always the case. In several common scenarios, there is
no direct link between the user feedback and numerical val-
ues, even though the feedback is richer than a binary “like-
vs-dislike” indication. For example, in some e-commerce
systems, user preferences for products are inferred by track-
ing the various actions users perform. Browsing a product,
adding it to a wish list, adding it to a shopping cart, bidding
on it or actually buying the product are actions which each in-
dicate a successively larger degree of interest in the product.
An ordinal scale fits this case better than a numerical coding
of the actions. Furthermore, numerical representation implic-
itly assumes the same rating scale across all users, whereas an
ordinal representation allows different users to have different
gaps between rating values.

In this work we suggest a novel CF framework, which we
dub OrdRec, motivated by the above discussion and inspired
by the ordinal logistic regression model originally described
by McCullagh [McCullagh,1980]. The model views user
feedback as ordinal. Hence it only assumes an order among
the observed feedback values, but does not require mapping
these values into a numerical scale. The framework can wrap
existing CF methods, and upgrade them into being able to
tackle ordinal feedback.

An important property of OrdRec is an ability to output a
full probability distribution of the scores rather than a single
score, which provides richer expressive power. In particular,
confidence levels can be associated with the given prediction.
Confidence estimation can have a significant impact on the
end user experience. The approach to confidence estimation
enabled by OrdRec is both more principled and empirically
more accurate than previous approaches.

Our methods were extensively evaluated on two large scale
datasets: the Netflix Prize dataset [Bennet and Lanning,
2007], which has became a standard benchmark, and the Ya-
hoo! Music dataset.

This work is presented in more detail in [Koren and Sill,
2011].

2 Basic notation
We are given ratings for m users and n items, with u, v in-
dexing users and i, j indexing items. In addition, we index
rating values by r. A rating rui indicates the rating which
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user u gave item i, where high values mean stronger pref-
erence. The ratings themselves are ordinal and need not be
numbers. Thus, we assume a total order between the possible
rating values. We denote the number of distinct ratings by
S. For notational simplicity, we will refer to the ratings as
1,2,. . . ,S. In practice, however, they could actually be letter
grades or any other ordered set of preference levels. Usu-
ally the data is sparse and the vast majority of ratings are un-
known. We distinguish predicted ratings from known ones,
by using the notation r̂ui for the predicted value of rui. The
set of items rated by user u (in the train set) is denoted by
R(u). The overall training set, containing all rated user-item
pairs (u, i, r = rui) is denoted by R. The test set is denoted
by R̂.

3 Background
Collaborative Filtering (CF) relies only on past user behav-
ior, e.g., their previous transactions or product ratings. It
analyzes relationships between users and interdependencies
among products, in order to identify new user-item associa-
tions. Latent factor CF models explain ratings by character-
izing both items and users in terms of factors inferred from
the pattern of ratings. One of the most successful realiza-
tions of latent factor models is based on matrix factorization,
e.g., [Koren et. al., 2009]. In our experiments, we employ
a variant of matrix factorization, known as SVD++. We use
SVD++ in two ways: in its standard form as a baseline against
which to compare OrdRec and also as the core of the OrdRec
model itself. SVD++ has been shown to yield superior ac-
curacy by also accounting for the more implicit information
represented by the set of items which were rated (regardless
of their rating value) [Koren, 2008]. The model predicts the
rating by user u of item i as follows:

r̂ui = µ+ bi + bu + qTi

pu + |R(u)|− 1
2

∑
j∈R(u)

xj

 (1)

Here, both users and items are mapped into a joint latent
factor space of dimensionality f , such that ratings are mod-
eled as inner products in that space. Accordingly, each user
u is associated with a vector pu ∈ Rf and each item i is as-
sociated with a vector qi ∈ Rf . A second set of item factors
relates an item i to a factor vector xi ∈ Rf . These secondary
item factors are used to characterize users based on the set
of items that they rated. The scalar µ is a constant denoting
the overall average rating. The scalar parameters bu and bi
are user and item biases. Model parameters are learned by
stochastic gradient descent on the regularized squared error
function; see [Koren, 2008] for full details.

A detailed survey of related work on ordinal modeling and
recommendation systems is given in [Koren and Sill, 2011].

4 The OrdRec Model
The OrdRec framework works together with an internal
model for producing user-item scores, which will be con-
verted into a probability distribution over the ordinal set of
ratings. Henceforth, we denote such an internal scoring

mechanism by yui. In our case, we employ the SVD++ al-
gorithm (1), so that

yui = bi + bu + qTi

pu + |R(u)|− 1
2

∑
j∈R(u)

xj

 (2)

In general, any other rating predictor could serve for defin-
ing yui, including those whose parameters are fixed and need
not be learned.

We introduce S − 1 ordered thresholds, associated with
each of the rating values besides the last one

t1 6 t2 6 · · · 6 tS−1 (3)

Only the first threshold t1 is actually a parameter in our
model. The other thresholds are represented by encoding
their non-negative gaps, thereby enforcing the order of the
thresholds. To this end, we introduce another set of parame-
ters β1, . . . , βS−2 such that

tr+1 = tr + exp(βr) r = 1, . . . ,S − 2 (4)

Let us denote by Θ all model parameters, that is the biases
and factors participating in (2) and t1, β1, . . . , βS−2.

The probability of observing rating rui = r is

P (rui 6 r|Θ) = 1/ (1 + exp(yui − tur )) (5)
Learning proceeds by stochastic gradient ascent on the log

likelihood of observing the training set with regularization.
The reader is referred to [Koren and Sill, 2011] for a detailed
derivation.

5 Empirical study
5.1 Datasets description
We evaluated OrdRec on some of the largest publicly avail-
able user rating datasets. First is the Netflix dataset [Bennett
and Lanning, 2007], which was subject to extensive research
as part of Netflix Prize contest. The other dataset is denoted
by Y!Music-II and is based on user ratings on Yahoo! Mu-
sic. Ratings were given to musical entities of four different
types: tracks, albums, artists, and genres. Y!Music-II was
used in the KDD-Cup’11 contest. Results on a third dataset,
Y!Music-I, are omitted here but are presented in [Koren and
Sill, 2011].

Both datasets are split into train, validation and test sets.
The Y!Music-II dataset has a much larger number of items
than the Netflix dataset (624,961 vs. 17,770), reflecting the
fact that there are many more musical tracks than movies. In
terms of number of distinct ratings, the Netflix dataset has five
such values (1-star to 5-stars), while the Y!Music-II dataset
has 11 distinct values (0,1,. . . ,10). All results are reported on
the test sets, which were excluded from the training process.
The validation set was used for setting the parameters of the
evaluated algorithms.

5.2 Evaluation metrics
We use two evaluation metrics for comparing the perfor-
mance of different algorithms. First, we use the root mean
squared error (RMSE), which is the standard metric on the
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Netflix dataset, and is often favored thanks to its elegance
and mathematical tractability

RMSE(R̂) =
1

|R̂|

∑
(u,i,r)∈R̂

(r̂ui − r)2 (6)

Despite its merits, RMSE can be quite detached from the
ultimate goal of evaluating item ranking experience, since a
perfectly ranked solution can score arbitrarily badly on an
RMSE scale by having scores on the wrong scale, e.g., out
of bounds, or just very close to each other.

The RMSE metric has another issue, particularly important
in our context: it assumes numerical rating values. Thus, it
shares all the discussed disadvantages of such an assumption.
First, it cannot express rating scales which vary among differ-
ent users. Second, it cannot be applied in cases where ratings
are ordinal. Thus, besides using RMSE we also employ a
ranking-oriented metric which is free of the aforementioned
issues.

Given a test set R̂, we define the number of concordant
pairs for user u by counting those ranked correctly by rating
predictor r̂u·

nuc = |{(i, j) | r̂ui > r̂uj and rui > ruj}| (7)

We count the discordant pairs nud for user u in a similar fash-
ion.

Summing over all users we define nc =
∑

u n
u
c and nd =∑

u n
u
d . The quality metric we use measures the proportion

of well ranked items pairs, denoted by FCP (for Fraction of
Concordant Pairs)

FCP =
nc

nc + nd
(8)

a measure that generalizes the known AUC metric into non-
binary ordered outcomes.

5.3 Results
We compared OrdRec with the followings methods: (1)
SVD++ [Koren, 2008], which represents a leading RMSE-
oriented method; (2) RBM [Salakhutdinov et. al. 2007],
which is aimed at likelihood maximization and can work with
categorical scores.

Results on the datasets are reported in Tables 1–2.

RMSE
Method f = 50 f = 100 f = 200
SVD++ .8952 .8924 .8911
RBM .9147 .9063 .9023
OrdRec .8894 .8878 .8872

FCP
Method f = 50 f = 100 f = 200
SVD++ 74.26% 74.46% 74.54%
RBM 72.98% 73.57% 73.86%
OrdRec 74.36% 74.50% 74.54%

Table 1: Performance on the Netflix test set of the different
models under different dimensionalities. Results are mea-
sured by RMSE (lower is better) and by FCP (higher is bet-
ter).

Results on the Netflix Prize place OrdRec as the leader
both in terms of RMSE and in terms of FCP (where it is
in a virtual tie with SVD++). It is notable that OrdRec out-
performs SVD++ in RMSE-terms, despite the fact that only
SVD++ is aiming at optimizing the RMSE measure. The
strong performance of OrdRec may be attributed to its bet-
ter ability to model ordinal semantics of user ratings. For
all algorithms, performance improves as dimensionality is in-
creasing.

RMSE
Method f = 50 f = 100 f = 200
SVD++ 2.4369 2.4347 2.4334
OrdRec 2.4786 2.4708 2.4660

FCP
Method f = 50 f = 100 f = 200
SVD++ 72.59% 72.42% 72.13%
OrdRec 73.63% 73.83% 73.98%

Table 2: Performance on the Y!Music-II test set of the dif-
ferent models under different dimensionalities. Results are
measured by RMSE (lower is better) and by FCP (higher is
better).

We observe similar results on the Y!Music-II dataset, al-
though SVD++ consistently yields the best results RMSE-
wise. While SVD++ did not have the best RMSE on the Net-
flix dataset, it is not surprising that it achieves the best RMSE
on at least one of the datasets, given the fact that SVD++ is
the only method directly trained to minimize RMSE. The Or-
dRec model consistently outperforms the rest in terms of FCP,
indicating that it is capable of better ranking items for a user.
This may reflect the benefit of better modeling of the seman-
tics of user feedback. The RBM model had very slow running
times on the Y!Music-II data and therefore those experiments
were not completed.

Note that only SVD++ directly aims at minimizing RMSE,
so measuring accuracy by the same RMSE metric would not
be a neutral judging criterion here. Therefore we tend to
view performance under the FCP metric (which none of the
evaluated methods directly aims at) as more representative
of differences in user experience. This places OrdRec as the
top performer among evaluated algorithms across all datasets.
However, we emphasize that the main motivations behind Or-
dRec are the handling of ordinal data and the generation of
a probability distribution over ratings, rather than improved
predictive performance.

6 Estimation of recommendation confidence
A recommender system has varying levels of confidence (or,
certainty) in the different recommendations it provides. Ac-
cordingly, [McNee et. al. 2003] suggested adding a confi-
dence level indicator to the GUI of a recommendation system,
as a way of improving user trust in the system and altering
user behavior. Even when not directly exposed to end users,
confidence measurements can impact the internal working of
the system. For example, when picking among several items
with the same expected rating, the system can favor the item
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for which the confidence in the prediction is greatest. Addi-
tionally, the system can combine different recommendation
techniques based on the confidence each has when predicting
a particular user-item pair.

Adomavicius et al. [Adomavicius et. al. 2007] propose
confidence measures which are based on item or user rating
variance, while treating the recommendation algorithm as a
“black box”. This is based on the observation that recommen-
dations tend to be more accurate for users and items exhibit-
ing lower rating variance. Similarly, recommendation algo-
rithms are expected to be more accurate for items and users
associated with many ratings. However, such static metrics
are not fully satisfying. User-dependent metrics fail to be ap-
plicable to ranking items for the same user, a high-priority
goal of any recommendation system. Item-dependent metrics
are not personalized, and will generate low confidence assess-
ments for the same items (usually the controversial and less
popular) equally for all users. Furthermore, assessing confi-
dence without regards to the inner workings of the prediction
algorithm is likely to overlook some valuable information.

Methods like OrdRec, which predict a full distribution of
ratings, allow a more principled approach to confidence es-
timation. For each user-item pair, we associate confidence
level with various measures of the concentration of the rating
probabilities.

In order to assess whether the predicted rating distribution
of the OrdRec technique is helpful in estimating the level of
confidence in the predictions, we formulate confidence esti-
mation as a binary classification problem. We wish to predict
whether the model’s predicted rating is within one rating level
of the true rating. For these purposes, the model’s predicted
rating is taken to be the expected value of the predicted rat-
ing distribution. Using logistic regression, we trained “confi-
dence classifers” to predict if the model’s error is larger than
1 rating level.

We ran experiments on both the Netflix dataset and the
Y!Music-I dataset, in both cases using the Test sets, which the
OrdRec model had not been trained on. This out-of-sample
data formed the full dataset on which the confidence classi-
fiers were trained and tested. The classifiers were trained on
a randomly-chosen two-thirds of the data and tested on the
remaining one-third.

To measure how much value the OrdRec predicted rating
distribution adds to confidence estimation, we first obtained
results when using only traditional indicators of confidence
used in previous work, such as user and item rating standard
deviation or number of user and item ratings. Classifiers were
trained using each of a variety of different features, both in-
dividually and in conjunction with each other.

The user and item support (number of user and item rat-
ings) and the standard deviation of the user and item ratings
will be referred to collectively as the traditional features. A
classifier using all 4 of these traditional features was trained
and tested in order to see the best accuracy that could be
achieved without any of the novel features derived from Or-
dRec.

To assess the value of the OrdRec predicted rating distri-
bution, four novel features were used. OrdRec stdev is sim-
ply the standard deviation of the predicted rating distribu-

Feature(s) Test Log-Likelihood AUC
constant classifier -0.536 0.500
user support -0.534 0.556
stdev user ratings -0.521 0.619
item support -0.536 0.515
stdev item ratings -0.530 0.576
All traditional features -0.514 0.645
OrdRec stdev -0.490 0.698
OrdRec max rating prob -0.502 0.674
OrdRec entropy -0.494 0.692
OrdRec Gini impurity -0.498 0.691
All features -0.485 0.708

Table 3: Confidence estimation results on the Netflix dataset
(higher values are better)

tion. OrdRec max rating prob is the largest probability for
any single rating in the predicted distribution. OrdRec en-
tropy is the well-known entropy of a probability distribution,
−
∑

s Pslog(Ps). Gini impurity is defined as 1−
∑

s PsPs.
To determine the best possible performance overall, a

classifier with all features—both traditional and OrdRec-
derived—was also trained.

In Table 3 we report the performance of the confidence
classifiers based on both AUC and the mean log-likelihood.
The Area Under the ROC Curve (AUC) measures the prob-
ability that a positive example is scored higher than a nega-
tive example. Hence, in our case it measures how well each
predictor orders the points from most confident to least con-
fident. Higher AUC values are desired.

The results clearly indicate that the information derived
from the OrdRec predicted rating distribution is more valu-
able than the traditional features. On the Netflix dataset, the
test log-likelihood using all traditional features combined is
-0.514 and the AUC is 0.645, whereas adding the OrdRec-
derived features boosts the results to Log-Likelihood=-0.485
and AUC=0.708. In fact, each single OrdRec-derived fea-
ture outperforms the combination of the 4 traditional features,
with best results for OrdRec stdev and then OrdRec entropy.

Similarly on the Y!Music-I dataset, the best that can be
achieved with traditional features is Log-Likelihood=-0.632
and AUC=0.723, whereas when the OrdRec-derived features
are also used, the results improve to Log-Likelihood=-0.463
and AUC=0.862. More detailed Y!Music-I results are avail-
able in [Koren and Sill, 2011].

7 Conclusions
The ratings users supply to a recommender system can come
in many different forms, including thumbs-up/down, like-
votes, stars, numerical scores, or A-to-F grades. In addi-
tion, users generate more implicit feedback indicating differ-
ent levels of interest in a product, depending on the actions
they take. An example of such a range of possible actions,
with a roughly increasing order of significance is: browsing,
tagging, saving, adding to cart, bidding and actually buying.

Most recommender systems treat user input as numeric or
binary, which is usually convenient to model and compute
with. However, the numeric view might be too strict and
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would not naturally apply at all cases.
We advocate taking user feedback as ordinal, a view uni-

fying all feedback examples given above. The ordinal view
relaxes the numerical view to the proper extent, allowing it
to deal with all usual kinds of user feedback, without assum-
ing an over-relaxed approach representing user feedback as
categorical, which would discard the internal structure of the
feedback. Another merit of the ordinal view, which applies
even at cases where feedback can be naturally mapped to
numbers, is that it allows expressing the fact that different
users have distinct internal scales for their qualitative ratings.

This motivates the OrdRec model, which treats user rat-
ings as ordinal. Our empirical study shows that OrdRec per-
forms favorably on datasets where traditional methods taking
numerical ratings can be applied. OrdRec employs a point-
wise approach to ordinal modeling, letting its training time
scale linearly with dataset size. Indeed, we demonstrated it
with some of the largest publicly available datasets contain-
ing 100s of millions of ratings.
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