
Capabilities in Heterogeneous Multi Robot Systems

Jennifer Buehler
University of New South Wales, Sydney, Australia

jenniferb@cse.unsw.edu.au

1 Introduction
Groups of robots are often able to accomplish missions that
no single robot can achieve by themselves. Robustness and
flexibility are increased by the diversity of the robots, each
contributing different capabilities.

In highly unpredictable domains such as search and res-
cue, accurate predictions of the outcomes of a robot’s actions
are virtually impossible. Approximate models and algorithms
are required which help to estimate the outcome with high-
est possible confidence. Although many aspects of hetero-
geneous multi-robot systems have been widely studied, few
researchers explicitly formalize robot capabilities. A model
of capabilities can prove very useful for describing and rea-
soning about robots’ diversity, task suitability and execution.
This work presents a framework that formalizes a robot’s
capabilities, abstracting from underlying robot architectures
and providing a means to estimate a robot’s performance in a
task.

2 Related work
One key element in multi-robot systems is to assign tasks to
robots such that a meaningful division of work is achieved.
For estimating “expected quality of task execution”, utility
is a widely used concept in multi-robot coordination. The
goal of task allocation is to find robot-task assignments such
that the overall utility is maximized [Gerkey and Matarić,
2004]. Many approaches to compute such a utility measure
have been proposed, but only a few explicitly consider dif-
ferent notions of robot capability. Most of this work relates
capabilities to some kind of resource, e.g. sensors/actuators,
processing capacities [He and Ioerger, 2003], [Chen and Sun,
2010], and/or software modules [Parker and Tang, 2006]. A
capability can also be a simple subtask, for which each robot
learns their suitability [Fua and Ge, 2005]. Such concepts are
ultimately used in different ways to determine a robot’s utility
for a task. Other research also formalizes capabilities relating
to robot components to infer what a robot can do [Kunze et
al., 2011] or how to decompose a task into simple ’skills’
[Huckaby and Christensen, 2012].

Previous research has taken into account a robot’s intrin-
sic capabilities1 for estimating such utility values [Fua and

1Intrinsic capabilities express what a robot can generally do (e.g.
lift a rock); extrinsic factors specify task details (i.e., weight of rock).

Ge, 2005]. Simple extrinsic factors have also been consid-
ered, such as metric distance to the task or resource require-
ments [Chen and Sun, 2010]. However, such considerations
were mainly tailored to the specific experiments. To the best
of our knowledge, no systematic approach to incorporate task
details in a general way for all possible tasks has been pro-
posed to date. We propose a framework which can generate
task solutions using robot capabilities and helps estimating
task execution qualities considering task-specific details.

3 Our approach
Diversity does not only emerge from differences in hardware,
but also from distinct robot software architectures and algo-
rithms. Therefore, a robot’s physical description as for ex-
ample specified in URDF2 is not enough to infer a robot’s
capabilities. We define capability in a way abstracting from
hard- and software, such that a robot can learn constraints and
quality relating to its capabilities.

A capability is a simple functional element which can be
part of many different tasks. Our definition is supported by
Zuech and Miller [Zuech and Miller, 1989] p. 163:

“There are a limited number of task types and task de-
compositions [...]. There are only a few different types
of reach, grasp, lift, transport, position, insert, twist,
push, pull, release, etc. A list of parameters with each
macro can specify where to reach, when to grasp, how far
to twist, how hard to push, etc.”

With this definition, a capability abstracts from underlying
architectures at a medium level of granularity. For example,
it is not important how a robot grasps an object (e.g., which
finger movements), but only what it can probably grasp. We
further add computational capabilities such as Localisation,
Path Planning and Object Recognition.

We define OWL3 ontologies grouping different devices
and algorithms according to their function and purpose. We
link capabilities to these functional elements in another OWL
ontology. Additionally, capabilities have assigned pre- and
postconditions and defined in- and output datatypes (e.g. im-
ages, maps, object id’s, poses...). For example, a postcondi-
tion of REACH is that the manipulator is in-pose, which is

2see http://www.ros.org/wiki/urdf
3see http://www.w3.org/TR/owl2-overview/

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

3207



also the precondition for GRASP. Postcondition of GRASP
is that the object is held, which also is the precondition
for LIFT, while its postcondition is that the object is not
grounded. Expressing this definition of capabilities in the
common planning language PDDL4 we can generate task
solutions using a general (classical) planning approach. In
the above example, picking up an object is specified by the
goal that the object is not grounded. One solution is to
connect REACH, GRASP and LIFT. Connecting capabilities in
such a way also describes dependencies among them. For ex-
ample, for acquiring the pose of an object, the robot needs to
see it using VISION (other dependencies are implied but won’t
be detailed here). In the above example, VISION and other ca-
pabilities will be required to generate the correct dataflow, i.e.
provide the object’s pose to the REACH capability. One ad-
vantage of such capability dependencies is that if any of the
required capabilities is not functioning or reduced (e.g., if the
image quality is reduced under current conditions), it can be
inferred that the quality of depending capabilities (i.e. grasp)
will be reduced as well.

We define all possible conditions and datatypes in re-
spective ontologies and generate solutions using a classical
STRIPS-like planner. Such a generated task solution how-
ever only describes a possible solution and does not yet con-
sider task-specific (extrinsic) details. This is done in an addi-
tional step which evaluates a robot’s performance for a spe-
cific task solution. As mentioned before, we consider task-
specific details in an approximate way in order to compare
different robot’s likely performance. For this, we introduce
capability parameters: the area that a robot can REACH can
be represented by a spherical shape around the manipulator;
terrain on which a robot can MOVE may be described by in-
dices of “terrain roughness” with assigned average speeds;
sizes it can GRASP may be approximated with any bounding
volume; LIFTING will be assigned weight ranges a robot can
lift, and so on. While such parameters by no means allow for
accurate predictions, they still provide a much better estimate
than simply assuming the robot has or does not have the ca-
pability. Such approximate information can also be useful to
improve heuristics (e.g. in planners or task allocation algo-
rithms) and to share knowledge among team-mates. Another
advantage of this representation is that it also accounts for
cases in which only approximate information is available (e.g.
only approximate object shape known anyway). Verifying
that a capability meets the requirements of the task involves
matching a parameter specification (e.g. the object size a
robot can grasp) to a task-specific instantiation (i.e., the ac-
tual size of the object. The matching is done by checking if
one shape fits into the other). Closer examination revealed
that many capabilities can share the same type of parameter
spaces (e.g. shape-within-shape, point-in-shape).

Finally, after a robot was found to meet the task-specific
details, an overall utility for the task can be obtained by sum-
ming up the qualities the robot has learned for the single capa-
bilities involved in the task. We use execution time estimates
and success probabilities as a measure of quality.

Our work also includes a learning framework for a

4Planning Domain Definition Language

robot’s capability parameters, e.g. for learning possible ar-
eas to reach with the manipulator. The learing is done using
a robot simulator, and finally verified on on the real robots.

Furthermore, we are looking into inferring possible capa-
bilities from a robot’s URDF description. If required hard-
ware dependencies are not met, some capabilities can be ruled
out right away. Other directly or indirectly depending capa-
bilities will also be affected by this. This leaves a set of candi-
date capabilities which can be ruled out or further configured
by the user. This eases the integration of new architectures.

We keep a database of learned capability parameter and
quality values for all robots. Hence the learning for a new
robot can be initialized by values which other robots with
similar or equal hard- and software have learned before.

4 Evaluation and Contribution
We demonstrate task solution generation with a classical
planning approach. In a next step we will compare predicted
and actual task execution in simulation and on real robots. We
also aim to show how potential capabilities can be inferred
from a URDF description and how other robot’s experience
can be used to initialize learning for others.

Our proposed framework makes a contribution with the
task solution generation using capabilities independent of un-
derlying architectures and domain. Task execution estimates
considering task-specific details are included. The framework
also considers dependencies to hard- and software configura-
tions and includes a learning algorithm for robot capabilities.

References
[Chen and Sun, 2010] Jian Chen and Dong Sun. An online coali-

tion based approach to solving resource constrained multirobot
task allocation problem. In 2010 IEEE International Conference
on Robotics and Biomimetics, 2010.

[Fua and Ge, 2005] Cheng-Heng Fua and S.S. Ge. COBOS: coop-
erative backoff adaptive scheme for multirobot task allocation.
IEEE Transactions on Robotics, 21(6), 2005.

[Gerkey and Matarić, 2004] Brian P. Gerkey and Maja J Matarić.
A formal analysis and taxonomy of task allocation in multi-robot
systems. The Intl. J. of Robotics Research, 23(9), 2004.

[He and Ioerger, 2003] Linli He and Thomas R Ioerger. A quantita-
tive model of capabilities in Multi-Agent systems. Proceedings
of IC-AI’2003, 2003.

[Huckaby and Christensen, 2012] J. Huckaby and H. Christensen.
A taxonomic framework for task modeling and knowledge trans-
fer in manufacturing robotics. In Workshops at 26th AAAI Con-
ference on Artificial Intelligence, July 2012.

[Kunze et al., 2011] L. Kunze, T. Roehm, and M. Beetz. Towards
semantic robot description languages. In 2011 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE,
May 2011.

[Parker and Tang, 2006] L.E. Parker and Fang Tang. Building mul-
tirobot coalitions through automated task solution synthesis. Pro-
ceedings of the IEEE, 94, 2006.

[Zuech and Miller, 1989] Nello Zuech and Richard K. Miller. Ma-
chine Vision. Springer, 1989.

3208




