
Learning Behaviors in Agents Systems with
Interactive Dynamic Influence Diagrams

Ross Conroy
Teesside University
Middlesbrough, UK

ross.conroy@tees.ac.uk

Yifeng Zeng
Teesside University
Middlesbrough, UK
y.zeng@tees.ac.uk

Marc Cavazza
Teesside University
Middlesbrough, UK

m.o.cavazza@tees.ac.uk

Yingke Chen
University of Georgia

Athens, GA, USA
ykchen@uga.edu

Abstract
Interactive dynamic influence diagrams (I-DIDs)
are a well recognized decision model that explic-
itly considers how multiagent interaction affects in-
dividual decision making. To predict behavior of
other agents, I-DIDs require models of the other
agents to be known ahead of time and manually
encoded. This becomes a barrier to I-DID appli-
cations in a human-agent interaction setting, such
as development of intelligent non-player charac-
ters (NPCs) in real-time strategy (RTS) games,
where models of other agents or human players are
often inaccessible to domain experts. In this pa-
per, we use automatic techniques for learning be-
havior of other agents from replay data in RTS
games. We propose a learning algorithm with im-
provement over existing work by building a full
profile of agent behavior. This is the first time that
data-driven learning techniques are embedded into
the I-DID decision making framework. We eval-
uate the performance of our approach on two test
cases.

1 Introduction
Interactive dynamic influence diagrams (I-DIDs) [Doshi et
al., 2009; Zeng and Doshi, 2012] are a well recognized frame-
work for sequential multiagent decision making under un-
certainty. They are graphical decision models for individual
agents in the presence of other agents who are themselves
acting and observing, and whose actions affect the subject
agent. They explicitly model how the other agents behave
over time, based on which the subject agent’s decisions are
to be optimized. Importantly, I-DIDs have the advantage of
a graphical representation that makes the embedded domain
structure explicit by decomposing domain variables, which
yields computational benefits when compared to the enumer-
ative representation like partially observable Markov deci-
sion process (POMDP) [Smallwood and Sondik, 1973], in-
teractive POMDP [Gmytrasiewicz and Doshi, 2005] (and so
on) [Doshi et al., 2009].

I-DIDs integrate two components into the decision mod-
els: one basic decision model represents the subject agent’s
decision making process while the other predicts behavior of

other agents over time. Traditionally I-DIDs require domain
experts to manually build models of other agents and solve
the models in order to obtain the predicted behavior of the
other agents. However, it is rather difficult to construct such
models particularly in a setting of human-agent interaction
where modeling humans is not easy.

In this paper, we use automatic techniques for learning be-
havior of other agents in I-DIDs. We will be using a real-time
strategy (RTS) environment to support experiments in learn-
ing human behavior. The main advantage of using RTSs is
that they provide a realistic environment in which users co-
exist with autonomous agents and have to make decisions in
limited time in an uncertain and partially observable environ-
ment. We will use simplified situations from StarCraft 1 as
examples for learning behaviour. The choice of StarCraft is
motivated by the availability of replay data [Synnaeve and
Bessiere, 2012], the interest it has attracted in the AI commu-
nity [Ontanon et al., 2013], and the applicability of learning
models such as Hidden Markov models and Bayesian models
[Synnaeve and Bessière, 2011], although POMDP are not di-
rectly applicable because of the size of the state space model
[Ontanon et al., 2013].

The learning task faces the challenge of addressing data
scarcity and coverage problems because the replay data may
not cover the full profile of players’ behavior particularly for
large planning horizons. A partial set of players’ behavior
needs to be expanded into a full set so that we can build a
complete I-DID model. To avoid randomness of behavior
expansion, we fill in the missing actions by conducting be-
havioral compatibility tests on the observed behaviors. The
proposed technique is inspired by the observation that some
players tend to perform identically to other players and they
may execute similar actions in different game periods. Hence
the missing actions will be complemented using the observed
behavior. We theoretically analyze the properties of the learn-
ing technique and its influence on the planning quality. In ad-
dition, we conduct experiments in the large UAV (unmanned
aerial vehicle) benchmark [Zeng and Doshi, 2012] as well as
the RTS game StarCraft. To the best of our knowledge, it is
the first time that a data-driven behavior learning technique is
embedded into the I-DID model, which avoids the difficulty
on manually developing models of other agents.

1http://eu.blizzard.com/en-gb/games/sc/

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

39

2 Related Works

Current I-DID research assumes that models of other agents
can be manually built or needs to consider a large number
of random candidate models where the actual models of the
other agents are unknown [Zeng and Doshi, 2012]. Hence
the existing I-DID research mainly focuses on reducing the
solution complexity by compressing the model space of other
agents and scaling up planning horizons [Doshi et al., 2010;
Zeng and Doshi, 2012]. The improved scalability bene-
fits from clustering models of other agents that are behav-
iorally equivalent, and the behavior could be either complete
or partial [Zeng et al., 2011; 2012]. Recently identifying
other agents’ on-line behavior is used to improve I-DID so-
lutions [Chen et al., 2015], which still needs to construct
candidate models of other agents. Meanwhile, Panella and
Gmytrasiewicz [Panella and Gmytrasiewicz, 2015] attempt to
learn models of other agents using Bayesian nonparametric
methods in a small problem. Chandrasekaran et al. [Chan-
drasekaran et al., 2014] intend to use reinforcement learning
techniques for inferring agent behavior, which turns out to be
extremely hard to reveal complete behavior.

Learning agent behavior is important in building au-
tonomous systems, particularly with human-agent interac-
tion [Suryadi and Gmytrasiewicz, 1999; Doshi et al., 2012;
Loftin et al., 2014; Zilberstein, 2015], as well as develop-
ing social interactive media platforms [Salah et al., 2013].
Carmel and Markovitch [Carmel and Markovitch, 1996] pro-
pose finite automata to model strategies of intelligent agents
and found it difficult to learn the model. Suryadi and Gmy-
trasiewicz [Suryadi and Gmytrasiewicz, 1999] learn influ-
ence diagrams [Howard and Matheson, 1984] that model
agents’ decision making process. Instead of learning a spe-
cific model of agents, Albrecht and Ramamoorthy [Albrecht
and Ramamoorthy, 2014] identify a type of agent behavior
from a predefined set using a game-theoretical concept. Sim-
ilarly Zhou and Yang [Zhuo and Yang, 2014] exploit action-
models through transfer learning techniques to improve the
agent planning quality. In parallel, learning other agents is
one of the core issues in ad-hoc team settings - a recog-
nized challenge in agent research [Stone et al., 2010]. Bar-
rett and Stone [Barrett and Stone, 2015] recently simplify
the MDP learning to develop cooperative strategies for team-
mates without prior coordination.

In RTS games, Wender and Watson [Wender and Watson,
2012] use reinforcement learning to learn behavior of units in
a small scale StarCraft combat scenario. Cho et. al [Cho et
al., 2013] take advantage of the StarCraft replay data that has
been labelled as to the winning strategies, and improve NPC
intelligence by predicting the opponent strategies.

Most of the aforementioned research still focuses on the
learning of procedural models for single-agent decision mak-
ing and doesn’t integrate behavior learning techniques with
decision models in a multiagent setting. Using a simple ex-
ample inspired from StarCraft, we investigate the proposed
learning algorithm in the I-DID framework, which is also ap-
plicable to most of general multiagent decision models that
require modeling of other agents.

Figure 1: StarCraft Scenario (a) and unit’s behavior repre-
sented by the policy tree (b).

Figure 2: A DID modeling agent j in StarCraft.

3 Background and Initial Results
We briefly review I-DIDs through one example of a com-
bat scenario in StarCraft. More formal details are found
in [Doshi et al., 2009; Zeng and Doshi, 2012]. After that,
we provide initial results of applying I-DIDs in the game.

3.1 Interactive DIDs
Example 1 (StarCraft Scenario) Fig. 1a shows a screen-
shot of the 1 vs 1 combat scenario. Each unit is a Terran
Goliath, a unit which attacks with a cannon with a limited
range of approximately half its visibility radius. Each agent
can only see other agents within its visibility radius. In order
for a unit to execute an attack on an enemy unit the enemy
unit must be visible to the unit and be within range of the
unit’s weapons.

Influence diagrams(IDs) [Howard and Matheson, 1984]
use three types of nodes, namely chance node (oval), deci-
sion node (rectangle) and utility node (diamond), to repre-
sent the decision making process for a single agent in un-
certain settings. When influence diagrams are unrolled over
multiple time steps, they become dynamic influence dia-
grams (DIDs) [Tatman and Shachter, 1990] representing how
the agent plans its actions sequentially.

Fig. 2 shows the DID model for controlling a unit/agent in
StarCraft. The unit state (St+1) is whether or not the unit is
under attack (s1 = UnderAttack, s2 = NotUnderAttack)
which is influenced by the previous state (St) and action
(Dt). At t the unit receives observations (Ot: o1 = See and
o2 = Don′tSee) influenced by the state (St) where if a unit
is under attack there is a higher probability of seeing the en-
emy unit than when not under attack. Both the state (St+1)
and reward (R) are influenced by decision (Dt: d1 = Attack
and d2 = Escape). Attacking an enemy unit gives a higher

40

Figure 3: An I-DID modeling agent i that reasons with j’s
behaivor.

probability of being under attack in the next time step and
lower probability for escaping. Finally the reward (R) given
to the unit represents the difference in change of health for
the unit and enemy unit giving a positive reward if the enemy
unit looses more health than the unit and vice versa.

Extending DIDs for multiagent settings, I-DIDs introduce
one new type of node, called model node (hexagon), that con-
tains candidate models of other agents. Fig. 3 shows the I-
DID modeling the aforementioned combat scenario in which
agent i is the subject agent (NPC) in level l and agent j the
other agent (player) in level l− 1. The strategy level l allows
for the nested modeling of i by the other agent j. The strategy
level implies the sort of strategic reasoning between agents -
what does agent i think that agent j thinks that i thinks. A
level 0 agent represented by DID does not further model the
other agent. The dashed arc from model node to chance node
is called policy link that solves j’s models and enters a prob-
ability distribution of j’s predicted actions into the chance
node. The bold arc between two model nodes is called model
update link that specifies how j’s models are updated when j
acts and receives observations over time.

In the model node M t
j,l−1 of Fig. 3, let us consider two

models of agent j (mt,1
j,l−1 andmt,2

j,l−1) differing only in initial
beliefs on the physical states. For example, the two models
have the same structure of DID as shown in Fig. 2 while they
have different marginal probabilities in the chance node St.
Solving each DID model (through conventional DID tech-
niques [Tatman and Shachter, 1990]) results in one policy tree
per model. The policy tree for each model is j’s optimal plan
in which one action is specified for every possible observation
at each time step. Fig. 1b shows the policy tree by solving the
model mt,1

j,l−1 of T=3 time steps.
According to the policy tree, we specify j’s optimal actions

in the chance nodeAt
j of I-DID at t=0. After agent j executes

the action at t=0 and receives one observation at t=1, it up-
dates its beliefs in the chance node S1 (in Fig. 2). One update
ofm0,1

j (T=3) given an observation (oj) generates a new DID
model m1,1

j that plans for two time steps. Consequently, four
new models are generated at t=1 and placed into the model
node M1

j . Solving each of them generates optimal actions of
agent j at t=1. The model update continues until only one
horizon remains.

Hence solving level l I-DID involves two phases. We first
need to solve models of other agents at level l−1 and expand

the I-DID with the update of other agents’ models. Then, we
can transform the I-DID into a conventional DID and solve
the DID to obtain the subject agent’s plan.

3.2 Initial Results

We build level 0 DID (and level 1 I-DID) models for units
in Fig. 1a. Initial tests show how modeling the behaviour
of other agents gives a tactical advantage by predicting ac-
tions of an opponent. Different time horizons are compared
to determine if there is any significant reward difference with
greater time horizons. DID agents follow the generated poli-
cies in each battle. The I-DID agent has complete knowledge
of all of the potential models of the DID agent and generates
a policy to follow for all battles. For both battle scenarios the
difference in remaining health is recorded and used to calcu-
late an average. Table 1 shows the average health for unit i
when i competes with j given: 1) both i and j are modeled
by DIDs; 2) unit i is modeled by level 1 I-DID reasoning with
level 0 DIDs of unit j. Results show significant advantage to
the I-DID agent as a result of modeling the DID agent as part
of planning.

T=3 T=4 T=5

DID vs DID 19.8 13.7 35.1
I-DID vs DID 71.7 83.6 95.4

Table 1: Average rewards achieved by DID or I-DID con-
trolled agent i vs DID controlled agent j.

Note that we do not make claims about the applicability of
I-DIDs to complex, realistic StarCraft situations. However,
DIDs are well-suited to represent the decision making pro-
cess under partial observability for iterative moves, and their
I-DID extension allows for the modeling of other agents. This
suggests they should have the ability to learn behavior in sim-
ple configurations without suffering from the complexity of
game states, and consequently that StarCraft can constitute
an appropriate testbed for our behavior learning experiments.

4 Data-driven Behavior Learning

Given manually built models of other agents, we solve their
models and integrate their solutions into the expansion of the
subject agent’s I-DID. However, domain knowledge is not al-
ways accessible to construct precise models of other agents.
Although modeling how other agents make decisions is im-
portant in I-DID representation, the subject agent’s decisions
are only affected by the predicted behavior of the other agents
that are solutions of the other agents’ models. Hence, it will
be equally effective if either the models or the behavior as-
cribed to the other agents are known for solving I-DIDs. With
the inspiration, we learn behavior of other agents automati-
cally, which provides an alternative to manually crafted mod-
els for solving I-DIDs. Instead of constructing and solving
models to predict other agents’ behavior, we learn their be-
havior from available data.

41

4.1 Behavior Representation
Solutions of a T -horizon DID are represented by a depth-T
policy tree that contains a set of policy paths from the root
node to the leaf. Every T -length policy path is an action-
observation sequence that prescribes agent j’s behavior over
the entire planning horizon. Formally we define a T -length
policy path below.

Definition 1 (Policy Path) A policy path, hTj , is an action-
observation sequence over T planning horizons: hTj =

{atj , o
t+1
j }T−1

t=0 , where oTj is null with no observations follow-
ing the final action.

Since agent j can select any action and receive every possi-
ble observation at each time step, all possible T -length policy
paths are HT

j = Aj ×
∏T−1

t=1 (Ωj × Aj). A depth-T policy
tree is the optimal plan of agent j in which the best decisions
are assigned to every observation at each time step. We may
impose an ordering on a policy tree by assuming some order
for the observations, which guard the arcs in the tree. The
total number of policy paths is up to |Ωj |T−1 in a depth-T
policy tree. We formally define a policy tree below.

Definition 2 (Policy Tree) A depth-T policy tree is a set of
policy paths,HT

j =
⋃
hTj , that is structured in a tree T =(V ,E)

where V is the set of vertices’s (nodes) labelled with actions
A and E is the set of ordered groups of edges labelled with
observations Ω.

Fig. 1b shows the policy tree that is the solution to one
DID model in the aforementioned StarCraft scenario. A pol-
icy tree specifies the predicted actions of other agent j at each
time step that directly impacts the subject agent i’s decisions.
Most of the previous I-DID research assumes the availabil-
ity of domain knowledge to construct precise models of other
agents, then solves the models to build the policy tree. How-
ever, this is somewhat unrealistic in RTS games if models are
required to be built from the game. It is particularly diffi-
cult to model other agents that could be either other NPCs or
human players in RTS games due to the complexity of their
behavior descriptors.

4.2 Behavior Learning
Instead of crafting procedural models of other agents in Star-
Craft, we resort to learning other agents’ behavior, generally
represented by a policy tree. The possibility of learning the
behavior automatically derives from the availability of replay
data uploaded by a large number of game players.

Data Representation
The replay data records real-time game states, time-stamp and
the status of units controlled by players. Since the replay data
records the information of the entire game-play, there is no
clear reset state for the units to indicate the start or end of a
planning horizon. In addition, the data implicate units’ be-
havior in many types of tasks including combat and resource
gathering. It is natural that we shall focus on the learning
of units’ behavior for every specific task. Hence we need to
partition an entire set of replay data into multiple local sets
each of which supplies the corresponding data resources for
learning a policy tree for a given task.

We have used a landmark approach to partition replay
data, inspired from their definition in robotics [Lazanas and
Latombe, 1995] and planning [Hoffmann et al., 2004]. We
define landmarks in StarCraft as a set of game features (states
and values) that can be used as a point of reference to deter-
mine the player’s position in the game world and the value of
game-play related parameters e.g. when two enemy military
units are within Visibility Radius they are labelled as in bat-
tle, this label remains until either a unit has died or both units
are no longer within 1.5×Visibility Radius. As landmark de-
scription falls outside of the scope of this article, we shall
only illustrate their role.

Constructing Policy Trees
Let D = {D1, · · · ,Dl} be the entire set of replay data where
Dl = {D1

l , · · · ,Dm
l } aggregate the sets labelled by the same

landmark l. Although the landmark decides the player’s lo-
cal position in the game-play, the player may have different
beliefs over the game states. The local set Dm

l may exhibit
different behavior of the player. We aim to learn a set of pol-
icy trees, T = {T1, · · · , Tk}, from each Dl.

Alg. 1 shows the development of policy trees from the data.
As a policy tree is composed of the set of policy paths, we first
construct the policy paths and then add them into the tree.
Due to the limited interactions between NPCs and players,
the replay data may not exhibit the full profile of players’
behavior. Consequently, the learnt policy tree is incomplete
since some branches may be missing.

Algorithm 1 Build Policy Trees

1: function LEARN POLICY TREES(D, T)
2: H ← PolicyPathConstruction(D, T)
3: T ← Build Trees FromH
4: return T
5: function POLICY PATH CONSTRUCTION(D, T)
6: H set of policy paths
7: for all Dl ∈ D do
8: New hTj
9: for all Dm

1 ∈ D1 do
10: hTj ← hTj ∪ amj (∈ Dm

1 [A])
11: if m 6= 1 then
12: hTj ← omj (∈ Dm

1 [Ω])
13: H ← H∪ hTj
14: returnH

Filling in Partial Policy Trees
We can fill in the missing branches in the policy tree with
random observation-action sequences, which may lead to un-
known errors on predicting the agent’s behavior. We observe
that players may have identical post-behavior even if they act
differently in the past. This is particularly true in the con-
text of RTS games. For example, players may approach their
opponents in different ways; however, they often attack them
through similar mechanisms once the opponents are within
the attacking distance. This inspires a heuristic for filling in
the partial policy tree.

42

Inspired by the learning of probabilistic finite au-
tomata [Higuera, 2010], we propose the branch fill-in algo-
rithm by testing the behavioral compatibility of two nodes in
Alg. 2. V[At] retrieve actions of time t from the policy tree
while VΩ[At+1] are actions of time t+1 given V[At] with cor-
responding observations at t+ 1. The compatibility test (line
5) requires: (1) the nodes to have the same label(action); and
(2) the difference between their successors to be bounded by
a threshold value (line 20). The second condition demands
the compatibility to be recursively satisfied for every pair of
successor nodes (lines 10-14). Once the compatibility of the
two nodes is confirmed, we can share their successors and fill
in the missing branches accordingly. If multiple sets of nodes
satisfy the compatibility, we select the most compatible one
with the minimum difference (line 20). The time complexity
of Algs. 1 and 2 is polynomial in the size of data D.

Algorithm 2 Branch Fill-in

1: function FIND MISSING NODES(T Set of policy trees)
2: Q Set of policy trees with missing branches identified

from T
3: for all Qn ∈ Q do
4: for all Tn ∈ T do
5: if Behavioral Compatibility(Qn, Tn) then
6: Fill missing nodes in Qn from Tn
7: function BEHAVIORAL COMPATIBILITY(V1,V2)
8: if V1[At] 6= V2[At] then return False
9: else

10: if Test(V1,V2) then
11: for all At+1 ∈ V1 do
12: c← Test(V1[At+1],V2[At+1])
13: if c = False then return False
14: else return False
15: return True
16: function TEST(V1,V2)
17: n1 ← V1[At].count, n2 ← V2[At].count
18: for all Ω ∈ V1 do
19: f1 ← VΩ

1 [At+1].count, f2 ← VΩ
2 [At+1].count

20: if | f1n1
− f2

n2
| < ε then

21: return false
22: return true

4.3 Theoretical Analysis

The policy tree we learn from data prescribes the player’s ac-
tions at every time step. Intuitively, the learnt policy tree (Hj)
will become the true behavior (H∗j) of the player if the amount
of replay data is infinite. Let a2,t

j be the missing action and be
filled in using action a1,t

j at time t inHj . The branch fill-in as-
sumes that Pr(a1,t

j |Hj) has approached the true Pr(atj |H∗j)

after N amount of data, based on which a2,t
j will be comple-

mented.
Using the Hoeffding inequality [Hoeffding, 1963], Propo-

sition 1 provides the sample complexity bounding the proba-
ble rate of convergence of the fill-in actions to the true actions.

Proposition 1

Pr[
∑

a2,t
j
|Pr(a2,t

j |Hj)− Pr(atj |H∗j)| ≤ η]

≥ 1− |Aj | · e
−2NT (η

|Aj |
)2

(1)

where Pr(a2,t
j |Hj) is the probability of actions at time t we

learn from the data (computed as f2
n2

in line 20 of Alg. 2) and
Pr(atj |H∗j) the true actions of the player.

Let ∆T
i =|V (mi,l) − V ∗(mi,l)| where V (mi,l) is agent i’s

expected rewards by solving level l I-DID model through
learning j’s behavior and V ∗(mi, l) is i’s expected reward
given j’s true behavior. Following the proof in [Chen et al.,
2015], the reward difference is bounded below.

∆T
i ≤ ρRmax

i ((T − 1)(1 + 3(T − 1)|Ωi||Ωj |) + 1) (2)

where ρ =
∑

a1
j
|Pr(a1,t

j |Hj) − Pr(atj |H∗j)| is the worst

error on predicting a1
j in the learning.

Furthermore let τ =
∑

a2,t
j
|Pr(a2,t

j |Hj) − Pr(a1,t
j |Hj)|.

Since η, ρ and τ compose a triangle, we get ρ ≤ τ + η with
an upper-bound τ and obtain η with probability at least 1 −
|Aj | · e

−2NT (η
|Aj |

)2

.
Recall the test of line 20 in Alg. 2, we have τ < Bε, where

B is the number of tests, so that we control the learning qual-
ity using the ε value in the algorithm. Note that more data will
reduce the branch fill-ins therefore improving predictions of
agent j’s behavior, which directly impacts the agent i’s plan
quality in Eq. 2.

5 Experiment Results
We first verify the algorithm’s performance in the UAV
benchmark (|S|=25, |A|=5 and |Ω|=5) - the largest problem
domain studied in I-POMDP/I-DID, based multiagent plan-
ning research and then demonstrate the application in Star-
Craft. We compare the policy tree learning techniques with
either random fill-ins (Rand) or the behavioral compatibility
test (BCT) in Alg. 2.

5.1 UAV Simulations
We simulate interactions between agents i and j, and collect
different sizes of data for learning agent j’s policy trees. Sub-
sequently, we build i’s I-DID given the learned j’s behavior,
and use the action equivalence (AE) [Zeng and Doshi, 2009]
to solve the I-DID since the exact technique is not scalable
to solve the complex domain. Using the generated policies,
agent i plays with j that selects one model from 4 possible
models of j used in the simulation.

Fig. 4a and Fig 4b shows agent i’s average reward for 1000
simulations of the UAV domain for T=4 and 6 respectively.
The horizontal lines (Exact) are agent i’s average rewards
when i adopts the policies generated by the I-DID, which is
manually built by considering 4 possible models of agent j.
The set of 4 models including j’s true model are weighted
uniformly in i’s I-DID. The I-DID model is far more complex
than what we use by learning j’s behavior from the data.

In Fig. 4, we observe that agent i achieves better perfor-
mance when more data is used for learning j’s behavior.

43

(a) Reward for I-DID agent i
T = 4

(b) Reward for I-DID agent i
T = 6

Figure 4: Performance of agent i by learning behavior of
agent j in the UAV domain.

Figure 5: StarCraft example tree learnt from replay data with
increased observations ds = don′t see, sf = see far, s =
see near

The learning algorithm using BCT outperforms the technique
with Rand since it generates more accurate policies of agent
j. The learning algorithm performs even better than the Ex-
act technique because agent i can focus on the true or most
probable models of agent j from learning policy trees. Neg-
ative rewards are received in Fig. 4a since it is difficult for
agent i to intercept j in a short planning time (T=4). Fig. 4b
shows that more data is required to learn the behavior of large
planning horizons (T=6). Agent i consistently improves its
rewards once more data of agent j becomes available.

5.2 Learning From StarCraft Replay Data
By extending the combat scenario (with more actions and ob-
servations in Example 1), we experiment with our algorithms
using replay data over a number of battles. We retrieve 3 ob-
servations and 3 actions from the data, and learn the policy
trees given different planning horizons. We build the learning
engine using the BWAPI library 2 to interface with the games.
We then develop I-DID controlled NPCs (agent i) that reason
from learning behavior of other NPCs (agent j).

We learn agent j’s policy trees with the planning horizons
T= 4 and 6, and expand agent i’s I-DID accordingly to j’s
policy in the low level. In Fig. 5a, we show the partial be-
havior of agent j learnt from the limited replay data. We use
the observed actions to fill in the missing actions (denoted by
triangles) under BCT. The complemented behavior in Fig. 5b
well reflects a common battle strategy. Fig. 6a reports the av-
erage reward of agent i when it competes with agent j over
60 competitions. We observe that i receives higher reward
when it learns j’s behavior from more battles, where each

2https://code.google.com/p/bwapi/

(a) Reward for I-DID agent i (b) Learning Time

Figure 6: NPC (agent i) learns behavior of other NPC (agent
j) from the replay data in the StarCraft domain.

battle records a fight/battle between 2 opposing units until
one or both units dies and normally consists of 10 to 50 of j’s
action-observation sequences.

In Fig. 6a, the results show that agent i performs better
from more accurate j’s behavior generated from the branch
fill technique with BCT. Large planning horizons (like T=6)
also provide some benefit to agent i. Learning time increases
with more data available to the agent. Due to the inexpensive
compatibility tests, the learning algorithm duration shows no
visible difference in duration between random filling of miss-
ing branches compared to executing compatibility tests re-
flected in Fig 6b. Learning policy trees of larger planning
horizons (T=6) takes more time in our experiments.

6 Conclusions
In this paper we have presented a method for learning the be-
haviour of a subject agent in I-DID. The approach uses auto-
matic techniques to learn the policy tree from historical data
of the agents. We have presented a solution to the problem of
incomplete policy trees by way of a compatibility test to fill
in missing branches with those found to be compatible. The
learning technique has then been applied to both the UAV do-
main and the RTS game StarCraft to allow an NPC to predict
the actions of another NPC or human player to increase its
reward. Our work is an example of integrating data-driven
behavior learning techniques with I-DID solutions, which re-
moves the I-DID applications barrier of lacking models of
other agents. Future work could investigate incremental al-
gorithms for learning agents’ behavior from on-line data.

References
[Albrecht and Ramamoorthy, 2014] Stefano V. Albrecht and

Subramanian Ramamoorthy. On convergence and optimal-
ity of best-response learning with policy types in multia-
gent systems. In UAI, pages 12–21, 2014.

[Barrett and Stone, 2015] Samuel Barrett and Peter Stone.
Cooperating with unknown teammates in complex do-
mains: A robot soccer case study of ad hoc teamwork. In
AAAI, pages 2010–2016, 2015.

[Carmel and Markovitch, 1996] David Carmel and Shaul
Markovitch. Learning models of intelligent agents. In
AAAI, pages 62–67, 1996.

[Chandrasekaran et al., 2014] Muthukumaran Chan-
drasekaran, Prashant Doshi, Yifeng Zeng, and Yingke
Chen. Team behavior in interactive dynamic influence

44

diagrams with applications to ad hoc teams. In AAMAS,
pages 1559–1560, 2014.

[Chen et al., 2015] Yingke Chen, Yifeng Zeng, and Prashant
Doshi. Iterative online planning in multiagent settings with
limited model spaces and PAC guarantees. In AAMAS,
pages 1161–1169, 2015.

[Cho et al., 2013] Ho-Chul Cho, Kyung-Joong Kim, and
Sung-Bae Cho. Replay-based strategy prediction and build
order adaptation for starcraft ai bots. In IEEE CIG, pages
1–7, 2013.

[Doshi et al., 2009] Prashant Doshi, Yifeng Zeng, and
Qiongyu Chen. Graphical models for interactive
POMDPs: Representations and solutions. JAAMAS,
18(3):376–416, 2009.

[Doshi et al., 2010] Prashant Doshi, Muthukumaran Chan-
drasekaran, and Yifeng Zeng. Epsilon-subject equivalence
of models for interactive dynamic influence diagrams. In
IAT, pages 165–172, 2010.

[Doshi et al., 2012] Prashant Doshi, Xia Qu, Adam Goodie,
and Diana L. Young. Modeling human recursive reasoning
using empirically informed interactive partially observable
markov decision processes. IEEE SMC A, 42(6):1529–
1542, 2012.

[Gmytrasiewicz and Doshi, 2005] Piotr Gmytrasiewicz and
Prashant Doshi. A framework for sequential planning in
multiagent settings. JAIR, 24:49–79, 2005.

[Higuera, 2010] Colin de la Higuera. Grammatical Infer-
ence: Learning Automata and Grammar. Cambridge Uni-
versity Press, 2010.

[Hoeffding, 1963] W. Hoeffding. Probability inequalities for
sums of bounded random variables. Journal of the Ameri-
can Statistical Association, 58:13–30, 1963.

[Hoffmann et al., 2004] Jörg Hoffmann, Julie Porteous, and
Laura Sebastia. Ordered landmarks in planning. JAIR,
22:215–278, 2004.

[Howard and Matheson, 1984] R. A. Howard and J. E. Math-
eson. Influence diagrams. In Readings on the Principles
and Applications of Decision Analysis, pages 721–762,
1984.

[Lazanas and Latombe, 1995] A. Lazanas and J. C.
Latombe. Landmark-based robot navigation. Algo-
rithmica, 13(5):472–501, 1995.

[Loftin et al., 2014] Robert Tyler Loftin, James Mac-
Glashan, Bei Peng, Matthew E. Taylor, Michael L.
Littman, Jeff Huang, and David L. Roberts. A strategy-
aware technique for learning behaviors from discrete
human feedback. In AAAI, pages 937–943, 2014.

[Ontanon et al., 2013] Santiago Ontanon, Gabriel Synnaeve,
Alberto Uriarte, Florian Richoux, David Churchill, and
Mike Preuss. A survey of real-time strategy game AI re-
search and competition in starcraft. In IEEE CIG, vol-
ume 5, pages 293–311, 2013.

[Panella and Gmytrasiewicz, 2015] Alessandro Panella and
Piotr Gmytrasiewicz. Nonparametric bayesian learning of

other agents’ policies in multiagent pomdps. In AAMAS,
pages 1875–1876, 2015.

[Salah et al., 2013] Albert Ali Salah, Hayley Hung, Oya
Aran, and Hatice Gunes. Creative applications of human
behavior understanding. In HBU, pages 1–14, 2013.

[Smallwood and Sondik, 1973] Richard Smallwood and Ed-
ward Sondik. The optimal control of partially observable
Markov decision processes over a finite horizon. Opera-
tions Research, 21:1071–1088, 1973.

[Stone et al., 2010] Peter Stone, Gal A. Kaminka, Sarit
Kraus, and Jeffrey S. Rosenschein. Ad hoc autonomous
agent teams: Collaboration without pre-coordination. In
AAAI, pages 1504–1509, 2010.

[Suryadi and Gmytrasiewicz, 1999] Dicky Suryadi and Pi-
otr J. Gmytrasiewicz. Learning models of other agents
using influence diagrams. User Modeling, 407:223–232,
1999.

[Synnaeve and Bessière, 2011] Gabriel Synnaeve and Pierre
Bessière. A Bayesian model for RTS units control applied
to StarCraft. In 2011 IEEE CIG, pages 190–196, 2011.

[Synnaeve and Bessiere, 2012] Gabriel Synnaeve and
P Bessiere. A Dataset for StarCraft AI & an Example of
Armies Clustering. Artificial Intelligence in Adversarial
Real-Time Games, pages 25–30, 2012.

[Tatman and Shachter, 1990] Joseph A. Tatman and Ross D.
Shachter. Dynamic programming and influence diagrams.
IEEE SMC, 20(2):365–379, 1990.

[Wender and Watson, 2012] Stefan Wender and Ian Watson.
Applying reinforcement learning to small scale combat in
the real-time strategy game StarCraft: Broodwar. In IEEE
CIG, pages 402–408, 2012.

[Zeng and Doshi, 2009] Yifeng Zeng and Prashant Doshi.
Speeding up exact solutions of interactive influence dia-
grams using action equivalence. In IJCAI, pages 1996–
2001, 2009.

[Zeng and Doshi, 2012] Yifeng Zeng and Prashant Doshi.
Exploiting model equivalences for solving interactive dy-
namic influence diagrams. JAIR, 43:211–255, 2012.

[Zeng et al., 2011] Yifeng Zeng, Prashant Doshi, Yinghui
Pan, Hua Mao, Muthukumaran Chandrasekaran, and Jian
Luo. Utilizing partial policies for identifying equivalence
of behavioral models. In AAAI, pages 1083–1088, 2011.

[Zeng et al., 2012] Yifeng Zeng, Yinghui Pan, Hua Mao, and
Jian Luo. Improved use of partial policies for identifying
behavioral equivalences. In AAMAS, pages 1015–1022,
2012.

[Zhuo and Yang, 2014] Hankz Hankui Zhuo and Qiang
Yang. Action-model acquisition for planning via transfer
learning. Artificial Intelligence, 212:80–103, 2014.

[Zilberstein, 2015] Shlomo Zilberstein. Building strong
semi-autonomous systems. In AAAI, pages 4088–4092,
2015.

45

