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Abstract
In this paper we study the exchange of indivisi-
ble objects where agents’ possible preferences over
the objects are strict and share a common structure
among all of them, which represents a certain level
of asymmetry among objects. A typical example
of such an exchange model is a re-scheduling of
tasks over several processors, since all task own-
ers are naturally assumed to prefer that their tasks
are assigned to fast processors rather than slow
ones. We focus on designing exchange rules (a.k.a.
mechanisms) that simultaneously satisfy strategy-
proofness, individual rationality, and Pareto effi-
ciency. We first provide a general impossibility re-
sult for agents’ preferences that are determined in
an additive manner, and then show an existence of
such an exchange rule for further restricted lexico-
graphic preferences. We finally find that for the re-
stricted case, a previously known equivalence be-
tween the single-valuedness of the strict core and
the existence of such an exchange rule does not
carry over.

1 Introduction
Designing rules that satisfy desirable properties for the ex-
change of indivisible objects among agents is a fundamen-
tal research question in the fields of economics and algorith-
mic game theory. For cases where each agent is assumed to
own exactly one indivisible object and to have a strict prefer-
ence over the objects, the problem has been called the hous-
ing market [Shapley and Scarf, 1974]. The well-known top-
trading-cycles (TTC) rule always returns an allocation of the
objects belonging to the (strict) core for the housing market,
as well as gives agents appropriate incentives to report their
preferences truthfully, i.e. is strategy-proof. Furthermore, the
core allocation is individually rational and Pareto efficient,
both of which are quite popular properties in economic liter-
ature.

In this paper we focus on designing rules that simultane-
ously satisfy strategy-proofness, individual rationality, and

Pareto efficiency. For the housing market, TTC is the unique
rule that satisfies all of them [Ma, 1994]. On the other hand,
there have been several impossibility results about such rules
for more general cases. Sönmez (1999) showed that when
agents’ preferences are strict and their domain is rich enough,
there is no such rule. Pápai (2003), Konishi et al. (2001), and
Todo et al. (2014) respectively showed that the impossibility
carries over into the responsive, additive, and lexicographic
preference domains. Sonoda et al. (2014) showed that no
such rule exists even under a domain of preferences that con-
tain indifferences.

Nevertheless, we continue to investigate mechanism de-
sign for the exchange of indivisible objects. One main rea-
son is that all those impossibilities assume that the domain of
agents’ preferences for the objects is symmetric: for any pair
of two (combinations of) objects, the existence of a prefer-
ence that prefers one of them implies the existence of another
preference that would rather have the other. In other words,
under a symmetric preference domain, agents are allowed to
report any objects as their favorites. In practice, however, the
domain of the preferences may not be symmetric. For exam-
ple, considering both a good and a bad apple, or a fast and
a slow processor, it seems quite natural that everyone prefers
the former to the latter, if all other such conditions as prices
are identical. In this case, we can assume that agents are not
allowed to report the latter object as their best choice, and
hence the domain of preference is no longer symmetric.

Such a common component/structure among agents’ pref-
erences actually has been often discussed in various mecha-
nism design settings. In combinatorial auctions, the assump-
tion of single-minded bidders is very popular and admits a
polynomial-time approximation scheme for the winner de-
termination problem [Lehmann et al., 2002]. In two-sided
matching, such as school choice problems, the notion of pri-
ority list [Afacan, 2014] has usually been introduced, which is
a (possibly incomplete) ranking of students and shared among
all the schools, although they are usually assumed neither to
be rational nor willing to cheat. In voting, sometimes all vot-
ers are assumed to have single-peaked preferences over can-
didates, where such a situation can be also formulated as the
facility location problem [Moulin, 1980]. The key feature of
all these examples is that the restriction on agents’ prefer-
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ences greatly simplifies the problem so that we can overcome
impossibility results for general cases.

In this paper we introduce the notion of common factor,
which represents the asymmetry shared among all the possi-
ble preferences of agents. A common factor is defined as a
set of binary relations over the set of all indivisible objects.
When such a common factor exists, each agent is assumed to
have a strict ordering of the objects that is consistent with it.
The preference of such an agent over all the subsets of the ob-
jects is then determined from her ordering by one of the two
extensions: additive or lexicographic. The additive extension
determines a preference based on the summation of a valua-
tion function over single objects that reflects the ordering of
the objects, and the lexicographic extension is a special case
of the additive one. In this sense, we are focusing on situa-
tions where there are no complementarities/synergies among
objects. However, since we provide an impossibility result
for the additive extension, our analysis still covers the cases
with complementarities.

Based on the common factor, we discuss whether there ex-
ist exchange rules that simultaneously satisfy all three above
properties under preference domains with asymmetry. We
first show that for any possible common factor, such an ex-
change rule does not exist when agents’ preferences are de-
termined by the additive extension, except for trivial cases in
which some positive results were already known. This also
implies that in the multiple housing market problem with ad-
ditive preferences [Konishi et al., 2001], no such rule exists
even if we assume that the set of all submarkets are in a se-
quence so that each object in a prior submarket is strictly bet-
ter than any object in any subsequent submarket. We then
show that for a specific class of common factors, such an ex-
change rule exists when agents’ preferences are determined
by the lexicographic extension. This positive result, com-
pared with the impossibility in Todo et al. (2014), sheds light
on the structure of preference domains in the exchange of in-
divisible objects.

For the latter case where such an exchange rule exists,
we also provide another exchange rule that satisfies all the
three properties but does not always select an allocation in
the core. This result indicates that the characterization by
Sönmez (1999), which pointed out the equivalence between
the single-valuedness of allocations in the core and the exis-
tence of such exchange rules, does not apply to our model,
mainly because of the asymmetry in preferences. Therefore,
from the perspective of a mechanism designer, we generally
need to take account of the allocations that are not in the core,
even when we are just interested in designing exchange rules
that satisfy all those three properties.

2 Preliminaries
We first introduce the exchange problem considered in this
paper. There is a set of n agents N = {1, . . . , n}. Each
agent i ∈ N is initially endowed with a set of indivisible
objects ωi(6= ∅). Let ω = (ωi)i∈N indicate the initial en-
dowment distribution. We assume that ωi ∩ ωj = ∅ for any
i, j ∈ N and let G be the union of the endowments of all the
agents, i.e., G :=

⋃
i∈N ωi. An allocation a = (ai)i∈N is

a distribution of G to N such that ai ⊆ G for any i ∈ N ,⋃
i∈N ai = G, and ai ∩ aj = ∅ for any pair i, j ∈ N . For

a given allocation a and an agent i ∈ N , ai is called an as-
signment to the agent i under the allocation a. Let A denote
the set of all such allocations, which obviously contains ω
inside 1

Each agent i ∈ N has a linear ordering Ri, known as a
preference, of the set of all possible bundles S, T ⊆ G. Let
R denote a preference domain that consists of all admissible
preferences of each agent i ∈ N . Given a preference Ri ∈
R of an agent i and a pair S, T ⊆ G, let SRiT denote the
fact that S appears earlier than T in the ordering Ri, which
means that S is weakly preferred to T by the agent i with
the preference Ri. We assume preferences are strict, meaning
that for any pair S, T (6= S) ⊆ G, either SPiT or TPiS holds,
where Pi indicates the strict component of Ri. Therefore,
SRiT and ¬SPiT implies S = T . Let R = (Ri)i∈N ∈
Rn denote a preference profile of the agents N and R−i =
(Rj)j 6=i ∈ Rn−1 denote a preference profile of N \ {i}.

Here we introduce the concept of blocking, which will be
frequently used in the rest of the paper. We say a set (or a
coalition) of agents M ⊆ N blocks an allocation a ∈ A
under preference profile R ∈ Rn via another allocation b ∈
A if (i) ∀i ∈ M , bi ⊆

⋃
k∈M ωk holds, (ii) ∀i ∈ M , biRiai

holds, and (iii) ∃j ∈M , bjPjaj holds.
An exchange problem E = (N,ω,A ,R) consists of a set

of agents N , an initial endowment distribution ω, the set of
possible allocations A , and the preference domain R for the
agents. For a given exchange problem E , an exchange rule
ϕ is formally defined as a mapping from R ∈ Rn to A .
More precisely, an exchange rule ϕ maps each profile of the
preferences that is reported by the agents N into a possible
allocation to N . Here let ϕ(R) ∈ A indicate the allocation
when agents report R, and let ϕ(Ri, R−i) indicate the allo-
cation when agent i reports Ri while the other agents report
R−i. Furthermore, for a given ϕ and any input R, let ϕi(R)
indicate the assignment to i under ϕ(R).

We now define the three desirable properties considered in
this paper. Individual rationality requires that for each agent,
participation by reporting her true preference is weakly better
than not participating. Formally, for a given exchange prob-
lem E = (N,ω,A ,R), an exchange rule ϕ is said to be indi-
vidually rational if ∀R ∈ Rn, ∀i ∈ N , ϕi(R)Riωi. Strategy-
proofness, which is an incentive constraint for agents, re-
quires that for each agent, reporting her true preference is
weakly better than misreporting her preference. Formally, for
a given exchange problem E = (N,ω,A ,R), an exchange
rule ϕ is said to be strategy-proof if ∀i ∈ N , ∀R−i ∈ Rn−1,
∀Ri ∈ R, ∀R′i ∈ R, ϕi(Ri, R−i)Riϕi(R

′
i, R−i). Finally,

Pareto efficiency is one of the most popular efficiency crite-
ria for evaluating the performance of an exchange rule. An
allocation b ∈ A is said to Pareto dominate another alloca-
tion a ∈ A under a preference profile R if the set N of all
agents blocks a under R via b. For a given exchange problem
E = (N,ω,A ,R), an exchange rule ϕ is Pareto efficient if

1There exist some works that restrict the set A of such possible
allocations, which investigate the model reffered to as multiple hous-
ing market, including Konishi et al. (2001) and Miyagawa (2002) .

98



∀R ∈ Rn, any allocation b ∈ A does not Pareto dominate
ϕ(R).

For our perspective of designing exchange rules that sat-
isfy all the three properties, we consider an exchange problem
successful if it guarantees the existence of such rules.
Definition 1 (Successful Problem). An exchange problem
E is said to be successful if for the exchange problem E ,
there exists an exchange rule ϕ that is individually rational,
strategy-proof, and Pareto efficient.

Using the concept of a successful problem, we can review
several known results in the literature. The first positive result
follows from several papers [Ma, 1994; Aziz and de Keijzer,
2012; Saban and Sethuraman, 2013].
Proposition 1. Any exchange problem E = (N,ω,A ,R) is
successful for any R (even including indifferent preferences)
if |ωi| = 1 for all i ∈ N .

Actually the top-trading-cycles (TTC) rule [Shapley and
Scarf, 1974] satisfies all the properties for cases with strict
preferences. We briefly describe the procedure since it is used
in another exchange rule we will propose in Sections 5 and 6.
Definition 2 (Top-Trading-Cycles). For an exchange prob-
lem E = (N,ω,A ,R) s.t. |ωi| = 1 for all i ∈ N , this algo-
rithm works as follows:
Step 1 Construct a directed graph with two types of nodes

(agents and objects) and edges (from agents to objects
or from objects to agents). Each agent points to her most
favorite object and each object points to its owner. Ob-
viously there is at least one cycle. Assign to each agent
in each cycle the object to which she points and remove
all such objects and agents from the graph. Then go to
Step 2.

Step t(≥ 2) If no agent remains in the market, then the pro-
cedure terminates; otherwise, each agent points to her
most favorite object among the remaining ones and each
object points to its owner. Assign to each agent in each
cycle the object to which she points and remove all such
objects and agents from the graph. Go to Step t+ 1.

On the other hand, Sönmez (1999) showed that an ex-
change problem is not successful in general if each agent can
initially have more than one object.
Proposition 2. An exchange problem E = (N,ω,A ,R) is
not successful if R contains all possible strict preferences and
|ωi| ≥ 2 for some i ∈ N .

3 Preference Domains with Common Factor
In this section we define a notation that enables us to repre-
sent common structures among preferences of agents. Let B
be a set of partial binary relations, which we refer as a com-
mon factor, over G. For a given common factor B and two
objects x, y ∈ G, let x B y represent (x, y) ∈ B. Note that
B is strict and transitive, but need not be complete. Therefore
B = ∅ is possible. Let F be the set of all possible common
factors over G. This definition is actually identical with the
conditional importance network of [Bouveret et al., 2009].

Now we define the concept of the orderings of all single
objects G, which induce agents’ preferences. For a given

common factor B ∈ F , let SB be the set of all possible
strict orderings of G that keeps all the relations in B. That
is, for a given B and two objects x, y ∈ G, x B y implies
that x appears before y in every ordering in the set SB. Fur-
thermore, given a common factor B ∈ F , we assume that
each agent i has an ordering �i∈ SB, which means that for
two given objects x, y ∈ G, an appearance of x before y in
�i implies that she prefers x to y. Each agent i’s preference
Ri is then derived from the ordering �i by one of the two
following extension rules:

Additive extension first defines a value function vi : G →
R≥0 s.t. x �i y implies vi(x) > vi(y) for any x, y ∈
G. Then, for given S, T ⊆ G, SRiT if and only if∑

x∈S vi(x) ≥
∑

x∈T vi(x).
Lexicographic extension is a special case of the additive

extension s.t. for any x ∈ G, vi satisfies vi(x) >∑
y;x�iy

vi(y).

For a given common factor B ∈ F , let RADD
B and RLEX

B
indicate the set of all possible preferences that are derived
from strict orderings in SB by the additive and lexicographic
extensions.

For instance, consider the following example with a com-
mon factor B = {(g1, g2)} over G = {g1, g2, g3}.
Example 1. There are two agents N = {1, 2}, whose initial
endowments are given as ω = (ω1, ω2) = ({g1, g2}, {g3}).
The common factor is given as B = {(g1, g2)}. Agent 1 has
the ordering �1∈ SB s.t. g1 �1 g3 �1 g2, and agent 2
has �2∈ SB s.t. g3 �2 g1 �2 g2. Furthermore, agent 1’s
preference R1 is derived from the lexicographic extension:

R1 : g1g2g3 � g1g3 � g1g2 � g1 � g2g3 � g3 � g2 � ∅

Note that the lexicographic extension is uniquely determined
for a given ordering over G. On the other hand, agent 2’s
preference R2 is derived from an additive extension:

R2 : g1g2g3 � g1g3 � g2g3 � g1g2 � g3 � g1 � g2 � ∅

In contrast to the lexicographic extension, the additive exten-
sion is not unique for a given ordering.

This example reflects a situation where g1 is obviously bet-
ter than g2, say the good and bad apples mentioned in Section
1, for any agent in the market.

Using the concept of the common factor as well as the suc-
cessfulness of exchange problems, we can represent two im-
possibilities provided by Konishi et al. (2001) and Todo et al.
(2014) as follows:
Proposition 3 (Konishi et al., 2001). An exchange problem
E = (N,ω,A ,RADD

B ) is not successful for B = ∅.
Proposition 4 (Todo et al., 2014). An exchange problem E =
(N,ω,A ,RLEX

B ) is not successful for B = ∅.

4 Impossibility for Additive Extension
In this section we first focus on the additive extension and
show that for any possible common factor, we cannot find an
exchange rule that is individually rational, strategy-proof, and
Pareto efficient, except for very trivial cases that have already
been investigated in the literature.
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Theorem 1. An exchange problem E = (N,ω,A ,RADD
B ) is

not successful for any common factor B ∈ F if |N | ≥ 2 and
|ωi| ≥ 2 for all i ∈ N .

Proof. Let us consider the following exchange problem:
N = {1, 2}, ω = (ω1, ω2) = ({g1, g2}, {g3, g4}), and B
is given as g3 B g1 B g2 B g4. The agents’ preferences are
defined by the following valuation functions v1 and v2:

v1(g3) = 15, v1(g1) = 5, v1(g2) = 4, v1(g4) = 3

v2(g3) = 10, v2(g1) = 8, v2(g2) = 5, v2(g4) = 1

Under this profile of preferences (or equivalently valuation
functions), there are only two allocations a and b satisfying
individual rationality and Pareto efficiency.

a = ({g3, g4}, {g1, g2}), b = ({g3}, {g1, g2, g4})

Now we are going to show that both of them cannot be cho-
sen by any strategy-proof exchange rule for the profile. If a
is chosen, then agent 2 would better off by reporting another
valuation function v′2 s.t. v′2(g2) = 2.5 and all the others are
the same with v2, which makes b the only allocation that sat-
isfies individual rationality and Pareto efficiency. Similarly, if
b is chosen, then agent 1 would better off by reporting another
valuation function v′1 s.t. v′1(g3) = 8 and all the others are the
same with v1, which makes a the only allocation that satisfies
individual rationality and Pareto efficiency. So there is no ex-
change rule that simultaneously satisfies individual rational-
ity, strategy-proofness and Pareto efficiency. The statement
still holds for any number of agents greater than three and
any other common factor, since we can construct the same
situation with this example for such cases.

When |
⋃

i∈N ωi| = n, the problem coincides with the
traditional housing market, in which the TTC rule satisfies
all the requirements. On the other hand, if |

⋃
i∈N ωi| =

n + 1, there may be a chance that the problem E =
(N,ω,A ,RADD

B ) is successful for a specified common factor
where all the agents share the same ordering over every single
object.

Konishi et al. (2001) also showed that there exists no ex-
change rule that satisfies all the three properties for general
additive preferences when objects are separated into several
types, each agent initially owns at most one object for each
type, and only trading the objects of the same type is allowed,
Theorem 1 has a stronger implication on this problem: no
such exchange rule exists even if we introduce any common
factor into the multiple housing market problem.

5 Possibility for Lexicographic Extension
In light of the negative results presented in the previous sec-
tion, we restrict ourselves to the lexicographic extension and
seek some positive results with respect to common factors.
As mentioned in Example 1, the lexicographic extension is
unique for a given ordering. Therefore, it is trivially true that
an exchange problem E = (N,ω,A ,RLEX

B ) is successful for
any complete B ∈ F , because reporting a false preference
is not allowed for any agent in this case. On the other hand,
Todo 2014 showed that an exchange problem is not successful

when agents are allowed to initially have more than one ob-
ject and preferences are lexicographic, which coincides with
the case of setting B = ∅. The following theorem explains the
existence of a non-trivial class of successful exchange prob-
lems with a common factor that is between the above two
observations.

Theorem 2. An exchange problem E = (N,ω,A ,RLEX
B ) is

successful if the common factor B satisfies the following con-
ditions:

1. There exists an m-partition (H1, . . . ,Hm) of G s.t. ∀i ∈
N , ∀k ∈ {1, . . . ,m}, |ωi ∩Hk| ≤ 1 holds, and

2. ∀k ∈ {1, . . . ,m}, ∀x ∈ Hk, ∀l > k, ∀y ∈ Hl, x B y
holds.

These conditions reflect a situation where the set of ob-
jects establishes a certain format of hierarchy s.t. each agent
owns at most one object from each level/submarket Hk in it
(guaranteed from condition 1), and there is a common priority
between submarkets so that having an object in a higher sub-
market is strictly better than having any object in any lower
submarket (guaranteed from condition 2). Actually, the mul-
tiple housing market mentioned in the previous section sat-
isfies condition 1, although its original definition based on
additive valuation functions violates condition 2.

We prove this theorem by showing the existence of an ex-
change rule that is individually rational, strategy-proof, and
Pareto efficient for any such problem. Indeed, a very simple
rule that applies the TTC procedure for each submarket Hk of
the hierarchy works, since each level can be considered a tra-
ditional housing market in which each agent owns exactly one
object and has a strict preference over all the objects. Note
that this exchange rule is also known as the coordinate-wise
core (CWC) mechanism [Wako, 2005].

Observation 1. For any exchange problem satisfying the
conditions described in Theorem 2, applying the TTC proce-
dure for each submarket is strategy-proof and always selects
the core allocation in each submarket.

We next find the following observation about the condition
when an agent improves that for each agent the number of
objects she receives does not change in each submarket.

Observation 2. Under the conditions described in Theorem
2, let ak indicate the allocation in the k-th submarket Hk

when a represents the allocation that the number of each
agent’s object does not change in each submarket, i.e. ∀i ∈
N , ∀k ∈ {1, . . . ,m}, |ωi∩Hk| = |ai∩Hk|. Then ∀a, b ∈ A ,
∀i ∈ N , bPia holds if and only if ∃q ∈ {1, . . . ,m} s.t. bqiPia

q
i

and ∀p ∈ {1, . . . , q − 1}, bpi = api .

Finally we show that the allocation by the exchange rule
that selects the core in each submarket is also in the core of
the original problem, which implies individual rationality and
Pareto efficiency of the rule.

Lemma 1. For any exchange problem satisfying the condi-
tions described in Theorem 2, the allocation that selects the
core in each submarket is also in the core of the problem.

Proof. For the sake of contradiction, we assume that there
exists a profile R of the preferences and a coalition M ⊆ N
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of agents that blocks the allocation a chosen by the exchange
rule under R via another allocation b ∈ A . By the definition
of blocking, (i) bi ⊆

⋃
k∈M ωk for all i ∈ M , (ii) biRiai

holds for all i ∈M and (iii) bjPjaj holds for some j ∈M .
First we can easily observe that for such M and b, |bi ∩

Hk| = |ωi ∩ Hk| holds for any i ∈ M and any k ∈
{1, . . . ,m}. Otherwise, from condition (i) of blocking and
the preferences based on the lexicographic extension, at least
one agent in M will get worse. We then construct a modi-
fied allocation b̂ that satisfies |b̂i ∩Hk| = |ωi ∩Hk| for any
agent in N and any k ∈ {1, . . . ,m}, as well as conditions (i),
(ii), and (iii) for blocking. Thus, without a loss of general-
ity we consider b̂ a combination of the reallocations for each
submarket Hk.

Let M ′ ⊆ M be the set of agents j′ in the coalition
M , each of whom strictly gets better, i.e. b̂j′Pj′aj′ . Then,
from Observation 1, for each such j′ ∈ M ′, there exists
an index q ∈ {1, . . . ,m} such that b̂qj′Pj′a

q
j′ and ∀p ∈

{1, . . . , q − 1}, b̂pj′ = apj′ . Let qj′ be the index for each
j′ ∈ M ′, and let q∗ = minj′∈M ′ qj′ . From the assump-
tion that if such a blocking coalition exists, then it must be
the case that q∗ ∈ {1, . . . ,m} and we show that such q∗ does
not exist by induction on the cardinality of q∗.

Let us consider q∗ = 1. Since we already observed that b̂
is a combination of the reallocations for each submarket and
M blocks a via b̂, it must hold that ∃j′ ∈M ′, b̂1j′Pj′a

1
j′ . This

obviously violates the fact that TTC chooses the unique core
in the submarket H1. Thus q∗ can not be 1.

Assuming q∗ cannot equal any integer smaller than r, let us
consider q∗ = r. From the lexicographic extension, it must
be the case that b̂rj′Pj′a

r
j′ and ∀p ∈ {1, . . . , r− 1}, b̂pj′ = apj′ ,

which again violates the fact that TTC chooses the unique
core in submarket Hr. Thus q∗ cannot be r.

Proof of Theorem 2. From Observation 1, the exchange rule,
which simply applies the TTC procedure for each submar-
ket, is strategy-proof and selects the core for each submarket.
From Lemma 1, the exchange rule also selects the core for
the original problem. Thus the statement is true.

Note that the exchange rule considered in the proof also
coincides with the augmented top-trading-cycles rule [Fujita
et al., 2015], under the conditions in Theorem 2.

6 Exchange Rule that Does Not Always Select
the Core

In this section we compare our positive result presented in
the previous section with a characterization of (not) success-
ful problems by Sönmez (1999). We first define the notion
of the single-valued core. We say the core is single-valued if
every agent i ∈ N is indifferent between any two core allo-
cations a and a′(6= a). Since we only care about strict pref-
erences in this paper, some agent strictly prefers one of the
two distinct core allocations. Formally we have the following
observation:

Observation 3. For the exchange problem E =
(N,ω,A ,RLEX

B ) with a common factor B satisfying

the conditions described in Theorem 2, the core is always
non-empty but not always single-valued.

Sönmez (1999) clarified under some natural assumptions,
an equivalence between the single-valuedness of the core and
the existence of exchange rules satisfying all the three proper-
ties in a large class of mechanism design situations including
exchange problems. One critical assumption in his character-
ization is, however, that the domain of preferences must be
rich enough so that, intuitively, any permutation of a prefer-
ence ordering is possible. It is therefore not the case for our
model with a common factor. Indeed, we now propose a new
exchange rule, inspired from an algorithm called YRMH-
IGYT [Abdulkadiroǧlu and Sönmez, 1999], and show that
it satisfies all the properties but does not select the core.
Definition 3. Apply the TTC procedure for each submarket
H1, . . . ,Hm−1. For the least prioritized submarket Hm, use
the following procedure:

Initialization: Create a queue of the agents who initially
own an object in the submarket Hm to represent their
priority. Initially all the agents are in an ascending or-
der with respect to their indices. From the top of the
queue, sequentially check whether an agent has received
a set of objects that is better than her initial endowments
from the prior submarkets H1, . . . ,Hm−1. If so, return
her to the end of the queue and make the object she ini-
tially owned in Hm not pointing to her or anyone. Oth-
erwise do nothing. Then construct a directed graph as
well as the TTC procedure.

Step t(≥ 1): If no agent remains in the market, then the pro-
cedure terminates; otherwise, each agent points to her
most favorite object among the remaining ones. Each
object belonging to an agent points to her. All the other
objects point to the highest priority agent in the queue.
Obviously there is at least one cycle. Assign to each
agent in each cycle the object to which she points and
remove all such objects and agents from the graph. Also
remove those agents from the queue. Then go to Step
t+ 1.

Proposition 5. For the exchange problem E =
(N,ω,A ,RLEX

B ) with a common factor B satisfying
the conditions described in Theorem 2, Mechanism 1 is
individually rational, strategy-proof, and Pareto efficient and
does not always select the core.

The proposition follows from Lemmas 2 and 3.
Lemma 2. The exchange rule described in Definition 3 is
individually rational, strategy-proof, and Pareto efficient.

Proof Sketch. By definition, the exchange rule assigns an
identical number of objects for each agent in each submar-
ket. Each submarket except for the least prioritized one just
uses the TTC procedure. Furthermore, even in the least pri-
oritized submarket, only the agents who already received a
better set of objects than their initial endowments lose their
objects. Thus the exchange rule is individually rational.

For strategy-proofness, we first observe that, from the def-
inition of TTC, no agent can improve her assignment in any
submarket except for the least prioritized one. Furthermore,
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Figure 1: At beginning in submarket H2, all but object g4
point to agent 3 because queue ranks her first. Bold arrows
indicate a cycle, while dotted lines do not.

for an agent to have a higher priority in the least prioritized
submarket, she has to give up receiving a better object in some
prior submarket, which surely make her worse off from the
definition of the lexicographic extension.

Finally we verify that the exchange rule is Pareto efficient.
The exchange rule can be considered as a combination of
the TTC algorithm for m housing market problems, each of
which corresponds to each submarket Hk. Since the allo-
cation by the TTC algorithm for housing market problem is
guaranteed to be Pareto efficient, the allocation by the ex-
change rule is a combination of a Pareto efficient allocation
for each submarket Hk. Now that agents’ preferences are de-
termined by the lexicographic extension, such an allocation
cannot be dominated by any other allocation.

Lemma 3. The exchange rule described in Definition 3 does
not always select the core.

Proof. Consider the following exchange problem
E = (N,ω,A ,RADD

B ) s.t. N = {1, 2, 3, 4}, ω =
(ω1, ω2, ω3, ω4) = ({g1, g5}, {g2, g6}, {g3, g7}, {g4, g8}),
and B is given as

g1 B g5, g6, g7, g8
g2 B g5, g6, g7, g8
g3 B g5, g6, g7, g8
g4 B g5, g6, g7, g8.

This problem obviously satisfies the condition described in
Theorem 1, since we can find a 2-partition (H1, H2) s.t. H1 =
{g1, g2, g3, g4} and H2 = {g5, g6, g7, g8}.

Now let us consider a profile of preferences that are
uniquely determined by the lexicographic extension from the
following orderings �1, . . . ,�4:

�1: g2 > g1 > g4 > g3 > g6 > g7 > g8 > g5
�2: g1 > g2 > g3 > g4 > g5 > g7 > g6 > g8
�3: g1 > g4 > g2 > g3 > g5 > g6 > g7 > g8
�4: g1 > g4 > g2 > g3 > g6 > g5 > g8 > g7

The left picture in Fig. 1 shows the initial situation in the
submarket H1. In the submarket, by simply applying the TTC
procedure, agent 1, 2, 3 and 4 receives g2, g1, g3 and g4, re-
spectively. At the end of the initialization in the least prior-
itized submarket H2, the queue orders all the four agents as
3 � 4 � 1 � 2, because both agents 1 and 2 have already
been guaranteed to get a strictly better assignment than their

initial endowments. On the other hand, agents 3 and 4 just
received their initial endowment in H1, which does not guar-
antee a better assignment for them.

The right picture in Fig. 1 shows the initial situation in
the submarket H2. At step 1 in it, g5, g6, and g7 point
to agent 3, while g8 points to agent 4. Then agent 3 re-
ceives g5. At step 2, all the remaining objects g6, g7 and
g8 point to agent 4, who then receives g6. At step 3, all
the remaining objects point to agent 1, who then receives
g7. Finally agent 2 receives g8. Thus, the final allocation is
({g2, g7}, {g1, g8}, {g3, g5}, {g4, g6}), which a coalition of
the two agents {1, 2} blocks under R via another allocation
({g2, g6}, {g1, g5}, {g3, g7}, {g4, g8}).

The failure of the exchange rule to select the core mainly
comes from the fact that the exchange rule ignores some in-
formation about initial endowments when it confirms the ex-
istence of at least one individually rational allocation. Note
that this may not be the only exchange rule that satisfies all
three properties and does not always select the core.

This proposition has a slight negative implication. In
contrast to the exchange problems investigated by Sönmez
(1999), we should not just focus on exchange rules that
choose a core allocation in our model with asymmetry, even
though we are only interested in exchange rules that sat-
isfy individual rationality, strategy-proofness, and Pareto effi-
ciency. Actually, for environments where the core allocation
is not very appealing due to some characteristics of agents,
say those who are segregated geographically or who gener-
ally cooperate with the mechanism, it may be possible to in-
troduce some other criteria than the core to evaluate those ex-
change rules. For instance, considering such strong incentive
property as group strategy-proofness, hiding-proofness [Atla-
maz and Klaus, 2007], or split-proofness [Fujita et al., 2015]
(also known as false-name-proofness [Todo and Conitzer,
2015]) is one possible direction.

7 Conclusion
We obtained a general impossibility on the additive exten-
sion and found a class of successful problems with the lexico-
graphic extension. We further provided a counter example of
the equivalence between the single-valued core and success-
fulness by showing an exchange rule that satisfies all three
properties but does not always select the core. One possible
future work is to give a necessary and sufficient condition for
a given exchange problem with the lexicographic extension
to be successful. We would also like to find some property,
instead of the core, that evaluates exchange rules that satisfy
all the properties and characterize such rules with it. Finally,
we also believe that it would be interesting to introduce the
concept of common factor into different mechanism design
situations such as two-sided matching and combinatorial auc-
tions.
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