
An Expert-Level Card Playing Agent Based on a
Variant of Perfect Information Monte Carlo Sampling

Florian Wisser
Vienna University of Technology

Vienna, Austria
wisser@dbai.tuwien.ac.at

Abstract
Despite some success of Perfect Information Monte
Carlo Sampling (PIMC) in imperfect information
games in the past, it has been eclipsed by other
approaches in recent years. Standard PIMC has
well-known shortcomings in the accuracy of its de-
cisions, but has the advantage of being simple, fast,
robust and scalable, making it well-suited for im-
perfect information games with large state-spaces.
We propose Presumed Value PIMC resolving the
problem of overestimation of opponent’s knowl-
edge of hidden information in future game states.
The resulting AI agent was tested against human
experts in Schnapsen, a Central European 2-player
trick-taking card game, and performs above human
expert-level.

1 Introduction
Perfect Information Monte Carlo Sampling (PIMC) in tree
search of games of imperfect information has been around for
many years. The approach is appealing, for a number of rea-
sons: it allows the usage of well-known methods from perfect
information games, its complexity is magnitudes lower than
the problem of weakly solving a game in the sense of game
theory, it can be used in a just-in-time manner even for games
with large state-space, and it has proven to produce compet-
itive AI agents in some games. Since we will mainly deal
with trick-taking cards games, let us mention Bridge [Gins-
berg, 1999], [Ginsberg, 2001], Skat [Buro et al., 2009] and
Schnapsen [Wisser, 2010].

In recent years research in AI in games of imperfect in-
formation was heavily centered around equilibrium approx-
imation algorithms (EAA). One of the reasons might be the
concentration on simple poker variants as in the renowned an-
nual computer poker competition. Wherever they are appli-
cable, agents like Cepheus [Bowling et al., 2015] for heads-
up limit hold’em (HULHE) will not be beaten by any other
agent, since they are nearly perfect. However, while HULHE
has a small state-space (∼ 1014), solving this problem still
required very substantial amounts of computing power to cal-
culate a strategy stored in 12 terabytes. Our prime example
Schnapsen has a state-space around 1020, so even if a near
equilibrium strategy was computable within reasonable time,

it would take at least 10 exabytes to store it. Using state-space
abstraction [Johanson et al., 2013] EAAs may still be able
to find good strategies for larger problems, but they depend
on finding an appropriate simplification of manageable size.
So, we think it is still a worthwhile task to search for in-time
heuristics like PIMC that are able to tackle larger problems.

On the other hand, in the 2nd edition (and only there) of
their textbook, Russell and Norvig [Russell and Norvig, 2003,
p179] quite accurately use the term “averaging over clair-
voyancy” for PIMC. A more formal critique of PIMC was
given in a series of publications by Frank, Basin, et al. [Frank
and Basin, 1998b], [Frank et al., 1998], [Frank and Basin,
1998a], [Frank and Basin, 2001], where the authors show that
the heuristic of PIMC suffers from strategy-fusion and non-
locality producing erroneous move selection due to an over-
estimation of MAX’s knowledge of hidden information in fu-
ture game states. A further investigation of PIMC and why it
still works well for many games is given by Long et al. [Long
et al., 2010], trying to give three easily measurable proper-
ties of a game tree, meant to predict the success of PIMC in a
game. More recently overestimation of MAX’s knowledge is
also dealt with in the field of general game play [Schofield et
al., 2013]. To the best of our knowledge, all literature on the
deficiencies of PIMC concentrates on the overestimation of
MAX’s knowledge. Frank et al. [Frank and Basin, 1998a] ex-
plicitly formalize the “best defense model”, which basically
assumes a clairvoyant opponent, and state that this would be
the typical assumption in game analysis in expert texts. This
may be true for some games, but clearly not for all.

Think, for example, of a game of heads-up no-limit
hold’em poker playing an opponent with perfect information,
knowing your hand as well as all community cards before
they even appear on the table. The only reasonable strategy
left against such an opponent would be to immediately con-
cede the game, since one will not achieve much more than
stealing a few blinds. And in fact expert texts in poker do
never assume playing a clairvoyant opponent when analyzing
the correctness of the actions of a player.

In the following — and in contrast to the references above
— we start off with an investigation of the problem of over-
estimation of MIN’s knowledge, from which PIMC and its
known variants suffer. We set this in context to the best
defense model and show why the very assumption of it is
doomed to produce sub-optimal play in many situations. For
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Figure 1: PIMC Tree for XX

the purpose of demonstration we use the simplest possible
synthetic games we could think of. We go on defining two
new heuristic algorithms, first Presumed Payoff PIMC, tar-
geting imperfect information games decided within a single
hand (or leg), followed by Presumed Value PIMC for games
of imperfect information played in a sequence of hands (or
legs), both dealing with the problem of MIN overestimation.
Finally we do an experimental analysis on a simple synthetic
game, as well as the Central-European trick-taking card game
Schnapsen.

2 Background Considerations
In a 2-player game of imperfect information there are gen-
erally 4 types of information: information publicly available
(ιP ), information private to MAX (ιX ), information private to
MIN (ιI ) and information hidden to both (ιH ). To exemplify
the effect of “averaging over clairvoyancy” we introduce two
very simple 2-player games: XX with only two successive
decisions by MAX, and XI with two decisions, first one by
MAX followed by one of MIN. The reader is free to omit the
rules we give and view the game trees as abstract ones. Both
games are played with a deck of four aces, ♠A, ♥A, ♦A and
♣A. The deck is shuffled and each player is dealt 1 card, with
the remaining 2 cards lying face down on the table. ιP con-
sists of the actions taken by the players, ιH are the 2 cards
face down on the table, ιX the card held by MAX and ιI the
card held by MIN.

In XX, MAX has to decide whether to fold or call first.
In case MAX calls, the second decision to make is to bet,
whether the card MIN holds matches color with its own card
(match, both red or both black) or differs in color (diff).
Fig. 1 shows the game tree of XX with payoffs, assuming
without loss of generality that MAX holds ♠A. Modeling
MAX’s decision in two steps is entirely artificial in this ex-
ample, but it helps to keep it as simple as possible. The reader
may insert a single branched MIN node between A and C to
get an identically rated, non-degenerate example. Node C is
in fact a collapsed information set containing 3 nodes, which
is represented by vectors of payoffs in terminal nodes, repre-
senting worlds possible from MAX’s point of view. To the
right of the child nodes B and C of the root node the expected
payoff (ep) is given. It is easy to see that the only Nash equi-
librium strategy (i.e. the optimal strategy) is to simply fold
and cash 1.
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Figure 2: PIMC Tree for XI

To the left of node C, the evaluation of straight PIMC (for
better distinction abbreviated by SP in the following) of this
node is given, averaging over the payoffs in different worlds
after building the point-wise maximum of the payoff vectors
in D and E. We see that SP is willing to turn down an en-
sured payoff of 1 by folding, to go for an expected payoff
of 0, by calling and going for either bet then. The reason is
the well-known overestimation of hidden knowledge, i.e.: it
assumes to know ιI when deciding whether to bet on match-
ing or differing colors in node C, and thereby evaluates it to
an average payoff (ap) of 4

3 . Frank et al. [Frank and Basin,
1998b] analyzed this behavior in detail and termed it strategy-
fusion. We will call it MAX-strategy-fusion in the follow-
ing, since it is strategy-fusion happening in MAX nodes. The
basic solution given for this problem is vector minimax. In
MAX node C, vector minimax picks the vector with the high-
est mean, instead of building a vector of point-wise max-
ima for each world, i.e. the vector attached to C would be
either of (1, 1,−2) or (−1,−1, 2), not (1, 1, 2), leading to
the correct decision to fold. We list the average payoffs for
various agents playing XX on the left-hand side of Table
1. Looking at the results we see that a uniformly random
agent (RAND) plays worse than a Nash equilibrium strategy
(NASH), and SP plays even worse than RAND. VM stands
for vector minimax, but includes all variants proposed by
Frank et al., most notably payoff-reduction-minimax, vector-
αβ and payoff-reduction-αβ. Any of these algorithms solves
the deficiency of MAX-strategy-fusion in this example and
plays optimally.

Let us now turn to the game XI, its game tree given in
Fig. 2. The two differences to XX are that MAX’s payoff at
node B is −1, not 1, and C is a MIN (not a MAX) node. The
only Nash equilibrium strategy of the game is MAX calling,
followed by an arbitrary action of MIN. This leaves MAX
with an expected payoff of 0. Conversely, an SP player eval-
uates node C to the mean of the point-wise minimum of the
payoff vectors in D and E, leading to an evaluation of− 4

3 . So
SP always folds, since it assumes perfect knowledge of MIN
over ιX , which is just as wrong as the assumption on the dis-
tribution of information in XX. Put in another way, in such a
situation SP suffers from MIN-strategy-fusion. VM acts iden-
tically to SP in this game and, looking at the right-hand side
of Table 1, we see that both score an average of −1, playing
worse than NASH and even worse than a random player.
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XX — XI ANY
PPP 0 VM −1
SP 0 SP −1
RAND 1

2 RAND − 1
2

NASH 1 NASH 0
VM 1 PPP 0

Table 1: Average Payoffs for XX and XI

The best defense model [Frank and Basin, 1998a] makes
the assumptions that MIN has perfect information (A1), MIN
chooses strategy after MAX (A2) and MAX plays a pure
strategy (A3). Both, SP and VM (including all subsumed al-
gorithms), implicitly assume at least (A1). And it is this very
assumption, that makes them fail to pick the correct strategy
for XI, in fact they pick the worst possible strategy. So it is
the model itself that is not applicable here. While XI itself
is a highly artificial environment, similar situations do occur
in basically every reasonable game of imperfect information.
Unlike single-suit problems in Bridge, which were used as the
real-world case study by Frank et al., even in the full game of
Bridge there are situations where the opponent can be forced
to make an uninformed guess. This is exactly the situation
created in XI, and in doing so, one will get a better average
payoff than the best defense assumption suggests.

Going back to the game XI itself, let us for the moment
assume that MIN picks its moves uniformly at random (i.e. C
is in fact a random node). An algorithm evaluating this situa-
tion should join the vectors in D and E with a probability of 1

2
each, leading to a correct evaluation of the overall situation.
And since no knowledge is revealed until MIN has to take
its decision, this is a reasonable assumption in this particular
case. The idea behind the algorithms proposed in the follow-
ing is to drop assumption (A1) of facing a perfectly informed
MIN, and model MIN instead somewhere between a random
agent and a perfectly informed agent.

3 Presumed Payoff PIMC (PPP)
The primary approach of PIMC is to create possible perfect
information sub-games in accordance with the information
available to MAX. A situation from the point of view of MAX
consists of the tuple S = (ιP , ιX). Fixing some possible
states of (ιIj , ι

H
j ) in accordance with S one gets a perfect

information sub-game (or world) wj(S) = (ιP , ιX , ιIj , ι
H
j ).

Table 2 lists all worlds evaluated in the games XX and XI.
Vector minimax tackles the problem of MAX–strategy–

fusion by operating on vectors of evaluations according to
the different states of ιIj . A similar method to tackle MIN–
strategy–fusion in MIN nodes is not possible since in ev-
ery perfect information sub-game the information private to
MAX is ιX , the actual version of information private to MAX
usually not known to MIN. So, we have to take a quite differ-
ent approach.

Recently, Wisser [Wisser, 2013] introduced Error Allow-
ing Minimax (EAM), an extension of the classic minimax al-
gorithm. It defines a custom operator for MIN node evalua-
tion to provide a generic tie-breaker for equally rated actions
in games of perfect information. The basic idea of EAM is

World ιP ιX ιIj ιHj
w1 — ♠A ♥A ♦A,♣A
w2 — ♠A ♦A ♥A,♣A
w3 — ♠A ♣A ♥A,♦A

Table 2: Worlds Evaluated by PIMC in XX and XI

to give MIN the biggest possible opportunity to make a deci-
sive error. By a decisive error we mean an error leading to a
game-theoretically unexpected increase in the games payoff
for MAX. To be more specific, the EAM value for MAX in a
node H is a triple (mH , pH , aH). mH is the standard mini-
max value. pH is the probability for an error by MIN, if MIN
was picking its actions uniformly at random. Finally aH is
the guaranteed advancement in payoff (leading to a payoff of
mH + aH with aH ≥ 0 by definition of EAM) in case of
any decisive error by MIN. The value pH is only meant as a
generic estimate to compare different branches of the game
tree. pH — seen as an absolute value — does not reflect the
true probability for an error of a realistic MIN player in a
perfect information situation. What it does reflect is the prob-
ability for a decisive error by a random player, which serves
our purpose perfectly. One of the nice features of EAM is that
it calculates its values entirely out of information encoded in
the game tree. Therefore, it is applicable to any N -ary tree
with MAX and MIN nodes and does not need any specific
knowledge of the game or problem it is applied to. We will
use EAHYB [Wisser, 2013], an EAM variant with very ef-
fective pruning capabilities. EAHYB furthermore allows to
switch to standard αβ evaluation at a selectable tree depth
given as the number of MIN nodes that should be evaluated
with EAM. The respective function eahyb returns an EAM
value given a node of a perfect information game tree.

To define Presumed Payoff Perfect Information Monte
Carlo Sampling (PPP) we start off with a 2-player, zero-sum
game G of imperfect information between MAX and MIN.
As usual we take the position of MAX and want to evaluate
the possible actions in an imperfect information situation S
observed by MAX. We take the standard approach to PIMC.
We create perfect information sub-games

wj(S) = (ιP , ιX , ιIj , ι
H
j ), j ∈ {1, . . . , n}

in accordance with S. In our implementation wj are not
chosen beforehand, but created on-the-fly using a Sims table
based algorithm introduced by Wisser [Wisser, 2010], allow-
ing seamless transition from random sampling to full explo-
rations of all perfect information sub-games, if time to think
permits. Let N be the set of nodes of all perfect information
sub-games of G. For all legal actions Ai, i ∈ {1, . . . , l} of
MAX in S let S(Ai) be the situation derived by taking action
Ai. For allwj we get nodes of perfect information sub-games
wj(S(Ai)) ∈ N and applying EAHYB we get EAM values

eij := eahyb(wj(S(Ai))).

The last ingredient we need is a function k : N → [0, 1],
which is meant to represent an estimate of MIN’s knowledge
over ιX , the information private to MAX. For all wj(S(Ai))
we get a value kij := k(wj(S(Ai))). While all definitions
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we make throughout this article would remain well-defined,
we still demand 0 ≤ kij ≤ 1, with 0 meaning no knowl-
edge at all and 1 meaning perfect information of MIN. Con-
trary to the EAM values eij , which are generically calculated
out of the game tree itself, kij have to be chosen ad hoc in a
game-specific manner, estimating the distribution of informa-
tion. At first glance this seems a difficult task to do, but as we
shall see later, a coarse estimate suffices. We allow different
kij for different EAM values, since different actions of MAX
may leak different amounts of information. This implicitly
leads to a preference for actions leaking less information to
MIN. For any pair eij = (mij , pij , aij) and kij we define
the extended EAM value xij := (mij , pij , aij , kij). After
this evaluation step we get a vector xi := (xi1, . . . , xin) of
extended EAM values for each action Ai.

To pick the best action we need a total order on the set of
vectors of extended EAM values. So, let x be a vector of n
extended EAM values:

x =

(
x1
· · ·
xn

)
=

(
(m1, p1, a1, k1)

· · ·
(mn, pn, an, kn)

)
(1)

We define three operators pp, ap and tp on x as follows:

pp(xj) := kj ·mj+

+(1− kj) ·
(
(1− pj) ·mj + pj · (mj + aj)

)
= mj + (1− kj) · pj · aj

pp(x) :=

∑n
j=1 pp(xj)

n

ap(x) :=

∑n
j=1mj

n

tp(x) :=

∑n
j=1

(
(1− pj) ·mj + pj · (mj + aj)

)
n

(2)

The presumed payoff (pp), the average payoff (ap) and the
tie-breaking payoff (tp) are real numbers estimating the ter-
minal payoff of MAX after taking the respective action. For
any action A with associated vector x of extended EAM val-
ues the following propositions hold:

ap(x) ≤ pp(x) ≤ tp(x)

kj = 1, ∀j ∈ {1, . . . , n} ⇒ ap(x) = pp(x)

kj = 0, ∀j ∈ {1, . . . , n} ⇒ pp(x) = tp(x)

(3)

The average payoff is derived from the payoffs as they come
from standard minimax, assuming to play a clairvoyant MIN,
while the tie-breaking payoff implicitly assumes no knowl-
edge of MIN over MAX’s private information. The presumed
payoff lies somewhere in between depending on the choice of
all kj , j ∈ {1, . . . , n}.

By the heuristic nature of the algorithm, none of these val-
ues is meant to be an exact predictor for the expected pay-
off (ep) playing a Nash equilibrium strategy, which is re-
flected by their names. Nonetheless, what one can hope to
get is that pp is a better relative predictor than ap in game
trees where MIN-strategy-fusion happens. To be more spe-
cific, pp is a better relative predictor if for two actions A1

and A2 with ep(A1) > ep(A2) and associated vectors x1

and x2, pp(x1) > pp(x2) holds in more situations than
ap(x1) > ap(x2) does.

Finally, for two actions A1, A2 with associated vectors
x1, x2 of extended EAM values we define

A1 ≤ A2 :⇔
(
pp(x1) < pp(x2)

)
∨(

pp(x1) = pp(x2) ∧ ap(x1) < ap(x2)
)
∨(

pp(x1) = pp(x2) ∧ ap(x1) = ap(x2)∧
tp(x1) ≤ tp(x2)

) (4)

to get a total order on all actions, the lexicographical order by
pp, ap and tp.

Going back to XI (Fig. 2), the extended EAM-vectors of
child nodes B and C of the root node are

xB =

(
(−1, 0, 0, 0)
(−1, 0, 0, 0)
(−1, 0, 0, 0)

)
, xC =

(
(−1, 0.5, 2, 0)
(−1, 0.5, 2, 0)
(−2, 0.5, 4, 0)

)

The values in the second and third slot of the EAM entries
in xC are picked by the min operator of EAM, combining
the payoff vectors in D and E. E.g. (−1, 0.5, 2, 0): If MIN
picks D MAX looses by −1, but with probability 0.5 it picks
E leading to a score of−1+2 for MAX. Since the game does
not allow MIN to gather any information on the card MAX
holds, we set all knowledge values to 0. For both nodes, B
and C we calculate their pp value and get pp(xB) = −1 <
0 = pp(xC). So contrary to SP and VM, PPP correctly picks
to call instead of folding and plays the NASH strategy (see
Table 1). Note that in this case pp(xC) = 0 even repro-
duces the correct expected payoff, which is not a coincidence,
since all parameter in the heuristic are exact. In more com-
plex game situations with other knowledge estimates this will
generally not hold. But PPP picks the correct strategy in this
example as long as kC1 = kC2 = kC3 and 0 ≤ kC1 <

3
4

holds, since pp(xB) = −1 for any choices of kBj and
pp(xC) = − 4

3kC1. As stated before, the estimate on MIN’s
knowledge can be quite coarse in many situations. To close
the discussion of the games XX and XI, we once more look at
the table of average payoffs (Table 1). While SP suffers from
both, MAX-strategy-fusion and MIN-strategy-fusion, VM re-
solves MAX-strategy-fusion, while PPP resolves the errors
from MIN-strategy-fusion.

We close this section with a few remarks. First, while
VM (meaning all subsumed algorithms, including the αβ-
variants) increases the computational costs in relation to SP
by roughly one magnitude, PPP only does so by a fraction.
Second, we checked all operators needed for VM as well as
for EAM and it is perfectly possible to redefine these oper-
ators in a way that both methods can be blended in one al-
gorithm. Third, while reasoning over the history of a game
may expose definite or probabilistic knowledge of parts of ιI ,
we still assume all worlds wj to be equally likely, i.e. we do
not model the opponent. If one decides to use such modeling
by associating a probability to each world, the operators de-
fined in equation (2) (and in the following equation (5)) can
be modified easily to reflect these probabilities.
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4 Presumed Value PIMC (PVP)

In most games of imperfect information a match is not de-
cided within a single hand (or leg), e.g. Tournament Poker,
Rubber Bridge or Schnapsen, to reduce the influence of pure
luck. The strategy picked by an expert player in a particular
hand may heavily depend on the overall match situation. To
give two examples, expert poker players in a no-limit heads-
up match pick very different strategies depending on the dis-
tribution of chips between the two players. For certain match
states in Rubber Bridge expert texts give the advice to make
a bid for a game, which cannot possibly be won, just to save
the Rubber.

Presumed Value Perfect Information Monte Carlo Sam-
pling (PVP) takes these match states into account, to decide
on when to take which risk. So, for a game letM be the set
of possible match states from MAX’s point of view, i.e. the
match score between different hands. For each match state
M ∈ M we need a probability P (M) that MAX is going
to win the match from that state. These probabilities might
either be estimated ad hoc, or gathered from observation of
previous matches. For a match state M ∈ M and a payoff
m in a particular hand, let Mm be the match state reached, if
MAX scores m in this hand. Now, for a vector x of extended
EAM values as given in definition (1), we define

pv(xj) :=kj · P (Mmj
) + (1− kj)·

·
(
(1− pj) · P (Mmj

) + pj · P (Mmj+aj
)
)

pv(x) :=

∑n
j=1 pv(xj)

n

av(x) :=

∑n
j=1 P (Mmj

)

n

tv(x) :=

∑n
j=1

(
(1−pj)·P (Mmj )+pj ·P (Mmj+aj )

)
n

(5)

PVP works exactly like PPP, except for the operators pp, ap
and tp defined in (2) being replaced by the operators pv, av
and tv respectively. In the definition of the total order applied
to possible actions in definition (4), the operators are replaced
likewise.

The presumed value (pv), the average value (av) and the
tie-breaking value (tv) are estimates for the probability to
win the match from a match state reached by scoring the re-
spective payoff. pv takes into account, that the match state
reached might not only be Mmj

, but the better match state
Mmj+aj

with a probability pj given by the EAM values and
depending on the estimated knowledge kj of MIN. Given that
the consistency condition for the probabilities P (Mmj+aj ) >
P (Mmj ) holds, which means that a higher payoff in this hand
leads to a match state with a higher probability to win from,
all statements in equation (3) hold for the respective operators
in equation (5) as well. pv, av and tv are now in relation to
the expected value ev to win the overall match taking the
action in question. What has been stated for the predictive
qualities of pp, ap and tp with respect to ep remains true
for pv, av and tv with respect to ev.

Figure 3: Experimental Results from Kinderschnapsen

5 Trick Taking Card Games — A Case Study
The first case study is performed with a synthetic trick-taking
cards game, which we call Kinderschnapsen. It is a stripped
down version of Schnapsen. The aim was to simplify the
game as far as possible, while leaving enough strategic rich-
ness to give an interesting example. Kinderschnapsen is a
2-player, zero-sum game of strategy with imperfect informa-
tion but perfect recall with an element of chance. Its rules can
be found online1.

We measured the parameters described by Long et
al. [Long et al., 2010] to predict the success of SP in this
game. The parameters were measured using random play
in 100000 games, similar to the methods used for Skat and
Hearts by Long et al. We found a bias of b = 0.33, a dis-
ambiguation factor of df = 0.41 and a leaf correlation of
lc = 0.79, indicating that SP is already strong in this game.

Fig. 3 summarizes the experimental results from Kinder-
schnapsen. The left-hand side shows different AI agents play-
ing an SP player. Each result was measured in a tournament
of 100000 matches. This huge number was chosen in order
to get statistically significant results in a game where luck
plays an important role. Alongside each result we give the
Agresti-Coull confidence interval [Agresti and Coull, 1998]
to a confidence level of 98% as error bars, to check statistical
significance. The 50% line is printed solid for easier checking
of superiority (confidence interval entirely above), inferiority
(confidence interval entirely below) or equality (confidence
interval overlaps). The knowledge estimate used for PVP was
set to k = k′ + (1 − k′) h

N , with k′ a configurable minimal
amount of knowledge of MIN over ιX , h the number of cards
in MAX’s hand and N the number of cards MIN has not seen
during the game so far. Using eahyb we set the depth at
which it switches to standard αβ evaluation to 5. The proba-
bilities for winning a match from a given match state needed
for PVP is estimated ad hoc, but replaced by the measured
frequency during the course of a tournament.

So, in the left-hand side of Fig. 3 we see that PVP with
a minimal amount of knowledge set to k′ = 0 plays best
against SP, winning around 53.6% of all matches. This seems

1http://www.doktorschnaps.at/index.php?page=ks-rules-english
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a humble advantage, but given the simplicity of the game
with even a random player winning around 12% against SP
and SP already playing the game well, it is a good improve-
ment over SP. PVP with k′ = 0.5 shows that the knowledge
estimate can be chosen quite coarsely. PPP still defeats SP
with high statistical significance, but has only a slight advan-
tage. We also adopted and implemented variants of payoff-
reduction-minimax (PRM) and vector-minimax (VM), scal-
ing to the game of Kinderschnapsen. While PRM performs
slightly better than VM both are inferior to SP. Furthermore
we implemented Monte Carlo Tree Search (MCTS), an al-
gorithm not following the PIMC approach which has been
successfully applied to perfect information as well as imper-
fect information games (see e.g. [Browne et al., 2012]). After
some tests we had to conclude that it does not perform well
in Kinderschnapsen against PIMC–based agents. The best
MCTS agent, running 1000 iterations at any decision with
a UTC parameter set to

√
2 only won 36.9% of its matches

against SP.
The right-hand side of Fig. 3 gives one of the reasons, why

PVP performs better than PPP, SP, PRM, VM and MCTS.
Kinderschnapsen, as well as Schnapsen, allows an action re-
ferred to as closing the stock, which allows winning a game
by a higher score but failing to win from closing is punished
by a high score in favor of the opponent. Looking at the suc-
cess of a player after closing the stock gives a good insight on
the risk a player is willing to take and how good it judges its
chances to win from that point on. Each bar gives the number
of match points scored after the respective player closed the
stock, with the solid black part showing the points won and
the shaded part the points lost (mention that the scale of the
y-axis starts at 140k). While PPP scores the most points of
all agents by closing, it also looses nearly 56k points in doing
so. PVP (with k′ = 0) looses the least points from closing by
far with only 32k, still winning over 200k points. Out of all
algorithms under consideration, PVP judges its risks best. To
close the discussion of Kinderschnapsen let us note that PVP
increases evaluation time by roughly 30% compared to SP,
while PRM and VM increase it by 600%.

The second test case was the Central-European trick-taking
card game Schnapsen, a 2-player, zero-sum game of strat-
egy with imperfect information but perfect recall with an ele-
ment of chance. Although it is played with only 20 cards, its
state-space contains an estimated 1020 different states. The
size of the state-space moves calculation or approximation
of game theoretic optima out of reach. We follow the usual
tournament rules2. We have chosen this game for two rea-
sons. First, and most importantly, we have access to an on-
line platform (www.doktorschnaps.at, DRS) playing
Schnapsen against human experts. We were allowed to use
our algorithm to back up the AI, to give a reasonably large
set of matches against human experts to judge its strength.
Second, it is well suited for a PIMC approach as was shown
already in a large number of matches against human experts,
allowing a comparison of PVP against SP in a field where SP
is already a strong challenge for human players.

Fig. 4 shows the results of PVP, PPP and SP against each

2http://www.doktorschnaps.at/index.php?page=rules-english

Figure 4: Experimental Results from the Game Schnapsen

other and against human players. For PVP the knowledge
was set similarly to Kinderschnapsen with k′ = 0, an EAM
tree depth for eahyb starting at 1 increasing to∞ during the
course of a hand and probabilities to win a match from a given
state compiled from measured frequencies of earlier matches
of DRS. The 2 bars on the left show the results of PVP and
PPP against the SP agent in tests over 30000 matches (all er-
ror bars still to a confidence level of 98%). Both show signif-
icant superior performance over SP, PVP showing the larger
gain in performance winning slightly above 53.2%.

DRS played against human players by SP until January
2014 (∼ 9500 matches), by PPP from February to Septem-
ber 2014 (∼ 5800) and by PVP from October 2014 to date
(∼ 3500). All AI agents are given 6 seconds per decision
which may be exceeded once per game if less than 7 perfect
information sub-games were evaluated (in most stages of the
game all agents respond virtually instantaneously). Human
players have a time limit of 3 minutes per action and contrary
to usual tournament rules are allowed to look at all cards al-
ready seen at any time and their trick points are calculated
and displayed in order to prevent loosing by bad memory or
miscalculation. All bars besides the 2 rightmost in Fig. 4 are
compiled from machine vs. human games with the group of
3 thicker bars representing machine vs. humanity (HY) and
each group of 3 thinner bars representing machine vs. a spe-
cific human player (HN). We give the results of the best indi-
viduals having played enough matches to get results of statis-
tical significance. While SP already showed significant supe-
riority against humanity winning 53.8% of all games, individ-
ual human players managed to be on par with it, with the best
player loosing only 48.6% against SP. PPP does better than
SP against humanity as well as each individual, but is still
on par with some players. PVP does best winning 58.9% of
its games against humanity and defeating any human player
facing it with high statistical significance. This is, PVP did
not win less than 56.5% against any human player (includ-
ing experts in the game) having played enough games to get
significant results, which lets us conclude that PVP shows su-
periority over human expert-level play in Schnapsen. To gain
insight on the difference between PVP and SP we looked at
over 130k decisions PVP has already taken in matches against
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humans. In 17.4% PVP picks different actions than SP would,
with pv overruling av in 15.9% and tv tie-breaking av in
1.5% of actions.

A further proof of PVP’s abilities was given evaluating 110
interesting situations from Schnapsen analyzed by a human
expert3. Out of these 110 situations PVP agreed with human
expert analysis in 101 cases. In some of the remaining 9 cases
PVP’s evaluation helped to discover errors in the expert anal-
ysis.

6 Conclusion and Future Work
Dropping the assumptions of the best defense model to play
versus a clairvoyant opponent increases the performance of
SP in trick-taking card games, with PVP playing above hu-
man expert-level in Schnapsen. Opposed to equilibrium ap-
proximation approaches (EAA) PVP does not need any pre-
calculation phase, nor large amounts of storage for its strat-
egy. It is capable of taking its decision just-in-time in games
with large state-spaces.

We implemented PPP for heads-up limit hold’em total
bankroll, to get a case study in another field. Unfortunately
the next annual computer poker competition (ACPC) will be
held in 2016 and we were unable to organize a match up with
one of the top agents of ACPC 2014 so far. We implemented
a very simple version of a counter factual regret (CFR) agent.
CFR was the approach that produced the best agents in the
ACPCs of the last years. Our CFR agent uses the coarsest
possible game abstraction, so it is only meant as a reference
and not as a competitive agent. The average payoff per game
of PPP vs. CFR was four times as high as that of SP vs. CFR.

We are looking forward to take part in the annual computer
poker competition (ACPC) with PPP/PVP agents to see their
performance against top equilibrium approximation agents.
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