
Optimal Pricing for the Competitive and Evolutionary Cloud Market

Bolei Xu
The University of Nottingham Ningbo China

Bolei.Xu@nottingham.edu.cn

Tao Qin
Microsoft Research

taoqin@microsoft.com

Guoping Qiu
The University of Nottingham Ningbo China

Guoping.Qiu@nottingham.edu.cn

Tie-Yan Liu
Microsoft Research

tyliu@microsoft.com

Abstract

We study the problem of how to optimize a cloud
service provider’s pricing policy so as to better
compete with other providers. Different from pre-
vious work, we take both the evolution of the mar-
ket and the competition between multiple cloud
providers into consideration while optimizing the
pricing strategy for the provider. Inspired by the
real situations in today’s cloud market, we con-
sider a situation in which there is only one provider
who actively optimizes his/her pricing policy, while
other providers adopt a follow-up policy to match
his/her price cut. To compute optimal pricing pol-
icy under the above settings, we decompose the
optimization problem into two steps: (1) When
the market finally becomes saturated, we use Q-
learning, a method of reinforcement learning, to
derive an optimal pricing policy for the stationary
market; (2) Based on the optimal policy for the sta-
tionary market, we use backward induction to de-
rive an optimal pricing policy for the situation of
competition in an evolutionary market. Numeri-
cal simulations demonstrate the effectiveness of our
proposed approach.

1 Introduction
In recent years, cloud computing has become very popular
and been accepted by both enterprise users and personal users
since it can provide economical, scalable, and elastic access
to computing resources over Internet [Armbrust et al., 2010].
The global cloud computing market is expected to grow at a
30% CAGR reaching $270 billion in 2020.1 Many firms have
entered the cloud market as service providers to compete for
hundreds of billions of dollars [Buyya et al., 2008]. Given the
fierce competition in the cloud market, it is crucial for a cloud
provider to find an appropriate pricing policy to maximize the
long-run profit and also remain attractive to cloud users.

1http://www.marketresearchmedia.com/?p=839, retrieved Nov.
5, 2014.

However, it is a very challenging task for a cloud provider
to optimize his/her pricing policy mainly because of two rea-
sons. First, the cloud market is non-stationary. The market
grows very fast in recent years before eventually becoming
saturated.2 The optimization of pricing policies needs to con-
sider market dynamics and the long-run profit of the cloud
provider. Second, there are usually multiple providers of-
fering very similar cloud services. The competition between
providers who offer similar services plays an important role
for pricing policy optimization.

In this work, we study the problem of pricing policy op-
timization in the cloud market by considering both the com-
petition between providers and the evolution of the market.
Specifically, we first model an evolutionary cloud computing
market where the growth rate of the number of users is chang-
ing over different market stages and the demand of individual
users is affected by the price. Then we formulate the market
competition as a multiple-stage game in which we assume an
active provider is competing with other reactive competitors
who adopt the follow-up pricing policy. When performing
pricing optimization for the active provider under the above
settings, to handle the evolution of the cloud market, we de-
compose the optimization problem into two steps. In the first
step, we consider the situation when the market evolves to
saturation (stationary market) and apply a well-established
method of reinforcement learning — Q-learning, to find out
an optimal policy for the provider. In the second step, based
on the optimal policy obtained for the stationary market, we
use backward induction to find an optimal pricing policy for
the situation when the market is still evolving and the environ-
ment is non-stationary. We carry out a large set of numerical
experiments and show that our proposed approach can help a
provider to achieve much better profit against his/her reactive
opponents than other simple pricing policies.

Our main contributions are threefold:
(1) To the best of our knowledge, it is the first work to

model and analyze an evolutionary cloud computing market.
Rather than computing an equilibrium price for a one-shot

2In this paper, we assume that the cloud market will eventually
become saturated. This is reasonable, since we have observed the
same trend in many related markets, e.g., the PC market gradually
becomes saturated in recent years.

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

139

game as in some existing works, we focus on the optimal
pricing policy for a provider to adapt his/her price to different
market stages and maximize the long-run profit.

(2) By combining Q-learning with backward induction, we
propose a simple yet effective method to find an optimal pric-
ing policy for a provider.

(3) We conduct a series of numerical experiments, which
provide important insights into how the competition between
cloud providers leads to the market evolution over stages.

2 Related work
How to optimize pricing policy for profit maximization in the
cloud market has attracted much research attention recently.
[Feng et al., 2013] propose a non-cooperative competition
model in a cloud market and target at selecting an optimal
price to compete with others. However, they only focus on
computing an equilibrium price for one-shot game and do not
consider long-run profit maximization.

[Xu and Li, 2013] formulate the revenue maximization
problem in cloud computing as a finite-horizon stochastic dy-
namic program with stochastic demand arrivals and depar-
tures. [Kantere et al., 2011] consider the relationship be-
tween user demand and price, and solve the revenue maxi-
mization problem by a dynamic pricing scheme. However,
these two works assume that there is only one provider in the
cloud market and ignore the fierce competition among multi-
ple providers in today’s cloud industry.

[Vengerov, 2008] adopt a reinforcement learning approach
to compute the dynamic pricing policy in the grid computing
market in which customers make purchase decisions based
on the posted price. [Xu and Li, 2013] extend their previous
work [Xu and Li, 2012] to consider the infinite time setting
in the cloud market and optimize the dynamic pricing pol-
icy also by means of reinforcement learning. However, these
works only analyze how the pricing policy would influence
demand and disregard the competition among providers.

[Truong-Huu and Tham, 2013] study the problem of long-
run profit maximization given the competition among cloud
providers and optimize the dynamic pricing policy by means
of Markov Decision Process. However, they only consider
a stationary market and assume that the number of users in
the market is fixed and does not change over market develop-
ment. Therefore their model does not match today’s evolu-
tionary cloud industry.

In our work, we consider both the competition and evo-
lution in the cloud market which are not covered by these
aforementioned works. In this regard, our work can describe
today’s cloud market in a more accurate and practical manner.

3 Problem Modeling
We consider a cloud market with K providers who are com-
peting for users by offering cloud services. For simplicity, we
assume there is only one type of service.3 We formulate the
competition among providers as an infinite sequential game:

3Our model and algorithms can be easily generalized to the case
with multiple types of services, e.g., different configurations of vir-
tual machines.

• At the beginning of each stage, one proactive provider
sets his/her price according to some pricing policies.
The other providers adopt a follow-up pricing policy to
passively update their prices.
• Cloud users purchase services from one of the providers,

based on the price and their personal preferences. A user
will choose none of the providers if his/her utility is neg-
ative for all the providers.

3.1 Market Evolution
Today’s cloud market is facing fast growth [Zhang et al.,
2010] and thus in this paper we consider two kinds of growth:
the increased number of cloud users and the increased de-
mand of each individual cloud user.

Increased number of cloud users
We use the classical logistic growth function [Pearl and Reed,
1920] to model the growth of the number of cloud users:

N (t) =
N0N∞

N0 + (N∞ −N0)e−κt
, (1)

where N0 is the initial population, N (t) denotes the number
of cloud users in the market at stage t, N∞ is the saturated
population in the market, and κ is the temporal evolution rate
of the market.

The above equation indicates that the growth rate of the
cloud market is changing over stages. At the initial devel-
opment stage of the market, users have little understanding
and many concerns about cloud computing, and thus the ini-
tial population and growth rate are both low. As the market
evolves, users become well educated by the market promotion
of providers and the word of mouth of early cloud users, and
thus users are aware of the benefit that the cloud could bring
to them. In this stage, the growth of user number is approx-
imately exponential. Then, the market is gradually saturated
and the growth rate slows down, which means there are fewer
new arrivals to the market since most users have already been
using the cloud service in their daily work and life. Finally,
the market becomes stationary and the number of users con-
verges.

Increased demand of each user
We assume the demand of an individual user negatively cor-
relates with the market price. Let dj,t denote the demand of
user j at stage t, which is a random variable that follows an
exponential distribution with expectation

λt =
Λ

1
K

∑K
i=1 pi,t−1

, (2)

where pi,t−1 is the price set by provider i at stage t− 1, Λ is
a constant parameter. That is, the average price of cloud ser-
vices will affect the expected demand of an individual user:
a higher average price in the previous stage would lead to a
lower average user demand and a lower average price would
increase average user demand.

When the demand of a cloud user is satisfied, he/she can
extract value from the cloud service and need to pay the cloud
provider. Let θj denote the marginal value that the user can
extract from per-unit of the cloud service. We assume that the

140

marginal values of all the users are independent random vari-
ables and follow a uniform distribution [Jiang et al., 2007].
The utility utj,i of the user j by choosing provider i is defined
as

utj,i = dj,t(θj − pi,t + τj,i), (3)

where τj,i denotes user j’s preference towards provider i and
is assumed to be a random variable that follows a gamma dis-
tribution [Ma et al., 2011]. When a user enters the cloud mar-
ket, he/she will choose the provider from whom he/she can
obtain the largest positive utility. He/she will not choose any
provider if utj,i ≤ 0, ∀i.

3.2 Market Competition
In today’s cloud market, it is very rare for any provider to
increase the price. For instance, there are five times of price
reduction for the AWS EC2 m1.small instance(the oldest on-
demand instance supported by Amazon) from the year of
2006 to 2014 and the price of virtual instances in Amazon
EC2 never increased from its very beginning to date 4. There-
fore we assume that a provider can only cut down the price or
remain the same as in the previous stage.

Provider’s utility
While a provider can earn revenue from cloud users, it also
needs to pay for the cost of offering cloud services. Let ci,t
denote the marginal operational cost, which is a kind of vari-
able cost of maintaining the infrastructure and providing the
service (e.g., hardware, power, facilities, etc). It means that
a provider has to pay an amount of ci,t to offer a unit ser-
vice at stage t [Adams et al., 2009]. We model the marginal
operational cost as

ci,t = ci,0(
∑
j∈Ni,t

dj,t)
−βe−ηt, (4)

where ci,0 is the initial cost of provider i, Ni,t is the set of
users choosing provider i at stage t, and β > 0 and η > 0 are
two parameters [Jung and Klein, 2001]. The above equation
indicates that (1) when the demand received by a provider in-
creases, the marginal operational cost decreases because of
economies of scale, and (2) the marginal cost also has a tem-
poral decaying factor which can be interpreted as the con-
sequence of the technology development and the decreasing
cost of hardware.

The immediate profit of provider i at stage t can be written
as

ri,t =
∑
j∈Ni,t

dj,t(pi,t − ci,t). (5)

The long-run profit of provider i at stage t is defined by
discounting the future profit into the current stage by a fact
γ ∈ (0, 1), as follows:

Ri,t =
∞∑
j=t

γj−tri,t. (6)

4Retrieved from Amazon web services blog (http://
aws.typepad.com/aws/price-reduction/)

Providers’ strategies
The goal of the proactive provider is to maximize the long-
run profit through an appropriate pricing policy. Without
loss of generality, we assume Provider 1 is the only proac-
tive provider. For the reactive providers, we assume that they
do not optimize their utilities and just simply adopt a follow-
up policy. Please note that such a follow-up policy is actually
very real and is being adopted by many mainstream cloud
providers today. For example, in March 2014, after Google’s
price reduction for its cloud services, Amazon quickly cut
the price down in response and Microsoft immediately an-
nounced that they will match with Amazon’s price cuts 5.

In our model, we study two kinds of follow-up policies for
the reactive providers:

• Absolute follow-up. Reactive providers follow the ab-
solute price cut of the proactive provider: pi,t(∆1,t) =
max(ω, pi,t−1 −∆1,t), where ∆1,t = p1,t−1 − p1,t and
ω is the threshold price, which indicates the lowest price
a reactive provider is willing to sell.

• Relative follow-up: Reactive providers follow the rel-
ative price cut of the proactive provider: pi,t(Θ1,t) =

max(ω, pi,t−1(1 − Θ1,t)), where Θ1,t =
p1,t−1−p1,t
p1,t−1

is
the relative price cut of the proactive provider at stage t .

4 Pricing Policy Optimization
In this section, we will stand on the viewpoint of the proac-
tive provider, i.e., Provider 1, and study how to use reinforce-
ment learning techniques to optimize his/her pricing policy
for long-run profit maximization. Because we are considering
an evolutionary market, we cannot directly apply reinforce-
ment learning as done by [Truong-Huu and Tham, 2013] to
our problem, and need some novel methods to spin the wheel.
In particular, we notice that as the cloud market evolves, it
will eventually become mature and stationary. On this basis,
we can decompose the solution of an optimal pricing policy
into two steps: applying reinforcement learning techniques to
find an optimal pricing policy when the market becomes sta-
tionary, and then using backward induction to find an optimal
pricing policy when the market is still evolving.

4.1 Q-learning for a Stationary Market
At each stage, the proactive provider needs to make a decision
about how to change his/her price, based on the latest price
of all the providers in the market and the market size. Thus
the market environment at one stage can be represented by
a tuple of K prices in the previous stage and the number of
cloud users at this stage s = (ps1, · · · , psK , ns). Since both the
price and the user number take discrete values, all the possible
environments can be represented by a set of discrete states S.

From Eq. (1) we can see that when t is sufficiently large,
the number of users in the cloud market will converge toN∞,
indicating that the market has become stationary. In this situa-
tion, the optimal pricing problem can be modeled as a Markov

5http://www.pcworld.com/article/2138320/microsoft-slashes-
azure-prices-introduces-new-basic-tier.html,
retrieved Oct. 20, 2014

141

Decision Process (MDP) and many methods such as value it-
eration and policy iteration [Sutton and Barto, 1998] can be
used to find an optimal pricing policy. Here we adopt the Q-
learning technique [Watkins, 1989] because it can enable us
to easily extend our approach to solve more realistic problems
in the future, especially on calculating optimal policy in the
uncertain market environment. For example, when the user
demand function is unknown, the reward for each state can-
not be recognized beforehand by the provider. In this case,
Q-learning is still able to find out an optimal policy as it only
needs to know what states exist and what actions are possi-
ble in each state, while the value iteration and policy iteration
cannot work any longer because they require exact reward in-
formation for each state.

Denote Q(s, a) as the discounted long-run expected profit
when the proactive provider takes action a in state s . We
use a table to represent the Q(s, a) function [Kaelbling et
al., 1996], which contains the value for every possible state-
action pair. In our scenario, the state s is equivalent to the
price of the proactive provider in the previous stage, because
(1) the number of users ns in the state is a constant when
the market is stationary, and (2) the price of all the other
providers can be simply inferred from the price of the proac-
tive provider due to the follow-up policy. Similarly the action
a is equivalent to the price change of the proactive provider
in this stage.

Algorithm 1 shows how Q-learning works in our setting.
We first initialize the table (line 1). Then we repeat the fol-
lowing update procedure (lines 2-17). For each state s, we
randomly take an action a with probability ε (lines 4-6) and
take the action a maximizing Q(s, a) with probability 1 − ε
(lines 7-9). After taking action a in state s, the users choose
providers (line 10) and the proactive provider receives an im-
mediate reward r(s, a) which is calculated by (5) and the new
state is denoted as s ′. Then we update Q(s, a) in the table ac-
cording to the following equations (lines 11-12):

∆Q(s, a) = α[r(s, a) + γmax
a′

Q(s′, a′)−Q(s, a)] (7)

Q(s, a) :← Q(s, a) + ∆Q(s, a) (8)
where γ is the discount factor and α is the learning rate [Sut-
ton and Barto, 1998]. We terminate the update procedure if
the table converges (lines 14-16).

When we obtain the convergent table, an optimal policy
can be easily found by choosing the action with the highest
expected profit Q(s, a) in any state s.

4.2 Backward Induction for an Evolutionary
Market

After obtaining an optimal pricing policy when the market
is stationary and the optimal expected profit for each state-
action pair, we adopt backward induction to find an optimal
pricing policy when the market is still evolving by leveraging
the convergent table Q.

Let T denote a stationary stage of the market, r(p, a, t)
denote the immediate profit of the proactive provider at stage
t by taking action a (setting new price as a) given the price
p of the previous stage t − 1, R(p, t) denotes the optimal
expected profit that the proactive provider can achieve at stage

Algorithm 1 Q-learning for a stationary market
Input:

The number of cloud usersN∞ in the stationary market;
The set of all possible price P and the set of all possible actionsA;
Exploration rate ε, discount factor γ, stop criteria δ ;

Output:
A convergent tableQ;

1: Initialize the tableQ to all zeros;
2: for j = 1, 2, · · · do
3: for each state s do
4: ξ ← rand(0..1)
5: if ξ < ε then
6: Select a randomly;
7: else
8: a← arg maxaQ(s, a);
9: end if
10: Users choose their provider by Eq. (3);
11: Compute ∆Q(s, a) according to Eq. (7);
12: UpdateQ(s, a) according to Eq. (8);
13: end for
14: if maxs,a ∆Q(s, a) < δ then
15: Terminate;
16: end if
17: end for

t given the price p of the previous stage, and A(p, t) denote
the optimal action (price) that the proactive provider should
take at stage t given the price p of the previous stage.

Algorithm 2 shows how backward induction can find an
optimal pricing policy for an evolutionary market. Specifi-
cally, by using the convergent tableQ outputted by Algorithm
1, we can directly find the optimal action and expected profit
at stage T for any given previous price p (lines 1-2). Then
we do backward induction (lines 3-8). At each stage t, given
the previous price p, we can find the optimal action and ex-
pected profit (lines 4-7) by leveraging A(p, t + 1), ∀p ∈ P
and R(p, t + 1),∀p ∈ P , which have already been obtained
in the previous iteration.

Algorithm 2 Backward induction for an evolutionary market
Input:

Stationary stage T and the convergent tableQ outputted by Algorithm 1;
The initial price pi,0 and initial cost ci,0 of each provider i before stage 1;

Output:
An expected profit table R(p, t), ∀p ∈ P, ∀t ∈ [T] and an optimal action table
A(p, t), ∀p ∈ P, ∀t ∈ [T];

1: SetR(p, T) = maxa∈P,a≤pQ(p, a);
2: SetA(p, T) = arg maxa∈P,a≤pQ(p, a);
3: for t = T − 1, T − 2, · · · , 2, 1 do
4: for each p ∈ P do
5: SetR(p, t) = maxa∈P,a≤p{r(p, a, t) + γR(a, t+ 1)};
6: SetA(p, t) = arg maxa∈P,a≤p{r(p, a, t) + γR(a, t+ 1)};
7: end for
8: end for

By combining Algorithm 1 and Algorithm 2, we can find
an optimal policy for the proactive provider in the evolution-
ary market.

5 Numerical Simulations
5.1 The Market with Three Providers
Parameter Settings
For the simulations in this subsection, we consider a market
with K = 3 providers. Suppose Provider 1 is the proac-
tive one and other two reactive ones are named as Provider

142

2 and Provider 3 respectively. We simulate Provider 1’s per-
formance according to three different initial market scenar-
ios as summarized in Table 1. In Scenario 1, Provider 1 is
playing as a market leader with the highest initial price and
marginal cost, and the highest preference from users 6. Simi-
larly, Provider 1 has the second highest value for all the initial
parameters (e.g., initial price, initial cost, and the shape of the
distribution of users’ preference) in Scenario 2 and the lowest
value in Scenario 3. In each scenario, we consider Providers
2 and 3 applying either absolute follow-up policy (ABS) or
relative follow-up policy (REL) as defined in Section 3.2. We
set the threshold price ω = 0.1 in all the scenarios.

pi,o ci,0 ki
Scenario 1 2.0, 1.5, 1 1.0, 0.8, 0.6 0.9, 0.7, 0.5
Scenario 2 1.5, 2.0, 1 0.8, 1.0, 0.6 0.7, 0.9, 0.5
Scenario 3 1, 1.5, 2.0 0.6, 0.8, 1.0 0.5, 0.7, 0.9

Table 1: Market scenarios

For the simulations, we set the initial population num-
ber N0 = 100, the saturated population number is N∞ =
10, 000, and the evolution rate κ = 0.07. Thus the popula-
tion grows a bit slower from stage 0 to 20, experiences a fast
growth from stage 20 to 100, the growth rate is decreasing
after stage 100, and the population finally becomes saturated
around stage 150.

We assume the users’ marginal value θj derived from cloud
service follows a uniform distribution supported on [1, 5] and
the users’ demand follows an exponential distribution and set
the parameter Λ in Eq. (2) to 2. We set β = 0.01 and η = 0.02
for provider’s marginal cost function in Eq. (4). For the Q-
learning algorithm, we set learning rate α = 0.1

1+0.1j which
is decreasing with respect to the iteration step j and the stop
criteria δ = 1.

Price Evolution
In this subsection, we investigate how the proactive provider
changes his/her price in different scenarios of the evolution-
ary market. Figure 1(a,b) demonstrate how the providers
change their prices as the market evolves (we record the price
every five time steps). We have the following observations
from the figure.

(1) In all the three scenarios, there is a fierce price competi-
tion at the initial market development stages. Provider 1 trig-
gers price war at that market stage in order to compete for the
new users to expand his/her market share so as to enjoy rela-
tively low marginal cost with the existence of the economies
of scale. When the market approaches saturation, Provider 1
gradually weakens the price reduction, because the additional
users brought by further price reduction are not able to com-
pensate for the loss of marginal profit.

(2) The difference between these three scenarios lies in that
when Provider 1’s initial price and preference level are higher,
he/she is willing to cut the price down in a more aggressive
manner. We can see that in Scenarios 1 and 2, the price is
dropping down almost all the time, and the price reduction

6We manipulate the shape parameter ki of gamma distribution to
represent different preference levels from users for Provider i.

Figure 2: Profit comparison of different price reduction poli-
cies

rate in Scenario 1 is more intense than in Scenario 2. In Sce-
nario 3, price war happens only at the initial market develop-
ment stages, and then the price keeps constant over the rest
market stages. It means that triggering price war is not an
effective strategy for the proactive provider to earn positive
profit if the preference from users is lower than other com-
petitors. This is because a service provider with a lower pref-
erence level will attract fewer users than other providers even
if they offer the same price, and as a result the marginal cost of
the provider will be higher than his/her competitors. There-
fore, the price reduction space for a provider with a lower
preference level is relatively smaller than the providers with
higher preference levels, otherwise he/she will get a negative
profit.

Policy Comparison
To test the performance of our pricing policy calculated by
the two algorithms, we need to compare it with some base-
line pricing policies. As this paper is the first one to model
the evolutionary cloud computing market, there are no ex-
isting baselines, and we create two simple price reduction
policies to serve as baselines. The first pricing policy asks
the proactive provider to exponentially cut his/her price over
stages pt = poe

−0.01t, which means the price drops down
quickly at the initial stages, then decreases slower until it ap-
proaches the threshold price. We call this policy “Exp Reduc-
tion”. The second policy asks the proactive provider to drop
the price down by 5% for every 10 steps until it approaches
the threshold price. We call it “Linear Reduction”. Similar to
the previous experiments, we set the threshold price as 0.1.

We calculate the discounted cumulative profit R1,0 of the
proactive provider using Eq. (6) and run the experiment 50
times for each scenario to compare the three policies in Fig-
ure 2. According to the figure, using the pricing policy out-
putted by our algorithms, the proactive provider can achieve
the largest profit than using the other two policies for all the
scenarios.

143

(a) ABS policy (b) REL policy (c) Multi-providers

Figure 1: Price evolution against reactive opponent

5.2 Different Numbers of Providers
In this subsection, we study that if using our policy, how
the price of the proactive provider would be shaped when
competing with different numbers of providers. We consider
K = 2, 3, 4 providers in the market. The initial setting of the
market is shown in Table 2. The other settings are the same
as in the previous subsection. Figure 1(c) shows the price

pi,o ci,0 ki
K = 2 2, 1.5 1, 0.8 0.9, 0.7
K = 3 2, 1.5, 1 1, 0.8, 0.6 0.9, 0.7, 0.5
K = 4 2, 1.5, 1, 0.5 1, 0.8, 0.6, 0.4 0.9, 0.7, 0.5, 0.3

Table 2: Initial settings

evolution of the proactive provider averaged over 50 random
runs.

It can be seen that the price reduction becomes more fre-
quent with the increasing number of providers. When com-
peting with only one competitor, there is only one explicit
price war that cuts the price down aggressively when the mar-
ket is almost saturated and the user base in the market be-
comes large. When there are two opponents in the market, the
explicit price war happens at the initial market development
stages (around stage 50), and the price reduction continues
over market stages. When playing against three opponents,
the price is dropping all the time, but the per-stage drop is not
as large as that of against fewer opponents.

It should be noticed that a duopoly competition leads to
the lowest final price at time step 200. As there are only
two providers in the market, both of the providers will attract
more demand and the final marginal cost will be lower than
with more providers; consequently, the proactive provider has
a larger space to cut down his/her price. In fact, this obser-
vation is quite interesting. It means that the competition with
more than 2 providers does not lead to better welfare to cloud
users in the saturation stage; instead, more providers will lead
to market fragment. As a result, the marginal cost will be
larger for each provider and consequently the price will also
be higher. Similar results are also observed in [Feldman et al.,
2013], in which the authors find that competition among two
firms can significantly increase the users’ social welfare in
comparison with the monopoly case, but a further increase in
competition triggered by additional firms may be hazardous

for the society.

6 Discussions and Future Works
In this paper, we have modeled the evolutionary cloud com-
puting market and studied how to maximize the long-run
profit of a proactive provider when competing with other re-
active providers. To handle the non-stationary market, we
have proposed two algorithms to find an optimal pricing pol-
icy: The Q-learning algorithm works for the situation when
the market has evolved to a stationary state, and the back-
ward induction algorithm works for the evolving and non-
stationary market environment. Overall speaking, our anal-
ysis has simulated possible price evolutions in different sce-
narios. These results on one hand could explain the observed
trend in today’s cloud computing market, e.g., the fierce price
competition at the initial market development stages. They,
on the other hand, also provide insights on the appropriate
actions that the proactive provider should take in different sit-
uations.

As this is the very first work to address the profit maximiza-
tion problem in an evolutionary cloud market, we make use
of some assumptions to simplify the model and the analysis.
However, it is not difficult to weaken these assumptions so
as to increase the practical impact of our work, as discussed
below.

In the current analysis, we have assumed specific forms
of the market growth function and the user demand function.
However, our approach is actually generally applicable to any
kinds of market growth functions and user demand functions,
since our algorithms only use them to compute the immediate
reward r(s, a), which is only related to the number of users
and the number of units of cloud services they demand at
each stage. This flexibility indicates a strong practical value
of our approach. When the cloud provider cumulates more
knowledge about the market, he/she will have a more ac-
curate understanding of the market growth function and the
user demand function. Actually in the literature, machine
learning methods have been widely adopted to predict market
growth [Bose and Mahapatra, 2001] and user preference [Lai
et al., 2012] based on historical data, and have achieved very
promising results. In this case, the output of our approach
will become more precise and provide more practically use-
ful guideline for the cloud provider to make appropriate deci-
sions, when more historical data are available.

144

Furthermore, we have assumed there is only one proactive
provider in the market. While it well describes the current
cloud market, it is interesting to see whether our approach
can go beyond the assumption and solve the optimal pric-
ing problem in a market with multiple proactive providers.
Actually we can achieve this by extending the problem into
a stochastic game and leveraging the methods designed for
multi-agent reinforcement learning, which are consisting of
n-provider Markov decision process [Hu et al., 1998]. Due to
space restrictions, we leave all the aforementioned interesting
extensions to the future work.

Acknowledgments
This work is partially supported by Ningbo Science and Tech-
nology Bureau (Project No 2012B10055 and 2013D10008)
and by the International Doctoral Innovation Centre (IDIC)
at the University of Nottingham Ningbo China.

References
[Adams et al., 2009] Ian F Adams, Darrell DE Long,

Ethan L Miller, Shankar Pasupathy, and Mark W Storer.
Maximizing efficiency by trading storage for computa-
tion. In Proceedings of the 2009 conference on Hot topics
in cloud computing, pages 17–17. USENIX Association,
2009.

[Armbrust et al., 2010] Michael Armbrust, Armando Fox,
Rean Griffith, Anthony D Joseph, Randy Katz, Andy Kon-
winski, Gunho Lee, David Patterson, Ariel Rabkin, Ion
Stoica, et al. A view of cloud computing. Communica-
tions of the ACM, 53(4):50–58, 2010.

[Bose and Mahapatra, 2001] Indranil Bose and Radha K Ma-
hapatra. Business data mininga machine learning perspec-
tive. Information & management, 39(3):211–225, 2001.

[Buyya et al., 2008] Rajkumar Buyya, Chee Shin Yeo, and
Srikumar Venugopal. Market-oriented cloud computing:
Vision, hype, and reality for delivering it services as com-
puting utilities. In High Performance Computing and
Communications, 2008. HPCC’08. 10th IEEE Interna-
tional Conference on, pages 5–13. Ieee, 2008.

[Feldman et al., 2013] Moran Feldman, Reshef Meir, and
Moshe Tennenholtz. Competition in the presence of social
networks: How many service providers maximize wel-
fare? In Web and Internet Economics, pages 174–187.
Springer, 2013.

[Feng et al., 2013] Yuan Feng, Baochun Li, and Bo Li. Price
competition in an oligopoly cloud market with multiple
iaas cloud providers. IEEE Transactions on Computers,
page 1, 2013.

[Hu et al., 1998] Junling Hu, Michael P Wellman, et al. Mul-
tiagent reinforcement learning: theoretical framework and
an algorithm. In ICML, volume 98, pages 242–250. Cite-
seer, 1998.

[Jiang et al., 2007] Bao-Jun Jiang, Pei-yu Chen, and Tridas
Mukhopadhyay. Software licensing: pay-per-use versus
perpetual. 2007.

[Jung and Klein, 2001] Hoon Jung and Cerry M Klein. Op-
timal inventory policies under decreasing cost functions
via geometric programming. European Journal of Opera-
tional Research, 132(3):628–642, 2001.

[Kaelbling et al., 1996] Leslie Pack Kaelbling, Michael L
Littman, and Andrew W Moore. Reinforcement learn-
ing: A survey. Journal of Artificial Intelligence Research,
4:237–285, 1996.

[Kantere et al., 2011] Verena Kantere, Debabrata Dash, Gre-
gory Francois, Sofia Kyriakopoulou, and Anastasia Ail-
amaki. Optimal service pricing for a cloud cache.
Knowledge and Data Engineering, IEEE Transactions on,
23(9):1345–1358, 2011.

[Lai et al., 2012] Siwei Lai, Yang Liu, Huxiang Gu, Liheng
Xu, Kang Liu, Shiming Xiang, Jun Zhao, Rui Diao, Liang
Xiang, Hang Li, et al. Hybrid recommendation models for
binary user preference prediction problem. In KDD Cup,
pages 137–151, 2012.

[Ma et al., 2011] Hao Ma, Chao Liu, Irwin King, and
Michael R Lyu. Probabilistic factor models for web site
recommendation. In Proceedings of the 34th international
ACM SIGIR conference on Research and development in
Information Retrieval, pages 265–274. ACM, 2011.

[Pearl and Reed, 1920] Raymond Pearl and Lowell J Reed.
On the rate of growth of the population of the united states
since 1790 and its mathematical representation. Proceed-
ings of the National Academy of Sciences of the United
States of America, 6(6):275, 1920.

[Sutton and Barto, 1998] Richard S Sutton and Andrew G
Barto. Introduction to reinforcement learning. MIT Press,
1998.

[Truong-Huu and Tham, 2013] Tram Truong-Huu and
Chen-Khong Tham. A game-theoretic model for dynamic
pricing and competition among cloud providers. In Utility
and Cloud Computing (UCC), 2013 IEEE/ACM 6th
International Conference on, pages 235–238. IEEE, 2013.

[Vengerov, 2008] David Vengerov. A gradient-based re-
inforcement learning approach to dynamic pricing in
partially-observable environments. Future Generation
Computer Systems, 24(7):687–693, 2008.

[Watkins, 1989] Christopher John Cornish Hellaby Watkins.
Learning from delayed rewards. PhD thesis, University of
Cambridge, 1989.

[Xu and Li, 2012] Hong Xu and Baochun Li. Maximizing
revenue with dynamic cloud pricing: The infinite horizon
case. In Communications (ICC), 2012 IEEE International
Conference on, pages 2929–2933. IEEE, 2012.

[Xu and Li, 2013] Hong Xu and Baochun Li. Dynamic cloud
pricing for revenue maximization. IEEE Transactions on
Cloud Computing, page 1, 2013.

[Zhang et al., 2010] Qi Zhang, Lu Cheng, and Raouf
Boutaba. Cloud computing: state-of-the-art and research
challenges. Journal of internet services and applications,
1(1):7–18, 2010.

145

