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Abstract

We study computational problems for two popular
parliamentary voting procedures: the amendment
procedure and the successive procedure. While
finding successful manipulations or agenda con-
trols is tractable for both procedures, our real-world
experimental results indicate that most elections
cannot be manipulated by a few voters and agenda
control is typically impossible. If the voter pref-
erences are incomplete, then finding possible win-
ners is NP-hard for both procedures. Whereas find-
ing necessary winners is coNP-hard for the amend-
ment procedure, it is polynomial-time solvable for
the successive one.

1 Introduction
Two interesting voting rules are used in many parliamentary
chambers to amend and decide upon new legislation: the suc-
cessive procedure and the amendment procedure [Apesteguia
et al., 2014]. Both are sequential voting procedures: the al-
ternatives are ordered (thus forming an agenda) and they are
considered step by step, making a binary decision based on
majority voting in each step. In a nutshell, the successive
procedure considers in every step the current alternative and
decides whether to accept it—then the procedure stops and
the winner is determined—or to reject it—then the proce-
dure continues with the remaining alternatives in the given
order. The amendment procedure in each step jointly consid-
ers two current alternatives and decides by majority voting
which one of the two is eliminated—the other one then will
be confronted with the next alternative given by the agenda.

There are many reasons for a study of the computational
properties of parliamentary voting procedures.

First, parliamentary voting procedures are used very fre-
quently in practice. For example, the recent 112th Congress
of the US Senate and House of Representatives had 1030
votes to amend and approve bills. This does not take into
account the hundreds of committees that also amended and
voted on these bills.
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Second, parliamentary voting procedures are used to make
some of the most important decisions in society. We decide
to reduce carbon emissions, provide universal health care, or
raise taxes based on the outcome of such voting procedures.
When rallying support for new legislation, it is vital to know
what amendments can and cannot be passed. Third, Enelow
and Koehler [1980] give evidence that parliamentary voting
may be strategic. Fourth, there is both theoretical and em-
pirical evidence that the final outcome depends critically on
the order in which amendments are presented. For example,
Ordeshook and Schwartz [1987] remark that “. . . legislative
decisions are at the mercy of elites who control agendas.”

It is therefore interesting to ask if, for example, computa-
tional complexity is a barrier to the control of the agenda or to
strategic voting in such parliamentary voting procedures. It is
also interesting to ask if we can efficiently compute whether
a particular amendment can or will pass despite uncertainty
in the votes or the agenda. We provide one of the the first
computational studies of these issues, giving both theoretical
as well as empirical results.

Related Work. There are many studies in the economic and
political literature, starting with Black [1958], concerning
“insincere” or “sophisticated” or “strategic” voting e.g. [Far-
quharson, 1969; Miller, 1977; Enelow and Koehler, 1980;
McKelvey and Niemi, 1978; Shepsle and Weingast, 1984;
Banks, 1985; Moulin, 1986; Ordeshook and Schwartz, 1987].
Apesteguia et al. [2014] characterize both the amendment and
the successive procedures from an axiomatic perspective.

Miller [1977] studies the set of alternatives that may win.
He shows that an alternative can become an amendment win-
ner if and only if it belongs to the Condorcet set (a.k.a top
cycle). We extend this result by a constructive proof. For
the successive procedure, however, he only shows that any
alternative from the Condorcet set can win. Barberà and Ger-
ber [2014] follow Miller’s research of characterizing the set
of alternatives that may become an amendment (or a succes-
sive) winner1 Rasch [2014] empirically examines the behav-
ior of voters in the Norwegian parliament, where the succes-
sive procedure is used. He reports that successful insincere
voting, where voters may vote differently from their true pref-
erences and the outcome is better for them, is very rare.

1Their definitions for both procedures are actually different from
ours, the common ones.
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Using computational complexity as a barrier against ma-
nipulation was initiated by Bartholdi III et al. [1989]. They
show that manipulating a special variant of the Copeland vot-
ing rule is NP-hard. Bartholdi III and Orlin [1991] show that
manipulating the Single Transfer Vote (STV) voting rule is
NP-hard even for coalition size one. This voting rule is used
in the parliamentary elections of many countries. It is a se-
quential voting procedure and works similarly to the succes-
sive procedure except that there is no agenda. Instead, in each
step, the alternative that is ranked first by the least number
of voters will be deleted from the profile. The NP-hardness
result for manipulating STV is of particular interest since we
design a polynomial-time algorithm for manipulating the suc-
cessive procedure, indicating that it is the agenda that makes
an important difference.

Concerning uncertainty in elections, there is some work
in the political literature [Ordeshook and Palfrey, 1988;
Jung, 1989]; there seems to be significantly more activity
on the computational side. Konczak and Lang [2005] con-
sider possible and necessary winners for the Condorcet rule.
The same problems for several other common voting rules
are frequently studied [Walsh, 2007; Betzler et al., 2009;
Hazon et al., 2012; Aziz et al., 2012].

The amendment procedure is a special case of the voting
tree procedure [Moulin, 1986]. This general procedure em-
ploys a binary voting tree where the leaves represent the alter-
natives and each alternative is represented by at least one leaf,
and each internal node represents the alternative that wins the
pairwise comparison of its direct children. The alternative
represented by the root defines the winner. If the binary tree is
degenerated and each alternative is represented by exactly one
leaf, then this procedure is identical to the amendment one.
Conitzer et al. [2007] provide a cubic time algorithm to tackle
weighted manipulation for the voting tree procedure while
our quadratic time algorithm is tailored for the amendment
one. Xia and Conitzer [2011] provide intractability results
for the weighted possible (resp. necessary) winner problem
when the given tree is balanced. Pini et al.; Lang et al. [2011;
2012] show that weighted possible (resp. necessary) winner
is intractable for constant number of voters (c.f. Table 1).

Our Contributions. We investigate computational prob-
lems for the amendment procedure and the successive proce-
dure. We focus on agenda control, manipulation, and winner
determination problems with incomplete preferences. Our re-
sults indicate that the amendment procedure is computation-
ally more expensive than the successive procedure. See Ta-
ble 1 for an overview on our theoretical results.

Our experiments for agenda control and manipulation for
real-world voting data indicate that while both problems are
polynomial-time solvable, a successful agenda control is very
rare and a successful manipulation on average needs a coali-
tion containing more than half the voters.

Due to lack of space, we have deferred several details
(mostly proofs) to the full version of the paper.

2 Preliminaries
Let A := {a1, . . . , am} be a set of m alternatives and let
V := {v1, . . . , vn} be a set of n voters. A preference pro-

Problem Successive Amendment

Agenda Control O(n ·m2) O(n ·m2 +m3)♥

W. Manipulation O((k+n)·m) O((k + n) ·m2)

Possible Winner NP-hard NP-hard

Necessary Winner O(n ·m3) coNP-hard

W. Possible Winner NP-hard (3) NP-hard (3)♠

W. Necessary Winner O(n ·m3) O(n) for m ≤ 3
coNP-hard (4)♠

Table 1: The computational complexity of the considered
problems. “W.” stands for “Weighted”. The number of vot-
ers is denoted by n, the number of alternatives by m, and the
manipulation coalition size by k. The result marked with ♥
also follows from the work of Miller [1977]. Those marked
with ♠ follows from the work of Pini et al. [2011] and Lang
et al. [2012]. Entries containing statements of the form “NP-
hard (z)” (resp. “coNP-hard (z)”) mean that the relevant prob-
lem is NP-hard (resp. coNP-hard) even with only z alterna-
tives. All hardness results already hold when the agenda is a
linear order.

file P := (A, V ) specifies the preference orders of the voters
in V , where each voter vi ranks the alternatives according to
a partial order �i over A. For three alternatives a, b, c ∈ A,
the relation a �i b means that voter vi strictly prefers a to b,
and {a, b} �i c means that voter vi strictly prefers a and b
to c, but he thinks that alternatives a and b are incomparable.
Given a subset A′ ⊆ A of alternatives, by

−→
A′ we denote an

arbitrary but fixed linear order of the alternatives in A′. Con-
sequently,

←−
A′ denotes the corresponding reversed order of the

alternatives in A′. Given an alternative a ∈ A′ from this set,
we say that a is a majority winner if in the profile restricted to
only the alternatives from A′, a is ranked first by more than
half of the voters. We say that a beats b (in the head-to-head
contest) when a majority of voters prefers a over b, and call a
the survivor and b the loser of the two alternatives. Given two
preference profiles P and P ′ for the same set of alternatives
and the same set of voters, we say that P extends P ′ if for
every i preference order �i from P includes the preference
order �′i from P ′. If additionally each �i is a linear order,
then we also say that P completes P ′.

We consider two of the most common parliamentary vot-
ing procedures. For both procedures, we assume that a linear
order over the alternatives in A is given. We refer to this lin-
ear order L as an agenda. If this order is not linear, then we
call it a partial agenda, denoted by B.
Definition 1 (Successive procedure). There can be at most
m − 1 rounds. Starting with round i := 1, we repeat the fol-
lowing until we make a decision: Let c be the ith alternative
in the agenda L. If a majority of voters prefers alternative c
to all alternatives that are ordered behind it in L, then c is the
decision and we call it a successive winner. Otherwise, we
proceed to round i := i+ 1.

For instance, given a profile with three alternatives a, b, c,
and three voters v1, v2, v3 whose preference orders are spec-
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ified as follows: v1 : a � b � c, v2 : b � a � c, v3 :
c � a � b. Consider the agenda a � b � c. Since a is not
preferred to {b, c} by a majority of voters (only v1 does), a is
not a successive winner. Since a majority of voters prefers b
to c (voters v1 and v2), b is the successive winner.

In Europe, the successive procedure is used in many
parliamentary chambers including those of Austria, Bel-
gium, Denmark, France, Germany, Greece, Iceland, Ireland,
Italy, Luxembourg, the Netherlands, Norway, Portugal, and
Spain [Rasch, 2000].

Definition 2 (Amendment procedure). This procedure has
m rounds. In the 1st round, we let the 1st-round winner
be the first alternative in the agenda L. Then, for each
round 2 ≤ i ≤ m, i starting with 2, let the the ith-round
winner be the survivor between the ith alternative in L and
the (i− 1)th-round winner. We define the mth-round winner
to be an amendment winner.

Consider now the profile and the agenda that follows Def-
inition 1 for the amendment procedure. Alternative a is the
1st-round winner since it is the first alternative in the agenda.
Since a majority of voters prefers a to b, a is the 2nd-round
winner. Since a majority of voters also prefers a to c, a is the
3rd round and the amendment winner.

In Europe, the amendment procedure is used in the parlia-
mentary chambers of Finland, Sweden, Switzerland, and the
United Kingdom. It is also used in the U.S. Congress and
several other countries with Anglo-American ties.

We assume that the number of voters is odd to reduce the
impact of ties, and break ties that remain in favor of the ma-
nipulator(s). We consider both unweighted voters and voters
with integer weights. The weighted case is especially inter-
esting in the parliamentary setting: First, there are parliamen-
tary chambers where voters are weighted (e.g. in the Council
of Europe, preference orders are weighted by the size of the
country). Second, voters will often vote along party lines.
This effectively gives us parties casting weighted preference
orders. Third, the weighted case can inform the situation
where we have uncertainty about the preference orders.

3 Agenda Control
The order of the alternatives, that is, the agenda, may depend
on the Speaker, the Government, logical considerations (e.g.
the status quo goes last, the most extreme alternative comes
first), the chronological order of submission, or other factors.
The agenda used can have a major impact on the final deci-
sion. For example, suppose voters are sincere and we use the
successive procedure. Then, the alternative that beats every
other alternative will only necessarily win if it is introduced
in one of the last two positions in the agenda. We therefore
consider the following computational question.

AGENDA CONTROL
Input: A preference profile P := (A, V ) with linear
preference orders and a preferred alternative p ∈ A.
Question: Is there an agenda for A such that p is the
overall winner?

Theorem 1. AGENDA CONTROL can be solved inO(n ·m2)
time for the successive procedure and inO(n ·m2+m3) time
for the amendment procedure.

Proof sketch. First of all, we remark that for both procedures,
we do not only solve the decision variant but also find a suc-
cessful agenda if control is possible.
Successive procedure. The general idea behind successive
control is to build an agenda from back to front such that
each of the alternatives that are currently among the high-
est positions in the partial agenda may be strong enough to
beat p alone but is too weak to be a majority winner against
the whole set of alternatives behind them. To formalize this
idea, we need some observations. Let a, b be two alterna-
tives such that a beats b, that is, a majority of voters prefers
a over b in the given profile. Then, under an agenda where
a is behind b, b can never win since in the round when b is
considered, b is not ranked first by a majority of voters due to
a beating b and a is not yet deleted, implying that b will be
deleted. We can even generalize the above observation to a
set of alternatives:

Claim 1. Let A′ ⊆ A be a subset of alternatives. Let D(A′)
be the set of all alternatives each a of which is not a majority
winner when restricting the profile to A′ ∪ {a}. Then,

1. no alternative from D(A′) can be a successive win-
ner under an agenda L that extends the partial or-
der D(A′) � A′, and

2. if D(A′) is empty and if A′ 6= A, then no alternative
from A′ can be a successive winner.

By Claim 1, we can construct an agenda L from back to
front by first placing our preferred alternative p at the last
position, and we set A′ := {p}. We repeat the following
algorithm until the set A′ includes all alternatives from A,
extending the agenda L gradually.

Let D(A′) be the set of alternatives such that each alterna-
tive a of D(A′) is not a majority winner when restricting the
profile to the set A′ ∪ {a} of alternatives. Then, we extend L
by requiring D(A′) �L A′, and set A′ := A′ ∪D(A′).

If D(A′) is empty but A′ 6= A, then we reject and answer
with “no”. Otherwise, we repeat the above procedure until
we obtain a complete agenda, and answer “yes”.

We now come to the running time analysis. In each ex-
tension of the agenda, for each alternative a /∈ A′ we check
whether it is a majority winner when restricting the profile to
the alternatives from a ∪ A′. By maintaining a list which
stores for each voter v, the highest position of alternative
from A′ ranked by v, the above check for a can be done in
O(n) time. Since an agenda is completed after at most m ex-
tensions, the total running time is O(n ·m2).
Amendment procedure. Controlling the amendment pro-
cedure is closely related to finding a Hamiltonian cycle in
a strongly connected tournament. To see this, we first con-
struct a majority graph for the given preference profile by
creating a vertex ui for each alternative ai, and adding an
arc (ui, uj) if and only if ai beats aj . Recall that we as-
sume the number of voters to be odd. The majority graph
constructed in this way is a tournament. From the theory of
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directed graphs [Harary and Moser, 1966, Thm. 7], we can
conclude that every strongly connected tournament contains a
Hamiltonian cycle. Now, the crucial idea is to check whether
p corresponds to a vertex that belongs to a strongly connected
tournament that has only out-going arcs. Alternative p can
win under an appropriate agenda if and only if this is the case.

The O(n · m2) part in the running time comes from con-
structing the majority graph and the other part comes from
finding a Hamiltonian cycle.

We close this section by remarking that first, the approach
for the successive procedure actually works for both odd as
well as even number of voters. Second, our approach for the
amendment procedure can be extended to the case where the
number of voters is even. There, alternative p is a winner
if and only if no strongly connected component “dominates”
the strongly connected component that contains up. We omit
the proof due to lack of space.

4 Manipulation
We first consider the question of how difficult it is for voters
to vote strategically to ensure a given outcome supposing the
other voters vote sincerely.

MANIPULATION
Input: A profile P := (A, V ) with linear preference
orders, a non-negative integer k ∈ N, a preferred al-
ternative p ∈ A, and an agenda L for A.
Question: Is it possible to add a coalition of k voters
such that p wins under agenda L?

In WEIGHTED COALITION MANIPULATION, the voters of
the coalition also come with integer weights. However, we
remark here that the weighted and non-weighted cases are
equivalent because of the following observation:

Observation 1. If there is a successful (weighted) manipula-
tion, then there is also a successful one where all voters from
the coalition rank the alternatives in the same way.

We find that computing whether a manipulation is possi-
ble is polynomial for both the successive and amendment
procedures. However, our procedure for deciding whether
the amendment procedure can be successfully manipulated is
asymptotically more complex than our procedure for decid-
ing the same question for the successive procedure.

Theorem 2. MANIPULATION can be solved inO((k+n)·m)
time for the successive procedure and inO((k+n) ·m2) time
for the amendment procedure.

Proof sketch. By Observation 1, we can assume that the
coalition votes in the same way. Thus, we only need to con-
struct a single preference order for all voters in the coalition.
Successive procedure. We can observe that if a coalition
of k voters can manipulate the successive procedure, then by
ranking alternative p in the first position and the other alter-
natives in an arbitrary but fixed order, p must also win. This
leads to a linear-time algorithm: Let the coalition all vote
p �

−−−−→
A \ {p}, and check whether p may win the successive

procedure.

Amendment procedure. Our approach to the amendment
procedure works in a different way. Indeed, we can compute
in quadratic time all alternatives that can become a winner
when adding k additional voters to the profile, and we can
compute the corresponding coalition for each of these alter-
natives. First, we need one further notion: We call an alter-
native an ith-round possible winner, if adding a coalition of k
additional voters to the original profile makes this alternative
the ith-round winner (see the amendment procedure defini-
tion). Now, let a denote the ith alternative in the agenda L.
Observe that a will be an ith-round possible winner only if
there is an (i− 1)th-round possible winner b such that requir-
ing all voters from the coalition to rank a above b makes a
beat b. Otherwise, no matter how the preference orders of the
coalition look like, a will not be an ith-round possible winner
and hence, will never be an amendment winner. Analogously,
an (i−1)th-round possible winner b can become an ith-round
possible winner only if requiring all voters from the coalition
to rank b above a can make b beat a.

Based on the above observation, we can build a recursive
algorithm that constructs a linear order over the first i alterna-
tives from L for each ith-round possible winner. Obviously,
the first-round possible winner is the first alternative in the
agenda. To compute the set Wi of all ith-round possible win-
ners, the program needs as input two sets: a set Wi−1 of all
(i− 1)th-round possible winners and a set Qi−1 of linear or-
ders over the first i−1 alternatives such that for each (i−1)th-
round possible winner b from Wi−1, there is exactly one or-
der πb from Qi−1 such that if the coalition ranks πb, then b
becomes an (i− 1)th-round winner. Now, the algorithm goes
through every (i − 1)th-round possible winner b and decides
whether it can become an ith-round possible winner, that is,
whether it is possible to make b beat a where a is the ith al-
ternative in the agenda L. As already discussed, this is only
the case if adding the coalition with the order πb ∪ {b � a}
can make b beat a; otherwise, if a is not yet added toWi, then
we add a to Wi and the preference order πb ∪ {a � b} to Qi.

Finally, themth-round possible winners fromWi are all al-
ternatives that can become an amendment winner if the coali-
tion decides to manipulate.

5 Possible/Necessary Winner
We might only have partial knowledge about how the voters
will vote, and about how the agenda will be ordered. Never-
theless, we might be interested to ask questions about what
may or may not be the final outcome. Does our favorite al-
ternative stand any chance of winning? Is it inevitable that
the government’s alternative will win? Is there an agenda un-
der which our alternative can win? Hence, we consider the
question of which alternative possibly or necessarily wins.

POSSIBLE (resp. NECESSARY) WINNER
Input: A preference profile P := (A, V ), a preferred
alternative p ∈ A, and a partial agenda B.
Question: Can p win in a (resp. every) completion of
the profile P for an (resp. every) agenda which com-
pletes B?

Our next result implies that as soon as the preference pro-
file is not complete, deciding who may be a possible winner
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is NP-hard even for a fixed agenda.

Theorem 3. POSSIBLE WINNER with a fixed agenda is NP-
hard for both the successive and amendment procedures.

Proof sketch. We only show the NP-hardness result for the
amendment procedure by describing a polynomial-time re-
duction from the NP-hard VERTEX COVER problem which,
given an undirected graph G = (U,E) and an integer k, asks
whether there is a vertex cover of size at most k, that is, a sub-
set of at most k vertices whose removal destroys all edges.

Let (G, k) be an instance of VERTEX COVER where
U := {u1, . . . , ur} denotes the set of vertices and E :=
{e1, . . . , es} denotes the set of edges. We construct a POSSI-
BLE WINNER instance ((A, V ), p,B) as follows. The setA of
alternatives contains the preferred alternative p, one helper al-
ternative h, one dummy alternative d, and for each edge ej ∈
E one edge alternative aj . The set V of voters contains for
each vertex ui ∈ U one vertex voter vi and r − 1 additional
auxiliary voters with the following preferences:

The preference order of each vertex voter vi is specified by
−−−−−−−−−−−−−−−→
A \ ({d, p, h} ∪ I(ui)) �

−−−→
I(ui) � d and

−−−−−−−−−−−−−−−→
A \ ({d, p, h} ∪ I(ui)) � h � p,

where I(ui) denotes the set of edge alternatives correspond-
ing to edges incident to the vertex ui. All auxiliary voters’
preference orders are complete: r − k − 1 auxiliary vot-
ers have the same preferences specified by the linear order
p �

−−−−−−−−→
A \ {p, d, h} � h � d, and the remaining k auxiliary

voters have the same preferences specified by the linear order
d � h � p �

−−−−−−−−→
A \ {p, d, h}. The partial agenda B is fixed and

is defined as h � d � p �
←−−−−−−−−
A \ {p, d, h}.

This completes the construction which can be computed in
polynomial time. We briefly sketch the idea of the correctness
proof. Our construction ensures that in order to let p beat each
edge alternative aj in the final s rounds of the procedure one
has to put p (and by the preference orders of the vertex voters,
one also has to put h) in front of aj (and by the preference or-
ders of the vertex voters, also in front of d) in the preference
order of at least one vertex voter that corresponds to a vertex
incident to the edge ej . This implies that the vertices corre-
sponding to the voters for which we put p in front of d form a
vertex cover. Furthermore, since h beats p in every extension
of the partial orders the solution must ensure that d beats h
in the first round of the procedure. However, this is only the
case if the number of vertices that correspond to the vertex
voters where we put p (and by the preference orders, we also
put h) in front of d is at most k. Thus, the vertex cover is of
size at most k.

We mention without going into details that POSSIBLE
WINNER can be solved in O(f(m) · nc) time for both pro-
cedures, where f is a computable function solely depending
on the number m of alternatives and c is a constant. The idea
behind such algorithms is that there are at most 2m

2

partial or-
ders over the m alternatives; thus, we can guess in h(m) time
the structure of a completion of the profile and a completion
of the agenda such that p may win, and use an integer linear

program with g(m) variables to check whether the guess is
implementable. Using the famous result from Lenstra [1983],
we can conclude that the algorithms constructed in this way
are solvable in O(f(m) · nc) time.

Notably, the two procedures have different computational
complexity regarding the necessary winner problem.

Theorem 4. NECESSARY WINNER takes O(n ·m3) time for
the successive procedure while it is coNP-hard for the amend-
ment procedure even with a fixed agenda.

Proof sketch. Successive procedure. The idea of the algo-
rithm is to check whether there is a completion (P∗,B∗) of
the profile P and the agenda B satisfying one of the following
properties, where an alternative is called a predecessor (resp.
a successor) of p if it is ordered ahead of (resp. behind) p in
the agenda B∗.

1. No majority of the voters prefers p to all successors of p
implying that a predecessor or a successor of p wins.

2. A majority of the voters prefers p to all successors of p,
but some predecessor of p wins.

One can verify that p is a necessary winner if and only if no
completion (P∗,B∗) satisfies at least one of both properties.

Let A⇐p be the set of alternatives that must be in front of p
in every completion of B, letA→p be the set of alternatives that
may be behind p in some completion of B, and let A←a be the
set of alternatives that may be in front of a given alternative a
in some completion of B.

Let P = (A, V ) be a profile and a be some alternative. We
call a completion of P a-discriminating if each partial pref-
erence order is completed such that a′ � a for every alterna-
tive a′ ∈ A \ {a} where this is possible (and arbitrary with
respect to any other relation). We call a completion of P a-
privileging if each partial preference order is completed such
that a � a′ for every alternative a′ ∈ A \ {a} where this is
possible (and arbitrary with respect to any other relation).

Claim 2. There is a completion (P∗,B∗) of (P,B) satis-
fying Property 1 if and only if p is not a majority winner
when restricting every p-discriminating completion of P∗
to A→p ∪ {p}.

Claim 3. Assume that there is no completion of (P,B) sat-
isfying Property 1. Then, there is a completion (P∗,B∗)
of (P,B) satisfying Property 2 if and only if there is some
alternative a ∈ A⇐p being the majority winner of every a-
privileging completion of P restricted to A \A←a .

Now, we have all ingredients to describe our algorithm.

1. Compute a p-discriminating completion P∗ of P .

2. If p is a not majority winner when restricting the pro-
file P∗ to A→p ∪ {p} then return ‘no’.

3. For each alternative a ∈ A⇐p do
i. Compute an a-privileging completion P∗ of P .

ii. If a is a majority winner when restricting the pro-
file P∗ to A \A←a then return ‘no’.

4. Return ‘yes’.
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Computing a p-discriminating or an a-privileging completion
takes O(n ·m2) time, finding the majority winner also takes
O(n · m2) time, and the algorithm iterates at most m times
through the loop in Step 3. Altogether it takesO(n·m3) time.
Amendment procedure. Adapting the VERTEX COVER re-
duction for Theorem 3, we can also show that NECESSARY
WINNER for the same procedure is coNP-hard.

The weighted case. If each voter comes with a weight, then
the possible winner as well as the necessary winner problems
turn out to be already NP-hard for a constant number of al-
ternatives. This is in contrast to the manipulation problem
where the weighted case is computationally equivalent to the
non-weighted case: they are both polynomial-time solvable.

Theorem 5. Both for the successive and the amendment pro-
cedures, POSSIBLE WINNER with weighted voters is weakly
NP-hard even for three alternatives and when the B is linear.

Theorem 6. For the successive procedure, NECESSARY
WINNER with weighted voters can be solved in O(n · m3)
time. For the amendment procedure, NECESSARY WINNER
with weighted voters can be solved in linear time for up to
three alternatives while it is already weakly coNP-hard with
at least four alternatives and B being linear.

6 Experimental Results
Our polynomial-time algorithms leave open how many alter-
natives can win through control (or manipulation). We there-
fore use the data from Preflib due to Mattei and Walsh [2013]
to investigate empirically the likelihood of successful manip-
ulation or agenda control. Since only one case of the possible
and the necessary winner problems is polynomial-time solv-
able and since Preflib offers only a very restricted variant of
incomplete preferences, we do not run experiments for these
two problems. Our results are shown in Table 2.

Agenda Control. For each profile with m alternatives and
n voters such that n is odd, using the algorithm behind Theo-
rem 1, we compute the number ms (resp. ma) of alternatives
for which a successive (resp. amendment) agenda control is
possible. Then, we calculate the control vulnerability ratio
as ms−1

m−1 and ma−1
m−1 , respectively. Note that we have m − 1

here since we factor out the alternative that wins originally.
For instance, control vulnerability ratio 0.5 means that m−12
candidates are controllable. Our results show that the amend-
ment procedure tends to be more resistant than the successive
procedure when considering agenda control: Less than 5% of
the alternatives have a chance to win the amendment proce-
dure, while it is about 10% for the successive procedure.

Manipulation. Since Preflib does not offer any agenda,
we have to generate a set of agendas for manipulation to ob-
tain a good representation. We consider a set X of x differ-
ent agendas, depending on the number m of alternatives: If
m ≤ 8, then we let X be the set of all possible agendas, that
is, x := m!. Otherwise, we generate a set X of x uniformly
distributed random agendas with x := min(n2, 8!). Then, for
each alternative c and each agenda L ∈ X , using the algo-
rithm behind Theorem 2, we compute the minimum coalition

Measurement Successive Amendment

m ≤ 4 m ≥ 5 m ≤ 4 m ≥ 5

control vul. ratio 0.157 0.081 0.000 0.035
manipulation res. ratio 0.474 0.949 0.442 0.933
2nd win. coalition ratio 0.286 0.530 0.221 0.440
smallest coalition ratio 0.262 0.388 0.220 0.386

Table 2: Real-world experimental results. We evaluate all
314 profiles from Preflib that have linear preference orders;
100 of them have three alternatives and 108 of them four alter-
natives. There are 135 profiles with an odd number of voters;
56 of them have three alternatives and 52 of them four alter-
natives. The number of alternatives ranges from 3 to 242, and
the number of voters ranges from 5 to 14081. We consider
profiles with m ≤ 4 and m ≥ 5 alternatives, respectively.
The reason for this separation is as follows. First, while a
large number of profiles has either three or four alternatives
(one third each), for m ≥ 5, in most cases, less than five
profiles have m alternatives. Second, the results for profiles
with up to four alternatives are pretty different from the other
profiles. We use geometric mean to compute the average.

size, that is, the minimum number of voters needed to make
c a winner. Let this be κ(P, c,L). This is upper-bounded
by n + 1. Then, we calculate the manipulation resistance
ratio as

∑
L∈X

∑
c∈C κ(P,c,L)

x·(m−1)·(n+1) . Since most alternatives need
a coalition of more than n voters to manipulate successfully
which strongly affects the manipulation resistance ratio, we
also consider two related concepts: The ratio of the 2nd win-
ner coalition size, that is, the coalition size for the alternative
that becomes a winner after the original winner is removed,
and the ratio of the smallest coalition size, that is, the size of
the smallest coalition that makes any alternative win. Our re-
sults show that successful manipulations with few voters are
rare: For profiles up to four alternatives the average coalition
size is n/2 (even the 2nd winner coalition size is n/5; the
smallest coalition size is only slightly lower), while for pro-
files with at least five alternatives the average coalition size is
almost n + 1 (even the 2nd winner coalition size is roughly
n/2).

7 Conclusion
Our work indicates that, from a computational perspective,
the amendment procedure seems superior to the successive
procedure. Our work supports the claim that most European
and Latin parliaments (cf. Apesteguia et al. [2014]) should
rather go the Anglo-American way, that is, they should use
amendment procedures instead of successive procedures.

Following the spirit of Betzler et al. [2009], it would be
of interest to complement our computational hardness results
for possible and necessary winner problems with a refined
complexity analysis concerning tractable special cases. For
instance, our NP-hardness reductions for the possible winner
problems assume that voters may have arbitrary partial prefer-
ences. It would be interesting to know whether this still holds
if voter preferences are single-peaked [Black, 1958]. More-
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over, it would be natural to also adopt a more game-theoretic
view on the strategic voting scenarios we considered. Finally,
it would be also interesting to study further manipulation sce-
narios for parliamentary voting procedures including, for ex-
ample, candidate control as discussed by Rasch [2014].
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[Barberà and Gerber, 2014] Salvador Barberà and Anke Ger-
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