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Abstract
Standard results on and algorithms for repeated
games assume that defections are instantly observ-
able. In reality, it may take some time for the
knowledge that a defection has occurred to prop-
agate through the social network. How does this
affect the structure of equilibria and algorithms
for computing them? In this paper, we consider
games with cooperation and defection. We prove
that there exists a unique maximal set of forever-
cooperating agents in equilibrium and give an effi-
cient algorithm for computing it. We then evaluate
this algorithm on random graphs and find experi-
mentally that there appears to be a phase transition
between cooperation everywhere and defection ev-
erywhere, based on the value of cooperation and
the discount factor. Finally, we provide a condition
for when the equilibrium found is credible, in the
sense that agents are in fact motivated to punish de-
viating agents. We find that this condition always
holds in our experiments, provided the graphs are
sufficiently large.

1 Introduction
In systems of multiple self-interested agents, we cannot im-
pose behavior on the agents. For desired behavior to take
place, it will have to be in equilibrium, but this is not neces-
sarily the case, especially in one-shot games. It is well known
in game theory that a much greater variety of behavior can be
obtained in the equilibria of infinitely repeated games than in
the equilibria of one-shot games. The standard example is
that of the prisoner’s dilemma. Defecting is a dominant strat-
egy for both players in the one-shot version. In the repeated
version, cooperation between the players can be sustained due
to the threat of the loss of future cooperation. Consequently,
modeling repeated play and solving for equilibria of the re-
sulting games are crucial to the design of systems of multiple
self-interested agents.

The well-known folk theorem in game theory characterizes
the payoffs that agents can obtain in the equilibria of repeated
games. This theorem also serves as the basis of algorithms
that compute equilibria of repeated games, which can be done
in polynomial time for 2-player games [Littman and Stone,

2005]. (This does not extend to games with more than 2 play-
ers [Borgs et al., 2010], unless correlated punishment is pos-
sible [Kontogiannis and Spirakis, 2008]. Recent work shows
that heuristic algorithms can nevertheless be effective [An-
dersen and Conitzer, 2013].)

These results operate under the assumption that an agent’s
behavior is instantly observable to all other agents. For rea-
sonably large multiagent systems, this can be a very limit-
ing restriction. When an agent does not interact with another
agent, it may take some time before one finds out about the
other’s defection. In such cases, it is more difficult to sustain
cooperative behavior in equilibrium, because the punishment
for defection will arrive later in the future and therefore be
more heavily discounted. Then, under what conditions can
we still sustain cooperation, and can we compute the result-
ing equilibria? These are the questions we set out to answer
in this paper.

Graphical games [Kearns et al., 2001] constitute a natu-
ral model for the interaction structure. One shortcoming of
graphical games is that typically, the graph is undirected.
Here, we are also interested in modeling directed relation-
ships, where b is affected by a’s actions but not vice versa.
Of course, this can be represented using an undirected edge
as well, with some duplication of values in the utility table.
However, besides being concerned with computational effi-
ciency, we also want the edges to capture the flow of infor-
mation. For example, suppose b is affected by a’s actions,
c is affected by b’s actions, and a is affected by c’s actions
(but not vice versa). If a defects, c will initially not be aware
of this. However, b will be, causing b to defect in the sec-
ond round. At that point c will become aware of a defec-
tion, resulting in a defection by c in the third round, perhaps
corresponding to a receiving a delayed punishment for de-
fecting in the first round. In any case, allowing for directed
edges in graphical games is a trivial modification. (There
are other graphical models that are used to represent games,
such as MAIDs [Koller and Milch, 2003] and action-graph
games [Jiang et al., 2011], but graphical games provide the
structure we need.)

2 Related Literature
Many papers on repeated public good games show full co-
operation is possible when players become arbitrarily pa-
tient [Kandori, 1992; Ellison, 1994; Deb, 2008; Takahashi,
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2010], even with delayed monitoring [Kinateder, 2008], im-
perfect monitoring [Laclau, 2012], and local monitoring
[Nava and Piccione, 2014] in graphical games. However,
there is not much work characterizing the maximum level
of cooperation sustainable in equilibrium. As an excep-
tion, Wolitzky (2013) explores the maximum level of contri-
butions sustainable in equilibrium for a fixed discount factor
for public good games under private “all or nothing” mon-
itoring (player i changes her monitoring neighborhoods ev-
ery period, and perfectly observes contributions made within
the monitoring neighborhood) and shows that grim-trigger
strategies provide the strongest possible incentives for coop-
eration on-path. This work relates to ours as cooperation in
our framework can be interpreted as providing a local public
good, where the access to the “local public good” is asym-
metric and only the player who benefits from the coopera-
tion observes the cooperation. Given these complications, our
model’s decision variables are discrete (cooperate or defect),
unlike Wolitzky’s which are continuous. Also closely related
is work by Mihm et al. [Mihm et al., 2010], which also con-
cerns sustaining cooperation on social networks in repeated
play. An important technical difference is that in their model,
edges necessarily transmit information in both directions. If
we were to consider the special case of our model where ev-
ery edge transmits information in both directions, our results
would become rather trivial because a deviating agent would
be instantly punished by all its neighbors; on the other hand,
Mihm et al. allow agents to play different actions for each
of their neighbors, which we do not allow. Mihm et al. also
require the game played to be the same on every edge. In
evolutionary game theory, repeated games on graphs are also
sometimes considered, but here the network structure is used
to let agents copy each others strategies (e.g., imitate the best-
performing neighbor).

In our paper, we focus on finding the maximal set of coop-
erating agents in equilibrium for a given discount factor and
experimentally investigating the range of discount factors un-
der which cooperation can be sustained. We also assess the
credibility of the threats used in this equilibrium: we give a
condition for threats to be credibly executed and experimen-
tally investigate when this condition holds for the maximal
set of cooperating agents.

3 Model
We suppose that there is a set of agents A organized in a di-
rected graph G = (V,E) where V = A, i.e., agents are ver-
tices in the graph. A directed edge indicates that the agent
at the tail of the edge benefits if the agent at the head of the
edge cooperates. Associated with every agent (vertex) i is
a cooperation cost κi ∈ R. Associated with every directed
edge (i, j) ∈ E is a cooperation benefit βi,j ∈ R. Agents
play a repeated game, where in each round, each agent ei-
ther cooperates or defects. Note that it is not possible for
an agent to cooperate for some of its outgoing edges but de-
fect for others within the same round. In round t, i receives
−xi,tκi +

∑
j:(j,i)∈E xj,tβj,i, where xi,t ∈ {0, 1} indicates

whether i cooperated in round t or not. That is, agent i expe-
riences cost κi for cooperating and benefit βj,i for j cooperat-

ing. Defection is irreversible, i.e., once an agent has defected
it will defect forever, thereby effectively destroying its outgo-
ing edges. At the end of round t, agent i learns, for every j
with (j, i) ∈ E, whether j cooperated or defected in round t,
and nothing else. As is standard in repeated games, a strategy
of a player maps the entire history that that player observed
to an action. Payoffs in round t are discounted by a factor δt.
We are interested in Nash equilibria of this game (and, later,
in equilibrium refinements).

4 Motivation and Illustrative Examples
Our directed graph framework enables us to model asymme-
try in both payoffs and information flow. (Undirected graphs
can be seen as the special case of our framework where edges
always point in both directions.) In this section, we illustrate
our model using some examples.

4.1 A Pollution Reduction Example
Suppose there is a set of countries, {China, South Korea,
Japan}, gathering together to try to reduce pollution. Geo-
graphically, South Korea and Japan share the Sea of Japan
(also called the East Sea of Korea), and China is located to the
west of both countries. Consequently, if South Korea does not
reduce its pollution, Japan would find out and suffer due to
the pollutants in the sea, and vice versa; but China would not
be affected in either case. If China does not reduce its pollu-
tion, however, both South Korea and Japan would notice and
suffer, with the pollutants traveling with the dominant west
wind.

In this simplified model, South Korea and Japan do not
have a way to punish China even if China decides to not re-
duce pollution. However, Japan and South Korea may be able
to negotiate and enforce an agreement between themselves,
because when one of the two defects, the other can punish the
former (enough) by defecting back. Thus, our model allows
us to solve for the set of agents that would be able to negotiate
an enforceable agreement.

4.2 Delayed Punishment due to Directionality of
Information Flow

As a similar example, consider three agents, North Amer-
ica (NA), Europe (EU), and Asia (AS) negotiating a pollu-
tion reduction agreement. With the dominant wind from the
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West, North America would notice Asia’s pollution, Europe
would notice North America’s pollution, and Asia would no-
tice Europe’s pollution. Hence, defection in North America
could trigger Europe to defect in the next period, which in
turn could trigger Asia to defect in the period after, at which
point North America experiences a delayed punishment.

4.3 Discussion of Assumptions in the Model
One of our assumptions is that it is not possible for an agent to
defect on one neighbor but to simultaneously cooperate with
another neighbor. This makes sense in the examples above—
e.g., it is not possible for China to pollute only towards Japan
but not towards South Korea. Moreover, the cost of reducing
pollution does not depend on one’s neighbors.

Another assumption is that defection is irreversible. Our
results depend on this assumption: dropping it may allow
arrangements with partial cooperation (where, for example,
one agent is expected only to cooperate every other period)
which we do not consider here. In any case, this assumption
is reasonable in cases where continued cooperation requires
upkeep—e.g., once you install a dirty coal-fired power plant
it may be hard to shut it down; in accounting of nuclear re-
sources, cooperation may mean following a tight protocol,
and once an agent defects for a period it may become impos-
sible to re-account for all the resources properly; etc.

5 Theoretical Analysis for Cooperation in
Nash Equilibrium

We will show that we can without loss of generality restrict
our attention to grim-trigger equilibria, in which there is
some subset of agents S ⊆ A that each cooperate until an-
other agent in S defects on them.

Definition 1. Player i’s strategy grim trigger for S consists
of i cooperating until some player j ∈ S with (j, i) ∈ E
defects, which is followed by i defecting (forever).

Definition 2. The grim trigger profile T [S] consists of all the
agents in S playing the grim trigger strategy for S, and all
other players always defecting.

When one agent’s defection triggers another’s defection,
the latter can set off further defections. This cascade of de-
fections is what lets the information that there has been a de-
fection travel through the graph. Accordingly, to determine
how long it takes an agent to find out about the original defec-
tion, we need a definition of distance that takes into account
that information is transmitted only through the (originally)
cooperating agents.

Definition 3. For any subset S of the agents and any i, j ∈ S,
the distance from i to j through S, denoted d(i, j, S), is the
length of the shortest path from i to j that uses only agents in
S. For a set of agentsG ⊆ S, d(G, j, S) = mini∈G d(i, j, S).

The next proposition establishes a necessary and sufficient
condition for T [S] to be a Nash equilibrium.

Proposition 1. (Equilibrium) T [S] is an equilibrium if and
only if for all i ∈ S,

∑
j∈S:(j,i)∈E δ

d(i,j,S)βj,i ≥ κi.

Proof. First observe that every player outside S is best-
responding, because her actions do not affect any other
players’ future actions and within any single round, de-
fecting is a strictly dominant strategy. For a player i in
S, without loss of generality we can focus on whether
she would prefer to defect (starting) in the first round. If
i were to defect, the total utility gain from reduced ef-
fort are exactly

∑∞
t=0 δ

tκi = κi/(1 − δ), and the to-
tal utility loss from neighbors eventually defecting as a re-
sult of i’s defection is

∑
j∈S:(j,i)∈E

∑∞
t=d(i,j,S) δ

tβj,i =∑
j∈S:(j,i)∈E δ

d(i,j,S)βj,i/(1−δ). The latter follows from the
fact that i’s defection will cause j to defect exactly d(i, j, S)
rounds later. Thus, i has no incentive to defect if the former
is no greater than the latter. Multiplying both sides by 1 − δ
gives the desired inequality.

The next proposition shows that no equilibria can have
more agents cooperate forever than the grim-trigger equilib-
ria. Intuitively, this is because grim-trigger profiles provide
the maximum possible punishment for deviating agents.

Proposition 2. (Grim Trigger is WLOG) Suppose there ex-
ists a pure-strategy equilibrium in which S is the set of play-
ers that cooperates forever. Then T [S] is also an equilibrium.

Proof. For an arbitrary player i ∈ S, we must prove the in-
equality in Proposition 1. For the given equilibrium, con-
sider some period τ at which every player outside S has de-
fected (on the path of play). If player i considers defecting
at this point, the total utility gain from reduced effort would
be exactly

∑∞
t=τ δ

tκi = δτκi/(1 − δ). On the other hand,
the total utility loss from neighbors defecting as a result of
i’s defection is at most

∑
j∈S:(j,i)∈E

∑
t=τ+d(i,j,S) δ

tβj,i =

δτ
∑
j∈S:(j,i)∈E δ

d(i,j,S)βj,i/(1−δ). The latter follows from
the fact that i’s defection can only cause changes in j’s behav-
ior d(i, j, S) rounds later, because no information can pass
through nodes that have already defected. By the equilib-
rium assumption, the latter expression is at least as large as
the former. Multiplying both by (1− δ)/δτ gives the desired
inequality.

The next lemma shows that the more other agents cooper-
ate, the greater the incentive to cooperate.

Lemma 3. (Monotonicity) If S ⊆ S′ and the incentive con-
straint from Proposition 1 holds for i relative to S (so i ∈ S,∑
j∈S:(j,i)∈E δ

d(i,j,S)βj,i ≥ κi), then it also holds for i rela-
tive to S′.

Proof. We argue that
∑
j∈S′:(j,i)∈E δ

d(i,j,S′)βj,i ≥∑
j∈S:(j,i)∈E δ

d(i,j,S)βj,i, which establishes that the former
is also at least κi. First, all summands are nonnegative, and
the former expression has a summand for every j for which
the latter expression has a summand. Second, for any i, j, we
have that d(i, j, S′) ≤ d(i, j, S), because having additional
agents cannot make the distance greater. Because δ < 1, it
follows that δd(i,j,S

′) ≥ δd(i,j,S). Hence, for j for which
both expressions have a summand, the summand is at least as
large in the former expression (corresponding to S′) as in the
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latter (corresponding to S). This establishes that the former
expression is at least as large.

The next proposition shows that we cannot have multiple
distinct maximal grim-trigger equilibria.

Proposition 4. (Maximality) If T [S] and T [S′] are both
equilibria, then so is T [S ∪ S′].

Proof. Consider some i ∈ S ∪ S′; without loss of generality,
suppose i ∈ S. We must show that the incentive constraint
from Proposition 1 holds for i relative to S ∪ S′. But this
follows from Lemma 3 and the facts that it holds for i relative
to S and that S ⊆ S ∪ S′.

Proposition 4 implies that there exists a unique maximal set
S∗ of forever-cooperating agents such that T [S∗] is an equi-
librium. We can use the following algorithm for finding the
unique maximal set S∗. Initialize Scurrent to include all agents.
Then, in each iteration, check, for each i ∈ S, whether the
incentive constraint holds for i relative to Scurrent. Remove
those i for which it does not hold from Scurrent. Repeat this
until convergence; then, return Scurrent. Call this Algorithm 1,
presented formally below.

Proposition 5. (Correctness) Algorithm 1 returns the unique
maximal set S∗ such that T [S∗] is an equilibrium.

Proof. It suffices to show that if i is at some point eliminated
from Scurrent in Algorithm 1, then there exists no set S such
that i ∈ S and T [S] is an equilibrium. We prove this by
induction on the round in which i is eliminated. Suppose it
holds for all rounds before t; we prove it holds when i is elim-
inated in round t. Let St denote the set of agents that have not

yet been eliminated in round t (including i). By the induction
assumption, for any S such that T [S] is an equilibrium, we
have S ⊆ St. But the incentive constraint from Proposition 1
does not hold for i relative to St, because i is eliminated in
this round. But then, by Lemma 3, it also does not hold for i
relative to any S ⊆ St. Hence, there is no S such that i ∈ S
and T [S] is an equilibrium.

Proposition 6. (Runtime) The runtime of Algorithm 1 is
O(|V |2 |E| log |V |).

Proof. Because at least one agent is removed in every itera-
tion before the last, there can be at most |V |+1 iterations. In
each iteration, we solve all-pairs shortest paths, which can be
done in O(|V | |E| log |V |) time [Cormen et al., 2001]. Also,
in each iteration, for every agent, we need to evaluate whether
the incentive constraint holds, requiring us to sum over all
its incoming edges. Because each edge has only one vertex
for which it is incoming, we end up considering each edge
at most once per iteration for this step, so that its runtime is
dominated by the shortest-paths runtime.

6 Experimental Analysis on Random Graphs
In this section, we evaluate the techniques developed so far
experimentally. After this, we continue with further theo-
retical development, which we subsequently experimentally
evaluate as well.

6.1 Assumptions for Simulation
For our experimental analysis, we make the following addi-
tional assumptions on the cost and benefit structure. First, i’s
cost of cooperation is proportional to the number of outgoing
edges i initially has: κi =

∑
i∈S:(i,j)∈E 1, normalizing the

per-edge cost to 1. Also, we assume a constant benefit to hav-
ing an incoming edge, that is, βj,i = β for all (j, i) ∈ E. This
implies that the total benefit i receives is proportional to the
number of incoming edges i has (from cooperating agents).

We generate random graphs based on two models: the
Erdős-Rényi random graph model (ER) and the Barabási-
Albert preferential-attachment random graph model (PA),
with some modifications to generate directed rather than
undirected graphs. The ER model requires n, the number
of nodes, and p, the probability of a directed edge between
two nodes. The PA model requires n, the number of nodes,
e, the number of edges per node, and γ, a parameter deter-
mining the degree of “preference” given to nodes with more
edges when a new node enters the network in the formation
process (γ = 0 makes the probability of an existing node be-
ing selected for edge generation directly proportional to its
current degree, whereas γ = 1 makes the probability of be-
ing selected equal among all the currently existing nodes). To
obtain directed graphs from PA, we first turn any undirected
edge into two directed edges (directed both ways). We then
add pdegeneration, the probability of removing a directed edge
between any two nodes (we calibrate e and pdegeneration to keep
p, the probability of a directed edge between two nodes, com-
parable to the ER cases and the analytical expression). All the
graphs presented in this paper are with p = 0.3, and with each
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point averaged over 100 graphs. This probability is chosen as
a representative value for presentation, but the patterns shown
are consistent with graphs generated using different p values.

6.2 Equilibrium Defection Phase Transition
Given a graph, there are two parameters that can further affect
i’s incentive to cooperate or defect. Varying β will change
the value of incoming edges (relative to the cost of outgoing
edges). On the other hand, varying δ will affect how an agent
trades off current and future payoffs. Thus, we apply Algo-
rithm 1 for varying values of δ and β.

Figure 1: Nodes’ defection probabilities—the fractions of
nodes that fail to cooperate in the maximally cooperative
equilibrium—for values of β and δ (ER: n = 100, p = 0.3).

Figure 2 shows the resulting equilibrium cooperation and
defection patterns for representative ER and PA specifications
for different values of n. These are top-down views of graphs
of the form in Figure 1. For all the gradient graphs, the transi-
tion pattern is similar to that of Figure 1. We see an apparent
phase transition, with a sudden sharp drop in the defection
probability, indicating a transition from everyone defecting
to everyone cooperating. This implies that β and δ suffice to
predict whether a node will cooperate; in particular, knowing
a node’s centrality in the graph does little to help predict co-
operation of that node, because it tends to be the case that the
whole graph cooperates or defects together.

Intuitively, we might expect a phase transition for the fol-
lowing reason. For high values of β and δ, it will be rare that
any agents have an incentive to defect when all other agents
play the grim trigger strategy. However, once we drop to val-
ues where some agents have an incentive to defect, we can
no longer have these agents participate in the grim trigger
strategy. This then increases the incentives for other agents
to defect, so some of them no longer participate either, etc.,
quickly leading to a collapse of all cooperation.

As pointed out in the proof of Proposition 6, the algorithm
returns the equilibrium after at most |V | + 1 iterations, but
this is a very pessimistic upper bound, assuming exactly one
agent is eliminated each iteration. Experimentally, signifi-
cantly fewer iterations are required for convergence, as indi-
cated in Figure 3. On average, the algorithm converges within

at most 12 iterations. Moreover, we see the typical pattern
where runtime is greatest around where the phase transition
happens. This pattern confirms our intuition that the cascade
of defection set off by the initial defection results in the ob-
served phase transition. Further away from the band, the al-
gorithm converges within an average of 2 iterations.

7 Credibility of Threats in Equilibrium
So far, we have focused on the maximal set of cooperating
agents, S∗, in Nash equilibrium. However, these equilibria
involve threats of grim-trigger defection that may not be cred-
ible. Suppose agent 1 has one otherwise isolated neighbor,
agent 2, that has defected. If agent 1 defects, as she is sup-
posed to in the grim trigger equilibrium, then she will also set
off defections in the rest of the network, which may come at
a significant cost to her. On the other hand, if she ignores the
defection and continues to cooperate, then the other agents
will never learn of the defection (since agent 2 is otherwise
isolated) and continue to cooperate. The latter may be better
for agent 1, in which case the grim trigger strategy is not cred-
ible. Hence, if we impose an additional credibility condition
on the equilibrium, the maximal set of nodes cooperating in
equilibrium may be strictly smaller than S∗ (it will always be
a subset).

In this section, we will give a condition for the grim trigger
strategy to be credible for a given set of agents in the network
(S ⊆ A). Hence, when T [S] is a Nash equilibrium and the
condition holds, then T [S] is also a credible equilibrium. As
we will later show, for sufficiently large networks, this condi-
tion always holds in our experiments for S∗.

So far, we have avoided a precise definition of when equi-
libria are credible. Of course, the notion of threats that are
not credible is common in game theory, motivating refine-
ments of Nash equilibrium such as subgame-perfect Nash
equilibrium. Subgame-perfect equilibrium will not suffice for
our purposes, because generally our game has no proper sub-
games: the acting agent does not know which moves were just
taken by agents at distance 2 or more. Hence, subgame per-
fection does not add any constraints. We need a stronger re-
finement. Common stronger equilibrium refinements (such as
perfect Bayesian equilibrium or sequential equilibrium) gen-
erally require specifying the beliefs that the players have at
information sets that are off the path of play. In fact, in our
game, we can obtain the following very strong refinement,
which we will call credible equilibrium: if an agent learns
that some deviation from the equilibrium has taken place,
then she will be best off following her equilibrium strategy
(e.g., grim trigger) regardless of her beliefs about which de-
viations have taken place, assuming that the other agents also
follow their equilibrium strategies from this round on.1 We

1A similar notion from the literature on repeated games with im-
perfect private monitoring is that of belief-free equilibrium [Ely et
al., 2005], in which an agent’s continuation strategy is optimal re-
gardless of her beliefs about opponents’ histories. This, however,
is not true for the strategies we study: specifically, if agent i is in
a situation where all agents other than i’s own neighbors have de-
fected, and all i’s neighbors will defect in the next period, then i
would be better off defecting this period—but she will not do so un-
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Figure 2: Gradient figures (top-down view of graphs of the form in Figure 1) showing nodes’ defection probabilities for different
values of β and δ, for both ER and PA graphs with various numbers of nodes n. The x-axis shows the β values, ranging from 0
to 10, and the y-axis shows the δ values, ranging from 0 to 1. The white section indicates complete defection, while the black
section indicates complete cooperation. Intermediate shades indicate partial cooperation.

Figure 3: Gradient figures showing the average number of iterations needed until convergence of the algorithm, for various
values of β and γ. The specifications of each panel are the same as in Figure 2. In the bottom left, where we see total
collapse of cooperation, Algorithm 1 converges within 2 iterations on average. In the top right, where we see total cooperation,
Algorithm 1 (of course) converges within 1 iteration. The middle band requires more iterations (maximally 9 on average).

now proceed towards deriving our condition for T [S∗] to be
a credible equilibrium. The first lemma shows that we can
restrict our attention to only a single neighbor defecting.
Lemma 7. (Sufficiency of Singleton Deviations) Suppose
that, for agent i, there is a set of agents K (with i /∈ K and
K ∩ {k : (k, i) ∈ E} 6= ∅) such that if i believes that K
is the set of all agents that have defected so far, and all other
agents will play grim trigger from now on, then i prefers post-
poning defection for r (1 ≤ r ≤ ∞) rounds to defecting im-
mediately (i.e., grim trigger is not credible). Then, for any
k ∈ K ∩ {k : (k, i) ∈ E}, if i believes that {k} is the set of
all agents that have defected so far, and all other agents will
play grim trigger from now on, i prefers postponing defection
for r rounds to defecting immediately as well.
Proof Sketch: The intuition for the lemma is that, in both
scenarios, the cost of cooperating for r more rounds is the
same, but the benefit from postponing defection—which is
that other nodes will cooperate longer—is always at least as
large in the second case.
Lemma 8. (One-Round Postponement) Suppose that the
following holds: if i believes that {k} (with (k, i) ∈ E) is the
set of all agents that have defected so far, and all other agents
will play grim trigger from now on, then i prefers postponing
defection for r (1 ≤ r ≤ ∞) rounds to defecting immediately
(i.e., grim trigger is not credible). Then, in these circum-
stances, i will also prefer postponing defection for exactly 1

der the grim-trigger strategy, as she is not yet aware of any defection
having taken place. In contrast, our notion of credible equilibrium
conditions on the agent knowing that a defection has taken place.

round to defecting immediately.

Proof Sketch: The intuition for the lemma is that the longer
agent iwaits to defect, the fewer other agents will be informa-
tionally affected—in the sense that they learn about a defec-
tion having taken place later—by i deciding to wait one ad-
ditional round. This is because increasingly many agents will
learn about the defection via paths not involving i. Hence, the
incentive to wait is strongest in the first round.

Theorem 9. (Credible Equilibrium) Suppose that for some
set S ⊆ A, T [S] is a Nash equilibrium. Then T [S] is a
credible equilibrium if and only if for any k, i ∈ S with
(k, i) ∈ E, it holds that κi − δd(k,j,S)

∑
j∈D βji ≥ 0, where

D = {j ∈ I : d(k, j, S) + 1 ≤ d(k, j, S−i)}.

Proof. Because T [S] is a Nash equilibrium, it is credible if
and only if immediate defection upon learning of a deviation
is credible. The condition in the theorem is equivalent to say-
ing that when a single neighbor has deviated alone, defecting
immediately is better than waiting one round to defect. By
Lemma 8, this implies that under these circumstances, de-
fecting immediately is optimal. By Lemma 7, this implies
that defecting immediately is optimal whenever the agent be-
lieves some nonempty subset has defected.

8 Extension: Experimental Analysis of the
Credible Equilibrium

In our previous experimental section, we did not consider
whether T [S∗] was a credible equilibrium. In this experimen-
tal section, we use the condition in Theorem 9 to determine
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Figure 4: Gradient figures showing the fraction of cases in which T [S∗] is a credible equilibrium, for different values of β
and δ. The specifications of each panel are the same as in Figure 2. In the bottom left of each panel (black section), T [S∗] is
always credible; in the top right it is not always (when it is brighter), though as n grows quickly the condition starts holding
everywhere. In the n = 10 cases, even for the combination of β and δ values where grim trigger is least credible, T [S∗] is a
credible equilibrium about 60 percent of the time.

when this is the case. Figure 4 shows the fraction of instances
for which T [S∗] is a credible equilibrium. Of course, this
is always true when S∗ = ∅. Generally, when the credibil-
ity condition fails, it is in the region where both the discount
factor δ and the benefit multiplier β are high. This makes
intuitive sense: if these parameters are low, there is little rea-
son to postpone defection. More significantly, we see that as
n increases, the fraction of cases where the condition holds
quickly converges to 1 everywhere. This, too, makes intuitive
sense: the main reason to postpone defection is to slow down
the spread of the information that a defection has taken place.
However, the larger the network, the less likely it is that an
individual node can do much to keep this information from
spreading.

9 Conclusion
In this paper, we considered the following problem. In re-
peated games in which the agents are organized in a social
network, it may take more than one round for an agent to
find out about a defection that happened elsewhere in the
graph. If so, it may increase incentives for agents to defect,
because the losses from resulting punishment will be delayed
and therefore discounted more heavily. We restricted our at-
tention to games in which the agents can either cooperate or
defect. We proved that there exists a unique maximal set of
forever-cooperating agents in such games. We also gave an
efficient algorithm for computing this set, which relies on it-
eratively removing agents from the set that cannot possibly be
incentivized to cooperate forever, based on which agents are
still in the set. We evaluated this algorithm on randomly gen-
erated graphs and found an apparent phase transition: when
the relative cooperation benefit β and the discount factor δ
are high enough, all agents can cooperate forever, but once
these are lowered beyond a threshold, we get a total collapse,
with no agents cooperating. Lastly, we gave an easy-to-check
condition for when the threats in the equilibrium are credible,
and found experimentally that for large graphs this condition
always holds.

10 Future research
One direction for future research is to generalize the tech-
niques in our paper to more general games on networks, in

which agents’ action spaces are not restricted to cooperation
and defection. We expect that many of the same phenomena
would occur in such games, and similar techniques would ap-
ply, but several additional technical challenges would have to
be overcome. The main issue is that in sufficiently general
games, multiple agents would need to coordinate their pun-
ishment actions for them to be maximally effective (unlike in
the game studied here, where defection is always maximally
effective). Such coordination is known to pose computational
challenges even without network structure [Kontogiannis and
Spirakis, 2008; Hansen et al., 2008; Borgs et al., 2010;
Andersen and Conitzer, 2013], and in our context there will
be further challenges in coordinating punishment because in-
formation spreads slowly.

Another direction for future research would be to mathe-
matically prove the existence of the phase transition, as well
as that all maximal equilibria become credible as n grows. In
both cases, it is not difficult to give rough arguments, but a
careful proof will probably require the use of results in prob-
ability theory, such as concentration bounds.
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