
Filtering Nogoods Lazily in
Dynamic Symmetry Breaking During Search

Jimmy H. M. Lee and Zichen Zhu
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, N.T., Hong Kong
{jlee,zzhu}@cse.cuhk.edu.hk

Abstract
The generation and GAC enforcement of a large
number of weak nogoods in Symmetry Breaking
During Search (SBDS) is costly and often not
worthwhile in terms of prunings. In this paper, we
propose weak-nogood consistency (WNC) for no-
goods and a lazy propagator for SBDS (and its vari-
ants) using watched literal technology. We give for-
mal results on the strength and relatively low space
and time complexities of the lazy propagator. No-
goods collected for each symmetry are increasing.
We further define generalized weak-incNGs consis-
tency (GWIC) for a conjunction of increasing no-
goods, and give a lazy propagator for the incNGs
global constraint. We prove GWIC on a conjunc-
tion is equivalent to WNC on individual nogoods,
and give the space and time complexities. Various
lazy versions of SBDS and its variants are imple-
mented. We give experimentation to demonstrate
the efficiency of the lazy versions as compared to
state of the art symmetry breaking methods.

Introduction
Advantages of dynamic symmetry breaking methods, such
as SBDS [Gent and Smith, 2000; Gent, Harvey, and Kelsey,
2002] and SBDD [Fahle, Schamberger, and Sellmann, 2001;
Gent et al., 2003], include completeness, ability to break sym-
metries of arbitrary kinds and compatibility with variable and
value heuristics. When considering runtime, dynamic meth-
ods often lose out to widely used static methods, such as the
LexLeader method [Crawford et al., 1996] and value prece-
dence [Law and Lee, 2006], which require no modifications
to the solver and often have less overheads. Based on SBDS,
ReSBDS [Lee and Zhu, 2014a] and LReSBDS [Lee and Zhu,
2014b] break additional symmetry compositions thereby, fur-
ther pruning the solution and search space. Instead of main-
taining the large number of symmetry breaking nogoods in
the constraint store, the increasing-nogood (incNGs) global
constraint [Lee and Zhu, 2014b] collects all nogoods for a
symmetry and filters them with an incremental and stronger
filtering algorithm. Such recent advances greatly increase the
competitiveness of dynamic approaches against the state of
the art static methods.

SBDS adds conditional symmetry breaking nogoods dy-
namically upon backtracking to avoid exploring symmetri-
cally equivalents of visited search space. However, nogoods
are weak in pruning and maintaining GAC is not cost effec-
tive even when the watched literal technique [Moskewicz et
al., 2001] is utilized. In addition, the number of such nogoods
is often large, incurring big overheads to the constraint store.

In this work, we propose weak-nogood consistency
(WNC), a weaker consistency notion for nogoods to trade
pruning power for efficiency. To enforce GAC on a nogood,
usual implementation watches two assignments (as literals)
of the nogood. We present an efficient lazy propagator to en-
force WNC for SBDS (and its variants) using one watched lit-
eral. First, our propagator generates the watched assignment
on demand from partial assignment of the current search path.
Second, the propagator is triggered lazily when the watched
assignment becomes true, and effects prunings only when all
but the last assignment of the nogood is true.

A similar weaker consistency, generalized weak-incNGs
consistency (GWIC), together with a lazy propagator is also
proposed for the incNGs constraint [Lee and Zhu, 2014b].
By exploiting the increasing property of the nogoods in in-
cNGs, our lazy propagator watches also one assignment for
each global constraint, and operates and benefits from a sim-
ilar lazy principle. We give formal characterization of the
pruning strengths of the proposed propagators, and also the
space and time complexities. Various lazy versions of SBDS
and its variants are implemented. We give experimentation to
demonstrate the efficiency of the lazy versions as compared
to state of the art symmetry breaking methods.

Background
A constraint satisfaction problem (CSP) P is a tu-
ple (X,D,C) where X is a finite set of variables
{x0, . . . , xn−1}, D is a finite set of domains such that each
x ∈ X has a D(x) and C is a set of constraints, each is a
subset of the Cartesian product D(xi1) × . . . × D(xik) of
the domains of the involved variables. A constraint is gener-
alized arc consistent (GAC) iff when a variable in the scope
of a constraint is assigned any value in its domain, there ex-
ist compatible values (called supports) in the domains of all
the other variables in the scope of the constraint. A CSP is
GAC iff every constraint is GAC. An assignment x = v is
an equality constraint assigning value v to variable x. A full

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

339

assignment is a set of assignments, one for each variable in
X . A partial assignment is a subset of a full assignment. A
solution to P is a full assignment that satisfies every member
of C. An assignment x = v is satisfied iff D(x) = {v}. An
assignment x = v is falsified iff v 6∈ D(x). If an assignment
is neither satisfied nor falsified, it is unresolved.

A nogood is the negation of a partial assignment which
is not in any solution. Nogoods can also be expressed in an
equivalent implication form. A directed nogood ng is an im-
plication of the form (xs0 = vs0) ∧ . . . ∧ (xsm = vsm) ⇒
(xk 6= vk), where the left hand side (LHS) (lhs(ng) ≡
(xs0 = vs0) ∧ . . . ∧ (xsm = vsm)) and the right hand side
(RHS) (rhs(ng) ≡ (xk 6= vk)) are defined with respect to
the position of⇒. We call all assignments in the LHS as the
LHS assignments and the negation of the RHS as the RHS
assignment. The meaning of ng is that the RHS assignment
xk = vk is incompatible with the LHS assignments, and vk
should be ruled out from D(xk) when the LHS is true. If
lhs(ng) is empty, ng is unconditional. Hereafter, directed no-
goods are simply called nogoods when the context is clear.

In this paper, we consider search trees with binary branch-
ing, in which every non-leaf node has exactly two children.
Suppose a non-leaf node P1 has x and v ∈ D(x) as the
branching variable and value. The left and right children of
P1 are P1 ∪ {x = v} and P1 ∪ {x 6= v} respectively. We call
x = v the branching assignment from P1 to P1∪{x = v} and
backtracking assignment from P1∪{x = v} to P1∪{x 6= v}.
We say that backtracking takes place at P1. Each node P1 is
associated with a partial assignment A1 which is the set of
branching assignments collected from the root P to P1. If a
node P0 is in a subtree under node P1, P0 is the descendant
node of P1 and P1 is the ancestor node of P0.

We assume that the CSP, except the generated symmetry
breaking nogoods, at a search tree node is always made GAC
using an AC3-like [Mackworth, 1977] algorithm to coordi-
nate the triggering of the propagators associated with the in-
dividual constraints. Consistency Φ1 is stronger than or equal
to (≥) consistency Φ2 iff any Φ1-consistent CSP is also Φ2-
consistent. Consistency Φ1 is strictly stronger than (>) Φ2 if
Φ1 ≥ Φ2 but not vice versa. Consistency Φ1 is equivalent to
(=) Φ2 if Φ1 ≥ Φ2 and Φ2 ≥ Φ1.

Here we consider symmetry as a property of the set of so-
lutions. A solution symmetry [Rossi, Van Beek, and Walsh,
2006] is a solution-preserving permutation on assignments.

Symmetry breaking method m1 is stronger in nodes (resp.
solutions) pruning than method m2, denoted by m1 �n

(resp. �s) m2, when all the nodes (resp. solutions) pruned
by m2 would also be pruned by m1. Symmetry breaking
methodm1 is strictly stronger in nodes (resp. solutions) prun-
ing than method m2, denoted by m1 �n (resp. �s) m2,
when m1 �n (resp. �s) m2 and m2 6�n (resp. 6�s) m1.
Note that �n and �n imply �s and �s respectively.

LexLeader [Crawford et al., 1996] adds one lexicographi-
cal ordering constraint [Frisch et al., 2002],≤lex, per variable
symmetry according to a fixed variable order.

Given the set of all symmetries to a CSP, symmetry break-
ing during search (SBDS) [Gent and Smith, 2000] adds con-
ditional constraints for each symmetry upon backtracking.
Consider a node P0 in the search tree with partial assign-

mentA, branching variable x and value v. After backtracking
from the node P0 ∪ {x = v}, for each solution symmetry g,
SBDS adds the following conditional constraint to the node
P0 ∪ {x 6= v}:

Ag ⇒ (x 6= v)g (1)

meaning that once A ∧ (x = v) has been searched, its sym-
metric partial assignment (A ∧ (x = v))g for any g in the
symmetry set under this subtree should not be searched at all.
Note that the added constraint is a nogood.

Weak-Nogood Consistency
The watched literal technique [Moskewicz et al., 2001] is ex-
tended to implementing propagators for CSPs [Gent, Jeffer-
son, and Miguel, 2006]. When an assignment (as a literal)
is watched, the satisfaction of the assignment triggers the
propagator in the AC-3 like algorithm. To enforce GAC for
a nogood, only two assignments that are not satisfied need to
be watched [Moskewicz et al., 2001]. Upon each backtrack-
ing, SBDS would add new nogoods into the constraint store.
Maintaining such a large set of nogoods is costly since the
triggers to their propagators are often fruitless. We propose
to watch only one assignment to trade pruning power for effi-
ciency by enforcing nogood with a weaker consistency.

A nogood (xs0 = vs0) ∧ . . . ∧ (xsm = vsm)⇒ (xk 6= vk)
is weak-nogood consistent (WNC) iff (∃i ∈ [0,m], (vsi 6∈
D(xsi) ∨ (vsi ∈ D(xsi) ∧ |D(xsi)| > 1))) ∨ ((∀i ∈
[0,m], D(xsi) = {vsi}) ∧ vk 6∈ D(xk)).

A nogood is WNC if either (1) one of the LHS assignments
is not satisfied or (2) all LHS assignments are satisfied and its
RHS assignment is falsified.

We now compare the consistency level of GAC and WNC.

Theorem 1. GAC > WNC on a nogood.

Proof. We first prove that GAC implies WNC. A nogood is
GAC if either (a) it is true or (b) it has at least two unresolved
assignments. For (a), either one of the LHS assignments is
falsified, or all LHS assignments are satisfied and its RHS
assignment is falsified. Both cases satisfy the two conditions
of WNC respectively and the nogood is also WNC. For (b),
one of the unresolved assignments must be in the LHS. Thus
one of the LHS assignments is not satisfied and condition (1)
of WNC is satisfied. The nogood is WNC.

To prove GAC is strictly stronger than WNC, consider the
nogood ng ≡ (x1 = 1)∧(x2 = 1)⇒ (x3 6= 1) with domains
D(x1) = D(x3) = {1}, D(x2) = {1, 2}. The nogood is
WNC since (x2 = 1) is not satisfied yet but not GAC since 1
from D(x2) has no support.

WNC loses pruning opportunities in which an unresolved
LHS assignment can be enforced to be true when all other
assignments in this nogood are all satisfied. Experimental re-
sults confirm however that such cases happen not very often.

To enforce WNC for a symmetry breaking nogood, we pro-
pose a lazy propagator, LazyNgProp, in Algorithm 1. The
propagator can end with two different outputs: ENTAILED
or WNCed. A stores the current partial assignment. Without
loss of generality, we assume that variables in A are in input
order 〈x0, . . . , xn−1〉 for ease of explanation. We also assume

340

that a propagator is immediately triggered once when it is first
added to the constraint store.

Algorithm 1 LazyNgProp()
Require:
A: current partial assignment
g: symmetry
x: variable of the watched LHS assignment
v: value of the watched LHS assignment
x̃: variable of the RHS
ṽ: value of the RHS
α = −1: position of the assignment inA whose symmetric
assignment is being watched
β: the length of the LHS

1: for each (xi = vi) ∈ A and i ∈ [α+ 1, β) do
2: (xi

′ = vi
′) = (xi = vi)

g;
3: if vi′ 6∈ D(xi

′) then return ENTAILED;
4: else
5: if |D(xi

′)| > 1 then
6: x = xi

′; v = vi
′;

7: α = i;
8: watch x = v;
9: return WNCed;

10: prune ṽ from D(x̃);
11: return ENTAILED;

Upon each backtracking, we create a propagator for each
generated symmetry breaking nogood and make available the
symmetry g, the length of the LHS and the RHS x̃ 6= ṽ of
the associated nogood to the propagator. The pointer α is ini-
tialized to -1 meaning that the propagator does not watch any
assignment when it is initially triggered. The for-loop in lines
1-9 starts from the current watched assignment to look for
the next unresolved assignment to watch. Once found, the
nogood is WNC and the propagator can exit (line 9) with
WNCed returned. If, however, any LHS assignment is found
falsified, the nogood is entailed and can be removed from the
constraint store (line 3, exit with ENTAILED). If no unre-
solved assignments are found, all LHS assignments are satis-
fied and pruning is effected using the RHS (line 10) and again
the nogood is entailed (line 11).

As can be seen in Algorithm 1, LazyNgProp watches only
one assignment at a time. Symmetric assignments in the LHS
of nogoods are also only computed on demand but not ea-
gerly. In addition, the current partial assignment A can be
shared by all propagators and backtrackable.

Theorem 2. LazyNgProp enforces WNC for a nogood.

Proof. If the propagator for a nogood ng returns WNCed at
line 9, it has an unresolved assignment x = v being watched.
From line 1, we know x = v is in the LHS of ng. Thus condi-
tion (1) of WNC is satisfied and ng is WNC. The propagator
can return ENTAILED at line 3 or 11. In line 3, condition (1)
of WNC is satisfied. In line 11, condition (2) is satisfied since
all LHS assignments are satisfied and the RHS assignment is
falsified. Again, ng is WNC.

Theorem 3. Given a CSP P = (X,D,C) with |X| = n. The

space complexity of LazyNgProp for a nogood is O(1), and
the time complexity is O(n).

Proof. LazyNgProp records only the symmetry (just a name
or pointer), the LHS watched assignment, the RHS assign-
ment, the LHS watched assignment’s corresponding assign-
ment position and the length of the LHS. The total space
complexity is O(1). The maximum number of assignments
in each nogood is n and we scan the assignments only once
in LazyNgProp. The time complexity is O(n).

Theorem 4. Given a CSP P = (X,D,C) with |X| = n and
a set of symmetries G. The total space and time complexity of
SBDS utilizing LazyNgProp to enforce WNC on all nogoods
at each search tree node is O(|G|

∑n−1
i=0 (|D(xi)| − 1) + n)

and O(n|G|
∑n−1

i=0 (|D(xi)| − 1)) respectively.

Proof. The total number of nogoods in SBDS is at most
|G|

∑n−1
i=0 (|D(xi)| − 1) and the length of a partial as-

signment can be at most n. While each filtering algorithm
has O(1) space complexity, the total space complexity is
O(|G|

∑n−1
i=0 (|D(xi)| − 1) + n).

LazyNgProp scans the LHS assignments incrementally
during the AC3-like algorithm by maintaining α. The max-
imum number of such assignments is n. Thus the total time
complexity for LazyNgProp to handle all the nogoods in
SBDS is O(n|G|

∑n−1
i=0 (|D(xi)| − 1)).

GAC vs WNC in SBDS and Its Variants
In addition to ReSBDS and LReSBDS, Partial SBDS (ParS-
BDS) [Flener et al., 2002] is SBDS but deals with only a
given subset of all symmetries. LDSB [Mears et al., 2013]
is a further development of shortcut SBDS [Gent and Smith,
2000] which handles only active symmetries and their com-
positions. WNC can also be used in ParSBDS, LDSB, ReS-
BDS and LReSBDS since they generate symmetry breaking
nogoods in a similar fashion.

In this section, we compare the node and solution pruning
power between GAC and WNC in SBDS and its variants re-
spectively. We denote the methods enforcing WNC with sub-
script WNC, and those enforcing GAC without a subscript.

In the following, we assume all methods use the same static
variable and value ordering heuristics.

Theorem 5. SBDS =s SBDSWNC and SBDS �n

SBDSWNC .

Proof. Suppose SBDSWNC leaves two symmetric solutions
s1 and s2. Suppose further P is their deepest common ances-
tor node and s1 is searched earlier than s2. Upon backtrack-
ing from the left subtree to the right at P , the nogood which
prunes the symmetric solution of s1 must be posted. Since
LazyNgProp can only postpone some pruning opportunities
to deeper nodes, s2 is pruned by the nogood eventually. Thus
SBDSWNC has the same solution pruning power as SBDS.

As the entire symmetry group is posted, SBDS would never
leave any symmetric subtrees. While SBDSWNC can post-
pone the pruning opportunity into deeper nodes, it leaves
some symmetric parts and prunes less nodes. SBDSWNC can

341

backtrack more and generate more nogoods, but these no-
goods break no new symmetries (since all symmetries are
broken in SBDS). Thus the search tree of SBDSWNC sub-
sumes that of SBDS.

In partial symmetry breaking, such as ParSBDS and ReS-
BDS, only a subset of all symmetries is posted. Since WNC is
weaker, there are symmetric subtrees that are pruned by GAC
but not by WNC. In turn, WNC searches and also backtracks
more, thus sometimes posting more nogoods than GAC. Such
nogoods can potentially break composition symmetries that
are not posted. As a result, it is difficult to compare theoreti-
cally the strength of GAC and WNC on ParSBDS, ReSBDS
and LReSBDS respectively, but is interesting future work.

Theorem 6. WNC = GAC for unconditional nogoods.

Proof. Unconditional nogoods are simply disequality con-
straints. WNC and GAC handle them equally.

Theorem 7. LDSB =n (resp. =s) LDSBWNC .

Proof. All symmetry breaking nogoods in LDSB are uncon-
ditional since LDSB handles only active symmetries and their
compositions. Results follow directly from Theorem 6.

Generalized Weak-incNGs Consistency
Lee and Zhu (2014b) show that the set of symmetry break-
ing nogoods added by SBDS and its variants for one symme-
try at a search node are increasing nogoods. They also give
the incNGs global constraint and a filtering algorithm which
is stronger than GAC on each nogood. Now we propose a
weaker consistency for the incNGs constraint.

A set of directed nogoods Λ is increasing [Lee and Zhu,
2014b] if the nogoods can form a sequence 〈ng0, . . . , ngt〉
where ngi ≡ (Ai ⇒ xki

6= vki
) such that (i) for any i ∈

[1, t], Ai−1 ⊆ Ai and (ii) no nogoods are implied by another.
A nogood ngj in Λ is lower than nogood ngi iff j < i, and
ngi is higher than ngj .

A set of increasing nogoods Λ = 〈ng0, . . . , ngt〉 where
ngi ≡ (Ai ⇒ xki 6= vki) is generalized weak-incNGs con-
sistent (GWIC) iff (∃i ∈ [0, t],∃(xsi = vsi) ∈ Ai, ((vsi 6∈
D(xsi) ∨ (vsi ∈ D(xsi) ∧ |D(xsi)| > 1))) ∧ (∀j <
i, (∀(xsj = vsj) ∈ Aj , D(xsj) = {vsj})∧vkj

6∈ D(xkj
)))∨

((∀i ∈ [0, t], (∀(xsi = vsi) ∈ Ai, D(xsi) = {vsi}) ∧ vki
6∈

D(xki
)). Thus, Λ is GWIC if either (1) one of the LHS as-

signments of nogood ngi is not satisfied and for each ngj
lower than ngi, ngj’s LHS assignments are satisfied and its
RHS assignment is falsified or (2) the LHS assignments of all
nogoods are satisfied and all RHS assignments are falsified.
GWIC has the following theorems.

Theorem 8. Given increasing nogoods Λ = 〈ng0, . . . , ngt〉,
GWIC on Λ is equivalent to WNC on each ngk, k ∈ [0, t].

Proof. We first prove that if Λ is GWIC, all individual no-
goods are WNC. One case is that there exists ngi such that
Λ satisfies condition (1) of GWIC. Now all nogoods lower
than ngi satisfy condition (2) of WNC, and the remaining no-
goods whose LHSs subsume lhs(ngi) satisfy condition (1) of

WNC. Thus all nogoods are WNC. Another case is that Λ sat-
isfies condition (2) of GWIC, which implies that all nogoods
satisfy condition (2) of WNC.

Secondly, we prove if all individual nogoods are WNC, Λ
is GWIC. Suppose we can find a nogood ngj which is the
lowest nogood in Λ and satisfies condition (1) of WNC. All
nogoods lower than ngj must satisfy condition (2) of WNC
since all their LHS assignments must be satisfied. Thus con-
dition (1) of GWIC is satisfied. If we cannot find such an ngj ,
all nogoods satisfy condition (2) of WNC. Now condition (2)
of GWIC is satisfied. Therefore, Λ is GWIC iff all individual
nogoods are WNC.

Theorem 9. GAC > GWIC on an incNGs constraint.

Proof. Given increasing nogoods Λ = 〈ng0, . . . , ngt〉. Lee
and Zhu (2014b) show that GAC on Λ is strictly stronger than
GAC on individual nogoods (ngi), which is strictly stronger
than WNC on the individual nogoods (ngi) by Theorem 1. In
addition, WNC on the individual nogoods (ngi) is equivalent
to GWIC on Λ by Theorem 8. Result follows.

A sequence of increasing nogoods Λ = 〈ng0, . . . , ngt〉
for a symmetry g can be encoded compactly. The increas-
ing property guarantees that lhs(ngj) ⊆ lhs(ngi) for all
j < i ≤ t. Thus the LHS assignments of all nogoods are
available in lhs(ngt). Suppose Λ is added at an ancestor node
P ′ of P and A is the partial assignment of P . We must have
lhs(ngt) ⊆ Ag . Therefore, we can always construct (by ap-
plying symmetry transformation) lhs(ngt) from the partial
assignment at any descendant node of P ′. We also collect all
the backtracking assignments (refer to Section 2) from root to
a search node, and call it B. Each backtracking assignment is
also associated with its depth, which is the length of the par-
tial assignment associated with the node where backtracking
takes place. We can construct (by applying symmetry trans-
formation) rhs(ngk) for k ∈ [0, t] from the backtracking as-
signments in B. Using A and B together, we can reconstruct
all nogoods in Λ using symmetry g.

Section 3 shows that watching one unresolved assignment
in the LHS is enough to enforce WNC on a nogood. An im-
portant consequence of lhs(ngj) ⊆ lhs(ngi) for all j < i ≤
t in Λ is that watching an assignment in lhs(ng0) implies
watching the same assignment in lhs(ng1), . . . , lhs(ngt). In
general, when we watch an assignment that first appears only
in lhs(ngi), we are also watching the same assignment in
lhs(ngi+1), . . . , lhs(ngt). Thus, we can watch only one un-
resolved assignment for our lazy propagator for Λ. We scan
the symmetric assignments of the current partial assignment
at each search node to find the first unresolved assignment to
watch. During scanning, when we encounter an assignment
Γ, there are three possibilities. (a) Γ is satisfied. We should
make use of B to look for all nogoods with a true LHS, and
enforce the RHSs of all discovered nogoods to be true to ef-
fect prunings. Then we continue our previous scanning to the
next assignment. (b) Γ is falsified. We can stop scanning since
Λ is entailed. (c) Γ is unresolved. We stop scanning and watch
Γ, since Λ is now GWIC.

The incNGs constraint grows since nogoods are added
dynamically upon backtracking. It can happen that, at one

342

search node, all symmetric equivalents of those in the current
assignments A are true. There are no assignments to watch.
In such a case, the propagator should still be triggered upon
backtracking (when B is updated), which is when a new no-
good is added to the propagator.

We now present our lazy propagator, LazyincNGsProp, for
the incNGs constraint as shown in Algorithm 2. The propaga-
tor can return two different results: ENTAILED or GWICed.
A stores the current partial assignment. B stores all back-
tracking assignments and their depth as a pair from root up to
the current search node. If we view A and B as arrays, their
indices start from 0. Without loss of generality, we assume
that variables in A are in input order 〈x0, . . . , xn−1〉.

Algorithm 2 LazyincNGsProp()
Require:
A: current partial assignment
B: all backtracking assignments and their depth from root
up to the current node
g: symmetry
x = ⊥: variable of the watched LHS assignment
v = ⊥: value of the watched LHS assignment
α = −1: position of the assignment inA whose symmetric
assignment is being watched
β = 0: position of the first assignment in B whose sym-
metric assignment has not been enforced by this constraint

1: if α = |A| − 1 then
2: pruneB(α+ 1);
3: else
4: for each (xi = vi) ∈ A and i ∈ [α+ 1, |A|) do
5: (xi

′ = vi
′) = (xi = vi)

g;
6: if vi′ 6∈ D(xi

′) then return ENTAILED;
7: else
8: if |D(xi

′)| > 1 then
9: x = xi

′; v = vi
′;

10: α = i;
11: watch x = v;
12: return GWICed;
13: pruneB(i+ 1);
14: x = ⊥; v = ⊥; α = |A| − 1;
15: return GWICed;

Algorithm 3 pruneB(k)
1: for each (xj = vj , dj) ∈ B and j ≥ β and dj ≤ k do
2: (xj

′ = vj
′) = (xj = vj)

g;
3: prune vj ′ from D(xj

′);
4: β = j + 1;

For each given symmetry g, an incNGs global constraint
would be posted at the root node. We create a propagator
LazyincNGsProp and make available the symmetry g to the
propagator. This propagator is triggered by the watched as-
signment x = v. If there are no assignments to watch, it is
triggered when B is updated. The pointer α always points
to the watched assignment, and is initialized to -1 to watch
nothing. If the propagator is triggered by B’s update, and no

assignments are watched and A is not updated from the last
propagation (line 1), this means the LHSs of all increasing
nogoods are satisfied and pruneB (line 2) is called to prune
all symmetric equivalents of the backtracking assignments in
B starting from pointer β whose corresponding nogoods are
not enforced yet. After doing that, the constraint is GWIC
and the propagator can exit (line 15). If the propagator is trig-
gered by the watched assignment x = v or A’s update, the
for-loop in lines 4-13 looks for the next unresolved assign-
ment to watch as in Algorithm 1. The only thing to take care
is if an assignment in the LHS is satisfied, pruneB (line 13)
is called to prune all symmetric equivalents of the backtrack-
ing assignments inB starting from pointer β whose LHSs are
satisfied and corresponding nogoods are not enforced yet.

As can be seen in Algorithm 2, LazyincNGsProp watches
only one assignment at a time, and also gets triggered when
B is updated. All symmetric assignments are computed on
demand but not eagerly. Note that A and B should be back-
trackable and can be shared by all propagators.

Theorem 10. LazyincNGsProp enforces GWIC for an inc-
NGs global constraint.

Proof. The propagator returns GWICed at line 12 or 15. Line
12 is reached when there is an unresolved assignment x = v
being watched. Now all nogoods whose LHSs do not contain
x = v are true since their LHS assignments are satisfied and
their RHSs are enforced at line 2 or 13 by pruneB. For all no-
goods containing x = v, x = v must be in their LHSs accord-
ing to line 4. Thus condition (1) of GWIC is satisfied and the
increasing nogoods is GWIC. Line 15 means all LHS assign-
ments of current nogoods are satisfied and all RHS assign-
ments are falsified. Now all nogoods are true. Condition (2)
of GWIC is satisfied and this increasing nogoods is GWIC. If
the propagator returns ENTAILED at line 6, there exists an
ngi such that its LHS contains x′i = v′i and all lower nogoods
have their LHS assignments satisfied and RHS assignment
falsified. Thus, condition (1) of GWIC is satisfied and this
increasing nogoods is GWIC.

Theorem 11. Given a CSP P = (X,D,C) with |X| =
n. The space complexity of LazyincNGsProp for an inc-
NGs global constraint is O(1), and the time complexity is
O(

∑n−1
i=0 |D(xi)| − n/2).

Proof. LazyincNGsProp needs to record the symmetry, the
LHS watched assignment, two pointers α and β. The to-
tal space complexity is O(1). There are at most n +∑n−1

i=0 (|D(xi)| − 1) number of symmetric assignments to
generate and

∑n−1
i=0 (|D(xi)| − 1) to prune. The time com-

plexity is O(
∑n−1

i=0 |D(xi)| − n/2).

Experimental Results
This section gives three experiments, all with matrix symme-
tries (variable symmetries). Our method works for arbitrary
symmetries, but better as the number of symmetry grows. Ma-
trix symmetries are common in many CSP models and their
numbers are exponential with problem size. We first solve the
benchmarks using the efficient and widely used static method

343

Table 1: Error Correcting Code - Lee Distance (all solutions)
n, c, b DoubleLex LexLeader

#s #f t #s #f t
4,4,8 32,469 839,251 42.19 7,863 267,815 15.14
5,2,10 87 41,571 4.73 56 34,659 7.48
5,6,4 710,731 725,837 16.39 269,841 354,184 8.1
5,6,5 1,441,224 5,508,192 116.88 451,303 1,918,579 45.17
5,6,6 297,476 11,709,068 303.4 82,742 3,837,292 112.16
6,4,4 4,698,842 4,139,211 112.17 1,690,229 3,404,499 72.47
6,4,5 29,345,816 73,522,873 1909.09 8,052,126 23,457,604 678.49
6,8,4 59,158 2,469,211 35.9 22,756 1,082,827 18.05
8,4,4 35,626,714 48,525,827 1303.08 12,246,480 47,273,927 1171.17

ParSBDSGAC ParSBDSincNGs ParSBDSWNC/GWIC

#s #f t #s #f t #s #f tW tG
8,918 281,720 21.62 8,918 281,553 16.68 8,654 275,236 18.01 14.43

66 25,824 6.22 66 25,810 4.96 66 26,732 5 4.09
297,819 307,148 12.91 297,819 306,376 8.32 289,822 334,263 9.73 7.80
508,585 2,042,200 76.83 508,585 2,036,425 51.68 490,687 2,095,836 59.5 46.83
95,380 4,143,524 185.03 95,380 4,129,503126.99 90,767 4,163,933147.23116.14

1,943,608 1,890,047 102.97 1,943,604 1,888,679 62.08 1,859,800 1,961,610 71.84 53.99
9,472,05625,509,6151,260.44 9,472,02125,493,887806.56 9,034,35325,186,758920.08696.83

24,355 1,033,529 32.45 24,355 1,031,161 18.92 24,192 1,090,154 22.69 17.39
14,541,82621,963,9881,450.3814,541,82221,958,213750.5613,877,57422,137,598889.59637.30

LReSBDSGAC LReSBDSincNGs LReSBDSWNC/GWIC

#s #f t #s #f t #s #f tW tG
7,698 235,074 15.01 7,698 234,806 14.47 7,698 237,306 19.63 13.44

56 20,820 5.6 56 20,806 4.42 56 21,801 6.36 2.76
235,866 253,729 7.34 235,866 252,866 6.94 235,866 262,483 8.78 6.34
392,221 1,614,088 44.47 392,221 1,608,523 41.42 392,221 1,645,389 53.79 39.55
72,150 3,210,014 106.3 72,150 3,197,525 101.79 72,150 3,260,502 139.17 94.70

1,608,536 1,568,776 59.95 1,608,536 1,566,251 54.06 1,608,536 1,650,210 71.88 49.41
7,631,833 20,494,554 747.13 7,631,833 20,474,513 670.31 7,631,833 21,024,022 904.68 618.61

18,933 793,258 16.28 18,933 790,810 15.03 18,933 806,897 20.56 13.63
11,582,467 17,464,022 768.35 11,582,467 17,453,197 629.5 11,582,467 18,047,630 998.21 532.95

Doublelex [Flener et al., 2002], and also LexLeader to break a
much larger subset of symmetries. We then report the results
of two dynamic methods ParSBDS and LReSBDS. Each dy-
namic method would be implemented with the four propaga-
tors: GAC on each nogood (GAC), the filtering algorithm of
incNGs given by Lee and Zhu [2014b] (incNGs), WNC on
each nogood (WNC) and GWIC on each incNGs constraint
(GWIC).

We also did extra experiments to find the best subset of ma-
trix symmetries for each method. ParSBDS is given any two
rows or columns being permutable and the Cartesian products
of these two subsets. LReSBDS and LexLeader can break the
entire row symmetries and column symmetries by only post-
ing adjacent rows or columns being permutable with the in-
put order variable heuristic [Lee and Zhu, 2014a]. We thus
only post adjacent rows or columns being permutable and the
Cartesian products of any two rows or columns being per-
mutable to LReSBDS and LexLeader. LDSB and ReSBDS
are discarded in the comparison since LReSBDS is substan-
tially more efficient [Lee and Zhu, 2014a; 2014b] than these
two methods. All experiments are conducted using Gecode
Solver 4.2.0 on Xeon E5620 2.4GHz processors with 7GB.

Due to the many columns, each table is split into three
rows. The first column always gives the instance parameters.
In addition, #s denotes the number of solutions, #f denotes
the number of failures and t denotes the runtimes. Since WNC
and GWIC have the same pruning power, we show their so-
lutions and failures together and use tW and tG to denote the
runtime of WNC and GWIC respectively. The search time
out limit is 1 hour. An entry with the symbol “ − ” indicates
that memory is exhausted. The best results are highlighted in
bold. Unless otherwise specified, search is defaulted to input
variable order and minimum value order.

Table 2: Cover Array Problem (all solutions)
t, k, g, b DoubleLex LexLeader

#s #f t #s #f t
2,4,4,16 3,456 661,726 23.67 424 123,439 8.19
3,4,2,13 29,738 202,723 2.86 11,047 76,235 3.09
3,4,2,14 107,224 496,246 7.29 38,007 185,786 6.96
3,4,2,15 348,857 1,149,974 17.91 120,832 431,794 15.09
3,4,2,16 1,039,641 2,548,941 42.21 357,662 965,531 31.93
3,4,2,17 2,870,734 5,433,943 94.55 991,700 2,085,752 65.24
3,4,2,18 7,413,394 11,181,194 210.61 2,590,000 4,362,860 130.88
3,4,2,19 18,043,630 22,265,801 443.24 6,404,281 8,851,675 257.07
3,4,3,27 24 64,777 5.66 8 26,193 17.69

ParSBDSGAC ParSBDSincNGs ParSBDSWNC/GWIC

#s #f t #s #f t #s #f tW tG
432 130,811 14.18 432 130,707 8.41 432 128,629 11.21 6.37

16,085 95,343 7.01 16,085 95,343 3.86 15,361 93,896 3.84 2.20
54,702 229,588 17.53 54,702 229,588 9.34 52,655 226,715 9.81 5.45

170,263 526,766 41.98 170,263 526,766 22.04 165,093 521,431 24.21 13.08
491,135 1,162,225 97.74 491,135 1,162,225 50.45 479,200 1,152,823 58.01 31.25

1,325,254 2,477,180 222.36 1,325,254 2,477,180 113.12 1,299,657 2,461,304 135.76 71.07
3,370,156 5,114,350 495.8 3,370,156 5,114,350 246.88 3,318,533 5,088,491 314.99 158.25
8,127,249 10,247,830 1,077.68 8,127,249 10,247,830 525.8 8,028,436 10,206,998 - 347.16

8 26,690 8.19 8 26,690 6.45 8 26,654 5.99 3.56
LReSBDSGAC LReSBDSincNGs LReSBDSWNC/GWIC

#s #f t #s #f t #s #f tW tG
424 120,815 8.54 424 120,758 8.81 424 121,353 10.38 6.12

11,047 76,235 4.8 11,047 76,235 3.39 11,047 76,235 6.44 1.85
38,007 185,786 11.78 38,007 185,786 8.31 38,007 185,786 17.67 4.68

120,832 431,794 27.78 120,832 431,794 19.48 120,832 431,794 46.57 11.12
357,662 965,531 63.73 357,662 965,531 44.8 357,662 965,531 116 26.61
991,700 2,085,752 142.94 991,700 2,085,752 99.75 991,700 2,085,752 291.92 60.45

2,590,000 4,362,860 309.37 2,590,000 4,362,860 221.28 2,590,000 4,362,860 702.6 136.78
6,404,281 8,851,675 653.30 6,404,281 8,851,675 469.64 6,404,281 8,851,675 - 300.97

8 25,962 6.99 8 25,962 8.66 8 25,985 7.19 3.49

Error Correcting Code-Lee Distance (ECCLD)
Each ECCLD instance is parameterized by (n, c, b). We use
the same model by Lee and Zhu (2014a).

Table 1 shows the results for ECCLD. ParSBDSWNC

is 1.35 times faster than ParSBDSGAC on average.
LReSBDSWNC does not perform well since the number of
extra nogoods added by LReSBDS to prune extra composi-
tion symmetries is big and the symmetries are broken late.
ParSBDSGWIC and LReSBDSGWIC run 1.13 and 1.15 times
faster than ParSBDSincNGs and LReSBDSincNGs on aver-
age respectively. The improvement is not that much due to
the small number of given symmetries. When we compare
the number of failures for ParSBDS and LReSBDS, WNC
and GWIC increase only slightly the search tree size. This
shows our weaker consistencies lose few pruning opportuni-
ties. LReSBDSGWIC performs the best and runs 1.50 and
2.67 times faster than LexLeader and DoubleLex on average
respectively. ParSBDSGWIC performs slightly slower than
LReSBDSGWIC due to its bigger search tree size and more
symmetries to handle. Thus, laziness can save us time com-
paring with other symmetry breaking methods.

Cover Array Problem (CA)
CA instances are parameterized by (t, k, g, b) We use the
same model by Lee and Zhu (2014b).

Table 2 shows the results for CA. ParSBDSWNC

is 1.61 times faster than ParSBDSGAC on average.
LReSBDSWNC still does not perform well. ParSBDSGWIC

and LReSBDSGWIC run 1.62 and 1.75 times faster than
ParSBDSincNGs and LReSBDSincNGs on average respec-
tively. For LReSBDS, WNC and GWIC only slightly increase
the search tree size. LReSBDSGWIC performs the best and
runs 1.67 and 1.82 times faster than LexLeader and Dou-

344

Table 3: BIBD with Maximum Value Ordering (all solutions)
v, k, λ DoubleLex LexLeader

#s #f t #s #f t
7,3,5 33,304 191,223 2.12 5,979 41,978 65.64
7,3,6 250,878 1,814,425 21.06 33,824 292,634 172.44
7,3,7 1,460,332 13,149,270 154.79 203,296 2,069,840 611.51
7,3,8 6,941,124 76,463,115 886.95 - - -
8,4,6 2,058,523 14,156,697 157.75 596,399 3,873,360 118.12

ParSBDSGAC ParSBDSincNGs ParSBDSWNC/GWIC

#s #f t #s #f t #s #f tW tG
12,936 83,578 34.95 12,936 83,578 7.25 7,916 54,608 2.39 4.84
93,713 717,959 377.91 93,713 717,959 44.37 41,388 353,232 18.07 20.50

476,752 4,486,587 3,349.82 476,752 4,486,587 270.15 226,176 2,292,110 137.22 114.92
305,312 3,583,192 3,600.00 - - - 1,134,253 13,599,864 - 694.02
932,022 6,450,151 2,366.52 932,022 6,450,183 281.22 925,504 6,483,468 351.32 177.09

LReSBDSGAC LReSBDSincNGs LReSBDSWNC/GWIC

#s #f t #s #f t #s #f tW tG
5,979 41,978 13.24 5,979 41,978 5.46 5,979 41,978 2.89 4.20

33,824 292,634 152.99 33,824 292,634 24.58 33,824 292,634 25.14 18.37
- - - 203,296 2,069,840 145.44 203,296 2,069,840 224.6 111.09
- - - 1,075,694 12,921,639 927.34 1,075,694 12,921,639 - 654.21

596,399 3,873,339 445.98 596,399 3,873,339 169.36 596,399 3,956,200 287.32 129.06

bleLex on average respectively. This again shows the advan-
tage of our lazy incNGs propagator.

Balanced Incomplete Block Design (BIBD)
A BIBD instance can be determined by its parameters
(v, k, λ). We use the same model by Lee and Zhu (2014b).
The value ordering is maximum value ordering and Dou-
bleLex orders rows and columns decreasingly.

Table 3 shows the results for BIBD. ParSBDSWNC

and LReSBDSWNC run 16.67 and 4.07 times faster than
ParSBDSGAC and LReSBDSGAC on average respectively.
One reason for the improvement is the reduction of overhead.
The other reason for the good efficiency of ParSBDSWNC is
that it prunes symmetries late and can break much more com-
position symmetries. ParSBDSGWIC and LReSBDSGWIC

run 1.90 and 1.34 times faster than ParSBDSincNGs and
LReSBDSincNGs on average respectively. The search tree
size by enforcing WNC and GWIC still does not increase
too much more than GAC. LReSBDSGWIC performs the best
and runs 7.90 and 1.12 times faster than LexLeader and Dou-
bleLex on average respectively. From the above, we can con-
clude that laziness can save much time and memory compar-
ing with other symmetry breaking methods.

Conclusion and Future Work
Our contributions are four fold. First, we propose WNC for
nogoods and give a lazy propagator to symmetry breaking no-
goods added by SBDS-based methods. We give also the space
and time complexities of the WNC lazy propagator. Second,
we propose GWIC for incNGs global constraint and also give
a lazy propagator and its space and time complexities. Third,
we prove that GWIC on a conjunction is equivalent to WNC
on the individual nogoods. Fourth, we use experiments to
show the lazy methods’ pruning loss is small while the gain
in efficiency is worthwhile.

The improvement from the original incNGs to the lazy ver-
sion is not as good as that from GAC on nogoods to WNC on
nogoods. That is because the global constraint version must
be incremental in nature to cater for the addition of new no-
goods, and is triggered every time when new nogoods are
generated, which is often. So it is not as lazy as we hope it

to be. This points to new research opportunities to investigate
how best to incorporate laziness into incNGs constraints.

Other possibilities include investigating symmetric no-
goods collected from restarts [Lecoutre and Tabary, 2011]
and detecting symmetry dynamically.

References
[Crawford et al., 1996] Crawford, J.; Ginsberg, M.; Luks, E.;

and Roy, A. 1996. Symmetry breaking predicates for search
problems. In KR’96, 148–159.

[Fahle, Schamberger, and Sellmann, 2001] Fahle, T.; Scham-
berger, S.; and Sellmann, M. 2001. Symmetry breaking. In
CP’01, 93–107.

[Flener et al., 2002] Flener, P.; Frisch, A.; Hnich, B.; Kiziltan,
Z.; Miguel, I.; Pearson, J.; and Walsh, T. 2002. Breaking
row and column symmetries in matrix models. In CP’02,
187–192.

[Frisch et al., 2002] Frisch, A.; Hnich, B.; Kiziltan, Z.;
Miguel, I.; and Walsh, T. 2002. Global constraints for lexi-
cographic orderings. In CP’02, 93–108.

[Gent and Smith, 2000] Gent, I., and Smith, B. 2000. Sym-
metry breaking in constraint programming. In ECAI’00,
599–603.

[Gent et al., 2003] Gent, I.; Harvey, W.; Kelsey, T.; and Lin-
ton, S. 2003. Generic SBDD using computational group
theory. In CP’03, 333–347.

[Gent, Harvey, and Kelsey, 2002] Gent, I.; Harvey, W.; and
Kelsey, T. 2002. Groups and constraints: Symmetry break-
ing during search. In CP’02, 415–430.

[Gent, Jefferson, and Miguel, 2006] Gent, I.; Jefferson, C.;
and Miguel, I. 2006. Watched literals for constraint propa-
gation in Minion. In CP’06, 182–197.

[Law and Lee, 2006] Law, Y., and Lee, J. 2006. Symmetry
breaking constraints for value symmetries in constraint sat-
isfaction. Constraints 221–267.

[Lecoutre and Tabary, 2011] Lecoutre, C., and Tabary, S.
2011. Symmetry-reinforced nogood recording from
restarts. In SymCon’11, 13–27.

[Lee and Zhu, 2014a] Lee, J., and Zhu, Z. 2014a. Boosting
SBDS for partial symmetry breaking in constraint program-
ming. In AAAI’14, 2695–2702.

[Lee and Zhu, 2014b] Lee, J., and Zhu, Z. 2014b. An
increasing-nogoods global constraint for symmetry break-
ing during search. In CP’14, 465–480.

[Mackworth, 1977] Mackworth, A. 1977. Consistency in net-
works of relations. Artificial intelligence 99–118.

[Mears et al., 2013] Mears, C.; de la Banda, M. G.; Demoen,
B.; and Wallace, M. 2013. Lightweight dynamic symmetry
breaking. Constraints 1–48.

[Moskewicz et al., 2001] Moskewicz, M.; Madigan, C.; Zhao,
Y.; Zhang, L.; and Malik, S. 2001. Chaff: Engineering an
efficient sat solver. In DAC’01, 530–535.

[Rossi, Van Beek, and Walsh, 2006] Rossi, F.; Van Beek, P.;
and Walsh, T. 2006. Handbook of constraint programming.
Elsevier.

345

