
Packing Curved Objects

Ignacio Salas
Mines de Nantes - LINA (UMR 6241),

France
ignacio.salas@mines-nantes.fr

Gilles Chabert
Mines de Nantes - LINA (UMR 6241),

France
gilles.chabert@mines-nantes.fr

Abstract
This paper deals with the problem of packing two-
dimensional objects of quite arbitrary shapes in-
cluding in particular curved shapes (like ellipses)
and assemblies of them.
This problem arises in industry for the packaging
and transport of bulky objects which are not in-
dividually packed into boxes, like car spare parts.
There has been considerable work on packing
curved objects but, most of the time, with specific
shapes; one famous example being the circle pack-
ing problem. There is much less algorithm for the
general case where different shapes can be mixed
together.
A successful approach has been proposed recently
in [Martinez et al., 2013] and the algorithm we
propose here is an extension of their work. Mar-
tinez et al. use a stochastic optimization algorithm
with a fitness function that gives a violation cost
and equals zero when objects are all packed. Their
main idea is to define this function as a sum of

(
n
2

)
elementary functions that measure the overlapping
between each pair of different objects. However,
these functions are ad-hoc formulas. Designing ad-
hoc formulas for every possible combination of ob-
ject shapes can be a very tedious task, which dra-
matically limits the applicability of their approach.
The aim of this paper is to generalize the approach
by replacing the ad-hoc formulas with a numerical
algorithm that automatically measures the overlap-
ping between two objects. Then, we come up with
a fully black-box packing algorithm that accept any
kind of objects.

1 Introduction
The packing problem consists in placing n items inside a
given space, such that no two items overlap. A large num-
ber of real-world applications like warehousing, logistics or
parallel computing gives a great relevance to this problem.
Packing has been well studied in either academic or industrial
contexts, but each time considering specific shapes like bins
[Lodi et al., 2002], circles [Stephenson, 2005] or polytopes

[Stoyan et al., 2005; Egeblad et al., 2009]. A lot of prob-
lems are actually studied for polytopes, some being closely
related to packing, like the collision detection [Moore and
Wilhelms, 1988; Brochu et al., 2012; Mainzer and Zachmann,
2015] or the calculation of the penetration depth [Cameron
and Culley, 1986; Dobkin et al., 1993; Kim et al., 2002;
2004].

Our goal is to deal with the more general situation where
different shapes can be mixed, including non-convex and
curved shapes.

In this context, one has to develop a generic approach for
solving the packing problem. One such approach has been
recently proposed in [Martinez et al., 2013]. The approach
splits the problem in three parts. First, they build a violation
function fij for each pair (i, j) of objects. This function takes
as argument the position ~o = (x, y) and the orientation α
for both objects and gives a measure of “how much” the two
objects overlap. We shall call such function an overlapping
function.

Second, all these violations are summed up to form a global
violation cost f :

f(~o1, α1, . . . , ~on, αn) :=
∑
i>j fij(~oi, αi, ~oj , αj).

Third, the function f is minimized using a generic black-
box optimization software called CMA-ES [Hansen and Os-
termeier, 2001].

The experimental results they obtain are very encouraging.
However, there is a serious bottleneck in their approach: the
overlapping functions are ad-hoc formulas for every possi-
ble combination of object shapes. For instance, in a prob-
lem where objects are either circles, squares or triangles, one
must build a formula for the 6 combinations: circle-circle,
circle-square, circle-triangle, square-square, square-triangle
and triangle-triangle. Some formulas are easy to obtain, like
for the circle-circle case. Indeed, given two circles of radii
ri and rj , the overlapping can be defined as the distance be-
tween the two centers and 0 if this distance exceeds the sum
of the radii, that is:

fij(~oi, αi, ~oj , αj) := max(0, ri + rj − ‖~oi − ~oj‖).
This simple formula is rather an exception. Mixing shapes
considerably complicate the task – even the circle-rectangle
case is not so simple–. One should be convinced that, in gen-
eral, these ad-hoc formulas are difficult to write. And their
number grows in O(n2).

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

396

We show in this paper how to replace these formulas by an
algorithm. This algorithm has also been implemented and this
paper reports the preliminary experimental results we have
obtained on original packing problems.

The paper is organized as follows. We first formalize the
problem in §2, that is, the way shapes are represented and
which overlapping function we actually consider. Then, we
detail in §3 and §4 an algorithm for this overlapping function.
Experimental results are reported in §5, followed by conclud-
ing remarks.

2 Formalism
2.1 Object definition
We consider objects described by nonlinear inequalities. This
representation choice encompasses basic geometric shapes
like half-planes or ellipses. We also accept the logical and/or
operators in the shape description, which means that these ge-
ometric primitives can be combined to define more complex
shapes like a polygon, a half-circle or a horseshoe (see Figure
1). Note that non-linear inequalities give also freedom to rep-
resent a lot of fancy shapes but real-world objects are rather
obtained by combining basic primitives.

With that representation, the shape of Object i can be seen
as a regular constraint ci(~p). This constraint means that the
point ~p belongs to the object when the latter is placed at the
origin of the frame and with a null rotation angle (see Figure
1).

Figure 1: Half-circle and horseshoe. The constraint for the
half-circle of radius 1 is c(~p) ⇐⇒ (‖~p‖ ≤ 1∧ yp ≥ 0). The
constraint for the horseshoe is c(~p) ⇐⇒ (‖~p‖ ≤ 1 ∧ ‖~p‖ ≥
0.75 ∧ yp ≥ 0).

We will identify in the sequel a shape to a constraint and
talk about “an object of shape c”.

2.2 The non-overlapping constraint
An object can be translated or rotated. If Object i is placed at
a position ~oi and rotated by an angle αi, we will denote by ~qi
and call the parameters of Object i the vector:

~qi := (~oi, αi) = (xi, yi, αi).

The size of ~q is the number of degrees of freedom. If only
translation is considered, the angle is dropped and ~q has only
two components. Otherwise, it belongs to R3.

Given a vector of parameters ~qi, the points ~p that belong to
the translated-rotated Object i are the ones satisfying

ci(R−αi
(~p− ~oi)), (1)

where R is the usual rotation matrix. Therefore, Objects i
and j overlap iff

overlapij(~qi, ~qj) ⇐⇒ ∃~p ∈ R2,
ci(R−αi

(~p− ~oi)) ∧ cj(R−αj
(~p− ~oj)).

(2)

The non-overlapping constraint between two objects is just
the negation of the latter relation.

2.3 The packing problem
The packing problem is a set of pairwise non-overlapping
constraints between n objects and an additional constraint
that all objects must be packed inside some container (like
the enclosing bin in the bin packing).

One appealing aspect of our representation is that we don’t
actually need a specific treatment for this additional con-
straint. This is based on a very simple property. An object is
inside the container iff this object does not overlap the com-
plementary of the container. And the complementary of a
shape is simply obtained with the negation of the underlying
constraint. So, in our system, the packing problem consisting
in placing n objects of shapes c1, . . . , cn inside a container c
is reformulated as a non-overlapping constraint between n+1
shapes c1, . . . , cn,¬c.

Note that, for obvious symmetry breaking reasons, one has
to fix the origin and the orientation of one object. A natural
choice is then to fix that of the container.

2.4 The overlapping function
The overlapping function fij takes as input two vectors of
parameters ~qi and ~qj and gives a measure of “how much” Ob-
jects i and j overlap. The output must fulfill two properties.
First, it has to be 0 iff the two objects are disjoint. Second, it
has to decrease when the two objects gets more distant.

We define the overlapping function as the distance between
the current vector of parameters for Object j, and the closest
vector of parameters that satisfies the non-overlapping con-
straint. This way, the function fij can be seen as a “distance
to satisfaction” for the Object j, the parameters of Object i be-
ing considered as fixed. In fact, this function exactly matches
the concept of penetration depth in the realm of computa-
tional geometry [Cameron and Culley, 1986; Dobkin et al.,
1993; Kim et al., 2002; 2004].
Definition 1 (Overlapping Function).

fij(~qi, ~qj) = min{‖~qj ′ − ~qj‖, ¬ overlapij(~qi, ~qj
′)}.

Note that the distance ‖.‖ can be either in 2 or 3 dimen-
sions, depending if rotation is considered or not.

As already said, the previous definition introduces a dis-
tinction between the two shapes. Object i is called the refer-
ence object and Object j the moving object. Without rotation,
the roles are symmetric in the sense that:

fij(~qi, ~qj) = fji(~qj , ~qi).

However, the previous equality does not hold with rotation.
Henceforth, we will always assume Object i (resp. j) to be
the reference (resp. moving) one.

It is important to notice that our definition of the overlap-
ping function does not coincide with the overlapping surface,
as Figure 2 shows. Furthermore, taking the overlapping sur-
face as a measure of overlapping would not be appropriate
since the surface can reach a local minimum in a situation
where the two objects still overlap (see Figure 2). In contrast,
our overlapping function only reaches a minimum at 0, that

397

is, when the objects are disjoint. This is an important differ-
ence as this function is eventually called by a local search that
can be trapped in local minima.

Figure 2: Overlapping surface versus overlapping func-
tion. The first object is the rectangle frame in blue, the sec-
ond the rectangle in green. In this situation, the overlapping
surface, in red, reaches a local minimum while the objects
still overlap.

2.5 The overlapping region
The implementation we will propose for the overlapping
function is based on the concept of overlapping region, a
concept that was already introduced in [Salas et al., 2014].
We recall this concept and then give the theoretical result that
makes the connection with our definition of overlapping func-
tion.

The overlapping region simply corresponds to the set of
parameters for Object j that make the objects i and j overlap,
the parameters of Object i being all set to 0:
Definition 2 (Overlapping Region). Given Objects i and j
(resp. the reference and moving ones), the overlapping region
is

Sij := {~qj ∈ Rd | overlapij(~0Rd , ~qj)}.
This concept is depicted in Figure 3.

Figure 3: Overlapping region. For visibility, the dimension
here is 2 (rotation is not considered). (left) Objects i (in blue)
and j (in green). (right) The overlapping region Sij (in red).
Represents all the positions where Object j overlaps Object i,
placed at the origin. The distance between the point ~r(~qi, ~qj)
and the boundary of Sij is the value of the overlapping func-
tion fij (Proposition 1).

We show now the relation that connects the overlapping
function to the overlapping region.
Proposition 1. Given two vectors of parameters ~qi and ~qj ,
let

~r(~qi, ~qj) := (R−αi
(~oj − ~oi), αj − αi). (3)

Then

f(~qi, ~qj) = min{‖ ~q′′ − ~r(~qi, ~qj)‖, ~q′′ 6∈ Sij}.

Proof. By definition,

f(~qi, ~qj) = min{‖~qj ′ − ~qj‖, ¬ overlapij(~qi, ~qj
′)}.

Let us introduce the variable

~q′′ = (~o′′, α′′) := (R−αi
(~oj
′ − ~oi), α

′
j − αi).

We have, equivalently,

~qj
′ = (Rαi

~o′′ + ~oi, α
′′ + αi).

In the one hand:

‖~qj ′ − ~qj‖2 = ‖(Rαi
~o′′ + ~oi − ~oj , α

′′ + αi − αj)‖2
= ‖Rαi

(~o′′ −R−αi
(~oj − ~oi)), α

′′ + (αj − αi))‖2
= ‖Rαi

(~o′′ −R−αi
(~oj − ~oi)‖2 + |α′′ + (αj − αi)|2

= ‖ ~o′′ −R−αi
(~oj − ~oi)‖2 + |α′′ + (αj − αi)|2

(because rotation preserves distances)
= ‖ ~q′′ − ~r(~qi, ~qj)‖2.

In the other hand it can be proven (see Proposition 1 in [Salas
et al., 2014]) that

overlapij(~qi,
~q′j) ⇐⇒ (R−αi

(~o′j − ~oi), α
′
j − αi) ∈ Sij ,

that is,
overlapij(~qi,

~q′j) ⇐⇒ q′′ ∈ Sij .

Hence, the overlapping function maps the current position
of Objects i and j to the minimal distance between ~r(~qi, ~qj)
and the boundary of the overlapping region. This is also de-
picted in Figure 3.

3 Main Algorithm
The algorithm we propose for the overlapping function is a
direct consequence of Proposition 1. We first calculate (off-
line) the overlapping region and then obtain (on-line) the
value of f(~qi, ~qj) from it. More precisely, the two steps are:

1. We entirely calculate the overlapping region Sij . Calcu-
lating this region means that an explicit representation
of Sij is computed, that is, under the form of numerical
data. The data structure we use for Sij is detailed below.

2. We calculate the minimal distance between ~r(~qi, ~qj) and
Sij using the previous data. The point is that this mini-
mization problem is far more easy to solve than the orig-
inal minimization problem involved in Definition 1.

3.1 Paving of the overlapping region
Let us start with the first step. The data structure we use for
Sij is called a paving (see Figure 4).

Definition 3 (Paving). A paving of a set S ⊂ Rd is a triplet
(I,B,O) where I (for “inside”),O (for “outside”) and B (for
“boundary”) are three sets of boxes verifying

∪I ⊂ S, (∪O)∩S = ∅ and ∪(B∪I∪O) = Rd. (4)

398

1

2

3
4

1 Inner

2 Outer

3 Boundary 4 Boundary

Figure 4: Paving of an ellipse. Boxes of I (resp. B, O) are
painted in red (resp. blue, green).

To calculate this paving, we apply the strategy proposed in
[Salas et al., 2014]. It ensures that the total surface of the
boundary (or, in other words, the precision of the paving) is
less than a given value ε. Let us briefly outline this algorithm
again, since we will describe an adaptation in the next section.

The algorithm is called a paver [Chabert and Jaulin, 2009],
a recursive algorithm that starts with an arbitrarily large box
[qj] and alternates three steps:

1. (outer rejection test). If unsatisfiability of (2) is proven
for all ~qj ∈ [qj] (~qi being fixed), then O := O ∪ {[qj]}.
The rejection test resorts to an embedded solver that we
shall not describe further, since this part has not changed
from the paper cited above.

2. (inner inflation). Pick randomly a point q̃j ∈ [qj] and
check if it belongs to Sij . If it does, then “inflate” q̃j to
a subbox [q̃j] proven to entirely lie inside Sij . In con-
trast, this part has been significantly improved and will
be the topic of Section 4. Then, I := I ∪ {[q̃j]}. Break
the remaining part [qj]\[q̃j] into boxes and perform a re-
cursive call with each box.

3. if [qj] is small enough, B := B∪{[qj]}. Otherwise bisect
[qj] into two sub-boxes and perform a recursive call with
each boxes.

3.2 Distance to the boundary set
Once the paving (I,B,O) is calculated, we first set ~r :=
~r(~qi, ~qj) using (3) and then find the closest point to ~r which
is not inside the overlapping region. However, because the
boundary of the region is uncertain, we can actually only ob-
tain an enclosure of this minimal distance:

min
~q′′∈∪B

‖ ~q′′ − ~r‖ ≤ fij(~qi, ~qj) ≤ min
~q′′∈∪O

‖ ~q′′ − ~r‖.

Clearly, the accuracy of the enclosure is related to the preci-
sion ε the paving has been generated with.

In practice, to calculate a bound, say the upper one, we con-
sider each box [q′′] of the set O generated by the paver, and
minimize the distance over that box. That is, we calculate:

mindist(~r, [q′′]) := min
~q′′∈[q′′]

‖ ~q′′ − ~r‖. (5)

Then, we have:

min
~q′′∈∪O

‖ ~q′′ − ~r‖ = min
[q′′]∈O

mindist(~r, [q′′]). (6)

The same holds for the lower bound.

Formula (5) is nothing different than the distance between
a box and a point. This distance can be easily obtained in
constant time (whatever is the size of the box), either using
interval arithmetics or by a direct geometric argument.

Formula (6) can however be very time-consuming if the
boxes in O are stored in a flat unsorted list. One has to sys-
tematically scan the whole list to get the minimal distance.
This linear complexity can be easily transformed to a loga-
rithmic complexity using a tree-structure representation, as
depicted in Figure 4. The structure is then explored using
standard global optimization techniques. In particular, pend-
ing nodes are stored in a heap, the criterion associated to a
node being precisely its distance to ~r. Nodes with a dis-
tance exceeding the current upper bound for the minimum
can then be discarded (just like the bounding step in a branch
& bound).

4 A new inflator for the overlapping
constraint

The inflation plays a key role in the paving algorithm and
thus has a strong impact on the efficiency of our packing ap-
proach.We describe in this section an original inflation tech-
nique that substantially improves packing performances.

Recall that the inflator builds, from a single vector of pa-
rameters q̃j , a box [qj] that is inside the overlapping region
Sij .

In [Salas et al., 2014], the inflator proposed inflates in all
the dimensions of ~q simultaneously and turns out to be not
efficient when the dimension is 3 (i.e., with rotation handled).
In fact, this inflator is very sensitive to the number of times a
variable appears in Equation (1), and the angleα has precisely
many occurrences yield by the rotation matrix R−α. It was
reported that the time required to calculate 3D pavings with
this inflator was prohibitive.

Our new inflator does not suffer from the multiple symbol
occurrences introduced by rotation matrices. It splits the in-
flation in two steps: it first inflates with respect to ~o and then
with respect to α. We describe both steps and then show how
the two inflations can be combined.

4.1 Translation

The inflation w.r.t. ~o is based on the following principle (see
Figure 5).1 Given initial parameters (õj , α̃j) we first look
for a vector p̃ that belongs to both objects, the parameters of
Objects i and j being respectively ~0 and q̃j , that is, p̃ satisfies

ci(p̃) ∧ cj(R−α̃j (p̃− õj)).

Then, we inflate p̃ inside Object i using generic inflation
technique for inequalities [Chabert and Beldiceanu, 2010;
Araya et al., 2014]. Let u := p̃ − õj . The resulting box
[~p] can be translated to õj in the sense that if oj moves inside
[~oj] := [~p] − ~u then ~oj + ~u is both inside [~p] and inside the
Object j with parameters (~oj , α̃j).

1This part is similar to the old inflator applied in the 2D case.

399

(a) (b)

(c) (d)

Figure 5: Inflation w.r.t. translation. (a) The shapes of
Objects i (in blue) and j (in green). (b) A point p̃ at the
intersection of the two objects when Object j has parameters
(~oj , α̃j). (c) Inflation of p̃ inside Object i. (d) Inflation of ~oj .

4.2 Rotation
The inflation for the angle works as follows (see Figure 6).
Given initial parameters (õj , α̃j) we look for the two angles
α and α that force vector p̃ (the same as before) to meet the
boundary of Object j (this step is detailed in the next subsec-
tion). Then, it is clear that for every angle αj ∈ [α, α] there
is an overlapping. However, some caution is required. First,
there are generally more than 2 candidate angles (see Figure
6.d), especially if Object j is non-convex. The angle values
that form the narrowest interval around α̃j are kept. Second,
there may be no angle at all. This means that Object j can
make a complete turn while containing p̃ (or, in other words,
p̃ is in the inscribed circle of the object). Third, we have to
take into account the 2π-periodicity. Indeed, the search space
for angles is a bounded domain like [−π, π] or [0, 2π]. This
has the unpleasant consequence to make the inflated domain
disconnected, e.g., if α̃j = π

2 , α = 0 and α = 3π
2 then the

inflated interval [0, 3π2] becomes [−π,−π2] ∪ [0, π]. So, in
this case, we only keep the subinterval containing α̃j , that is,
[−π,−π2].

4.3 Shape Boundary
Let us explain now how the angles α and α are calculated.
First, we have to generate a constraint c′j for the boundary of
Object j. In the simplest case of a single inequality,

cj(~p) ⇐⇒ f(~p) ≤ 0,

the boundary of the object is described by the equality f(~p) =
0.

In the case of a conjunction of inequalities,

cj(~p) ⇐⇒ (f1(~p) ≤ 0 ∧ . . . ∧ fn(~p) ≤ 0).

The boundary is described by a disjunction of n systems:

c′j(~p) ⇐⇒ (f1(~p) = 0 ∧ f2(~p) ≤ 0 . . . ∧ fn(~p) ≤ 0) ∨
. . . ∨ (f1(~p) ≤ 0 ∧ . . . ∧ fn−1(~p) ≤ 0 ∧ fn(~p) = 0).

(a) (b)

(c) (d)

Figure 6: Angle inflation. (a) Point p̃ obtained with initial
parameters (translation step). (b) The smallest angle greater
than α̃j that makes p̃ meet the boundary of object j. (c) The
greatest angle lower than α̃j with the same property. (d) An-
other angle with the same property (there are 4) that is dis-
carded.

In the most general case of a disjunction of conjunctions of
inequalities,
cj(~p) ⇐⇒ (f11(~p) ≤ 0 ∧ . . . ∧ f1n1(~p) ≤ 0) ∨ . . .

. . . ∨ (fm1(~p) ≤ 0 ∧ . . . ∧ fmnm
(~p) ≤ 0).

The boundary is described by a disjunction of (n1+. . .+nm)
conjunctions, each block of conjunctions being obtained with
the previous pattern (see Figure 7).

Figure 7: Boundary of an object.

The boundary constraint c′j can therefore be automatically
generated by a simple symbolic processing.

The angle α and α are then two solutions of the system
c′j(R−α(p̃ − õj)) which is a disjunction of 1-dimensional
equations (of variable α), i.e., something very easy to solve.

Note that if the shape is a disjunction with two subparts
that plainly intersect (contrary to the figure), the boundary is
only a subset of the generated system, in which case the angle
inflation may not be optimal.

4.4 Global Inflation
We finally show that the two inflations can be combined, that
is, the cartesian product of [~oj] and [αj] = [α, α] is a valid
inflation of q̃j .

The inflation w.r.t. translation produces a box [~oj] that sat-
isfies

∀oj ∈ [oj], ci(oj + (p̃− õj)).
The inflation w.r.t. rotation produces a box [αj] that satisfies

∀αj ∈ [αj], cj(R−αj
(p̃− õj)).

400

Together, they give

∀oj ∈ [oj], ∀αj ∈ [αj], ci(oj+(p̃− õj))∧cj(R−αj
(p̃− õj)).

Substituting ~p to (oj + p̃− õj), we obtain:

∀oj ∈ [oj], ∀αj ∈ [αj], ∃~p, ci(~p) ∧ cj(R−αj (~p− ~oj)),

that is, ∀oj ∈ [oj], ∀αj ∈ [αj], (~oj , αj) ∈ Sij .

5 Experimental Results
The goal of these preliminary experiments is to validate the
theory and to have a first impression of how the algorithm be-
haves in practice. The ambition is neither to solve real-world
problems nor to make an extensive performance analysis.

5.1 Setup
We have created 5 cases of increasing difficulty. In each case,
n objects have to be placed with n = 10, 20 and 30. Each
time, the size of the container has been adjusted manually so
that the density of the resulting packing looks similar.

Case 1. This is a standard circle packing problem. The
objectives are, first, to check that our algorithm also succeeds
in solving this problem and, second, to measure its overhead
as compared to a dedicated approach. In this circle packing
instance, the radius of the ith circle is equal to

√
i, 1 ≤ i ≤ n.

The radius of the enclosing circle is set to 2.1 (n=10), 2.35
(n=20) and 2.48 (n=30).

Case 2. The purpose of this case is to introduce a new
shape, that is, for which (to our knowledge) no dedicated
solver exists. The problem is otherwise kept as simple as pos-
sible: (1) there is only one shape in addition to the enclosing
shape, (2) this shape is described by a single inequality and
(3) only translation is permitted (no rotation). The shape we
have chosen is an ellipse of radii 1 and 0.5. The ellipses have
to be packed inside a circle of radius 2.9 (n=10), 4 (n=20)
and 5 (n=30).

Case 3. We increase the complexity by allowing rotation
in the same ellipse packing instance. With this new degree of
freedom, the enclosing circle can be chosen a little bit smaller.
The radius of the circle is set to 2.7 (n=10), 3.9 (n=20) and
4.9 (n=30).

Case 4. We increase again the complexity by replacing the
ellipse with a non-convex shape which description involves
several inequalities. The shape is the horseshoe depicted in
Figure 1. The enclosing shape is an ellipse of radii 2/4 (n=
10), 3.9/1.8 (n=20) and 5/2.9 (n=30).

Case 5. The last case is a mixed packing problem where
n/2 ellipses and n/2 horseshoes have to be packed inside a
circle of radius 2.9 (n = 10), 4 (n = 20) and 6 (n = 30).
Again, both translation and rotation are considered.

5.2 Results
Remind that the packing process is in two steps. The paving
step, performed off-line, and the packing step. Since some
pavings are used in several cases, paving and packing times
are reported separately. We also only give the average time
for the 13×12 circle-circle pavings calculated in Case 1 and
for the other pavings involving the enclosing shape (since this
shape changes with n). Tables 1 and 2 summarize the paving

and packing times. Figure 8 shows pictures of the results.
Every paving has been calculated with a precision ε set to
0.1.

d.o.f. Object i Object j Time

translation
circle circle 0.01 (avg)
ellipse ellipse 0.16
enclosing circle ellipse 0.81 (avg)

translation
and
rotation

ellipse ellipse 300
enclosing circle ellipse 2245 (avg)
ellipse horseshoe 1740
horseshoe horseshoe 3780
enclosing circle horseshoe 8311 (avg)
enclosing ellipse horseshoe 10909 (avg)

Table 1: Paving time (in seconds)

#objects case 1 case 2 case 3 case 4 case 5
10 <0.1 4.5 66 103 53
20 54 32 235 372 194
30 203 53 559 1005 395

Table 2: Packing time (in seconds)

First, we can see that the circle packing problem has been
solved in a few seconds only. However, the enclosing cir-
cle is not optimal. In [Martinez et al., 2013], the circles are
packed in a circle of radius 1.95 (n=10), 2.15 (n=20) and
2.27 (n=30). This gap is due to the precision ε. Using this
precision for paving amounts to consider that objects to pack
are “enlarged by” ε. The radius we have set for the enclos-
ing circle is actually the smallest one for which packing is
successful, given the precision ε of 0.1.

Packing for the other cases has been done in the order of
the minute. Above all, we see in Figure 8 that the holes intro-
duced by non-convex objects like the horseshoe are not lost.
The paving time is in the order of the hour.

6 Conclusion
We have proposed a generic algorithm for packing non con-
vex curved objects. The approach is not limited to polyhedral
shapes and does not make convex approximation. Cavities
introduced by non-convexity are used to place objects.

The approach is split in two steps. The paving step calcu-
lates off-line the set of relative positions and orientations of
one object with respect to a second one that make them over-
lap. The packing step minimizes a fitness function which is
a sum of distances between points and boundaries of the pre-
viously calculated sets. These distances are fast to calculate
thanks to a tree-structured representation of the sets.

The other contribution is a new inflator for the overlap-
ping constraint, i.e., the paving step. This new inflator uses
separate techniques for inflating with respect to the position
and the angle, which leads to a much larger inflation (and
therefore a better packing time) than with previously existing
techniques.

Preliminary experimental results are encouraging. One
possible future experiment could be to see how both paving

401

Case 1 Case 2

Case 3 Case 4

Case 5

Figure 8: Packing results.

and packing time increases as ε decreases and to mix this nu-
merical approach with the available ad-hoc formulas.

References
[Araya et al., 2014] I. Araya, G. Trombettoni, B. Neveu, and

G. Chabert. Upper Bounding in Inner Regions for Global
Optimization Under Inequality Constraints. Journal of
Global Optimization, 60(2):145–164, 2014.

[Brochu et al., 2012] T. Brochu, E. Edwards, and R. Bridson.
Efficient Geometrically Exact Continuous Collision De-
tection. ACM Transactions on Graphics (TOG), 31(4):96,
2012.

[Cameron and Culley, 1986] S. Cameron and R. Culley. De-
termining the Minimum Translational Distance Between
Two Convex Polyhedra. In IEEE International Conference
on Robotics and Automation, volume 3, pages 591–596.
IEEE, 1986.

[Chabert and Beldiceanu, 2010] G. Chabert and
N. Beldiceanu. Sweeping with Continous Domains.
In CP, International Conference on Principles and Prac-
tice of Constraint Programming, volume 6308 of LNCS,
pages 137–151, 2010.

[Chabert and Jaulin, 2009] G. Chabert and L. Jaulin.
Contractor Programming. Artificial Intelligence,
173(11):1079–1100, 2009.

[Dobkin et al., 1993] D. Dobkin, J. Hershberger, D. Kirk-
patrick, and S. Suri. Computing the Intersection-Depth
of Polyhedra. Algorithmica, 9(6):518–533, 1993.

[Egeblad et al., 2009] J. Egeblad, B. K. Nielsen, and
M. Brazil. Translational Packing of Arbitrary Polytopes.
Computational Geometry, 42(4):269–288, 2009.

[Hansen and Ostermeier, 2001] N. Hansen and A. Oster-
meier. Completely Derandomized Self-Adaptation in Evo-
lution Strategies. Evolutionary Computation, 9(2):159–
195, 2001.

[Kim et al., 2002] Y.J. Kim, M.A. Otaduy, M.C. Lin, and
D. Manocha. Fast Penetration Depth Computation for
Physically-Based Animation. In Proceedings of the 2002
ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 23–31. ACM, 2002.

[Kim et al., 2004] Y.J. Kim, M.C. Lin, and D. Manocha. In-
cremental Penetration Depth Estimation Between Convex
Polytopes Using Dual-Space Expansion. IEEE Transac-
tions on Visualization and Computer Graphics, 10(2):152–
163, 2004.

[Lodi et al., 2002] A. Lodi, S. Martello, and M. Monaci.
Two-dimensional Packing Problems: A Survey. European
Journal of Operational Research, 141(2):241–252, 2002.

[Mainzer and Zachmann, 2015] D. Mainzer and G. Zach-
mann. Collision Detection based on Fuzzy Scene Subdi-
vision. In GPU Computing and Applications, pages 135–
150. Springer, 2015.

[Martinez et al., 2013] T. Martinez, L. Vitorino, F. Fages,
and A. Aggoun. On Solving Mixed Shapes Packing Prob-
lems by Continuous Optimization with the CMA Evolu-
tion Strategy. In Proceedings of the first BRICS countries
congress on Computational Intelligence, 2013.

[Moore and Wilhelms, 1988] M. Moore and J. Wilhelms.
Collision Detection and Response for Computer Anima-
tion. ACM Siggraph Computer Graphics, 22(4):289–298,
1988.

[Salas et al., 2014] I. Salas, G. Chabert, and A. Goldsztejn.
The Non-Overlapping Constraint between Objects de-
scribed by Non-Linear Inequalities. In CP, International
Conference on Principles and Practice of Constraint Pro-
gramming, volume 8656 of LNCS, pages 672–687, 2014.

[Stephenson, 2005] K. Stephenson. Introduction to Circle
Packing. Cambridge University Press, 2005.

[Stoyan et al., 2005] Y.G. Stoyan, N.I. Gil, G. Scheithauer,
A. Pankratova, and I. Magdalina. Packing of Convex
Polytopes Into a Parallelepiped. Optimization: A Journal
of Mathematical Programming and Operations Research,
54:215–235, 2005.

402

