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Abstract

Distributed constraint optimization (DCOP) is an
important framework for coordinated multiagent de-
cision making. We address a practically useful vari-
ant of DCOP, called resource-constrained DCOP
(RC-DCOP), which takes into account agents’ con-
sumption of shared limited resources. We present a
promising new class of algorithm for RC-DCOPs by
translating the underlying coordination problem to
probabilistic inference. Using inference techniques
such as expectation-maximization and convex opti-
mization machinery, we develop a novel convergent
message-passing algorithm for RC-DCOPs. Exper-
iments on standard benchmarks show that our ap-
proach provides better quality than previous best
DCOP algorithms and has much lower failure rate.
Comparisons against an efficient centralized solver
show that our approach provides near-optimal solu-
tions, and is significantly faster on larger instances.

1 Introduction
Distributed constraint optimization (DCOP) is a general
framework for coordinated decision making by a team of
agents [Yokoo et al., 1998; Mailler and Lesser, 2004; Modi et
al., 2005; Petcu and Faltings, 2005]. DCOPs have been used to
model several multiagent coordination problems [Maheswaran
et al., 2004; Kumar et al., 2009; Léauté and Faltings, 2011;
Zivan et al., 2014]. In DCOPs, agents control a set of vari-
ables with constraint or utility functions defined over subsets
of variables. The task for agents is to assign values to variables
to maximize the global utility using only local coordination
among them.

In several real world applications, agents consume multi-
ple shared resources with limited capacity. For e.g., in dis-
tributed meeting scheduling, agents’ schedule is constrained
by their travel budget; in sensor networks, sensors may have
limited battery. The coordination problem is now to op-
timize the global objective, while also respecting the re-
source limit for each resource. To address such settings, the
framework of resource-constrained DCOPs (RC-DCOPs) has
been developed [Bowring et al., 2006; Matsui et al., 2008;
Bowring et al., 2009; Matsui et al., 2011], and has been uti-

lized in applications such as distributed management of smart
grids [Kumar et al., 2009; Matsui and Matsuo, 2012].

RC-DCOPs have been solved by extending complete and
optimal DCOP search algorithms such as ADOPT [Modi et
al., 2005; Bowring et al., 2006; Matsui et al., 2008], and
by adding support for resources to optimal dynamic pro-
gramming based DPOP algorithm [Petcu and Faltings, 2005;
Kumar et al., 2009; Matsui et al., 2011]. However, progress
remains slow for developing approximate solvers for RC-
DCOP that can provide scalable and good quality solutions
in the presence of resource constraints. We show empiri-
cally that adding resources as a generic n-ary constraint to
be solved using state-of-the-art approximate solvers such
as max-sum (MS) [Stranders et al., 2009] makes the algo-
rithm unstable leading to high failure rate; implying that
no resource-feasible solution was returned by the algorithm.
Therefore, our work develops a message-passing algorithm
that explicitly addresses resource constraints, is guaranteed
to converge, has low failure rate and provides high quality
solutions over a range of benchmarks when compared against
an efficient centralized constraint solver [de Givry et al., 2005;
Allouche et al., 2010].

Our work is motivated by the recently developed connec-
tions between decision making and probabilistic inference.
Such planning-as-inference paradigm allows adoption of well
known inference techniques such as expectation-maximization
(EM) [Dempster et al., 1977] for single agent planning [Tou-
ssaint and Storkey, 2006; Toussaint et al., 2008] and also
multiagent planning [Kumar et al., 2011b]. Such inference
based approach has also been applied to the problem of MAP
estimation in graphical models [Kumar and Zilberstein, 2010],
which is (almost) equivalent to the DCOP problem [Kumar
et al., 2011a]. We extend the approach of [Kumar and Zil-
berstein, 2010] to RC-DCOPs. However, addressing resource
constraints within the EM framework proves challenging as
unlike the setting in [Kumar and Zilberstein, 2010], EM for
RC-DCOP does not admit closed form solutions. Therefore,
we combine several tools from convex optimization machin-
ery (such as dual optimization, block coordinate descent) and
algebra (polynomial root finding) in a novel way to derive the
EM algorithm for RC-DCOPs. EM is easily implementable
using local message-passing among agents, and is highly scal-
able. Unlike approaches such as MS, EM is guaranteed to
converge. Empirically, we show that EM provides similar or
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Figure 1: a) Resource-augmented graph for an RC-DCOP
instance; b) Message passing in outer loop c) Message passing
in inner loop

better quality than MS, has low failure rate even under tight
resource constraints and also proves highly competitive to an
efficient centralized constraint solver.

2 The DCOP Framework
This section introduces the DCOP and the resource con-
strained DCOP (RC-DCOP) [Bowring et al., 2006; Matsui et
al., 2008] frameworks. A DCOP is defined using the tuple
〈X ,D,Θ〉. The set X ={x1, . . . , xn} is a set of n variables;
D= {D1, . . . , Dn} is the (finite) domain of possible values
a variable can take. The set Θ = {. . . , θij , . . .} is the set of
utility or constraint functions. A constraint function between
variables xi and xj is defined as θij : Di × Dj → <. We
assumed w.l.o.g.that each function involves two variables.

The DCOP framework can be represented using a constraint
network G=(V,E) as follows. There is a node i for each vari-
ables xi. For each constraint θij , we create an edge between
the nodes i and j in the graph. The objective is to find the joint
variable assignment to solve:

max
x1,...,xn

∑
(i,j)∈E

θij(xi, xj) (1)

A key property of DCOPs is that there is an agent associated
with each node of the constraint graph. An agent is only aware
of its shared constraints with neighbor agents. Thus, there
is no centralized view of the whole problem, requiring local
message-passing based coordination.

Resource Constrained DCOPs (RC-DCOPs) add support
for resources to DCOPs. They include a setR of resources and
a set U of requirements. The set R={r1, . . . , rm} is the set
of m resources. Each resource ri has a fixed capacity C(ri).
The set U is a collection of resource utilization functions ui(·)
for each agent i defined as ui :R×Di→<+. The RC-DCOP
framework solves the same problem as (1) with the added
resource constraints as below:

∀r ∈ R :
∑
i∈V

ui(r, xi) ≤ C(r) (2)

We define a resource-augmented constraint network (RACN)
for a RC-DCOP by creating one node for each of the m re-
sources. For e.g., in figure 1(a), we have four agents x1 to
x4, and two resources r1 and r2. We say that an agent i is
involved in resource constraint r if ∃xi ∈Di : ui(r, xi) > 0.
Using this notion, we create an edge between a resource r and
all the agents that are involved in r. In figure 1(a), resource
r1 involves three agents x1, x2 and x4 denoted using dotted

max
p={p1,...,pn}

∑
(i,j)∈E

∑
xi,xj

pi(xi)pj(xj)θij(xi, xj) (4)

s.t.
∑
xi

pi(xi) = 1 ∀i ∈ V (5)∑
i∈Nb(r)

∑
xi

pi(xi)ui(r, xi) ≤ C(r) ∀r ∈ R (6)

Table 1: Quadratic programming based relaxation of RC-
DCOP

edges. Notationally, i and j denote agents and their corre-
sponding variables xi and xj in RACN (see fig. 1); symbol r
is used to index resources. Let Nb(i) denote the agents that
are immediate neighbors of agent i. For e.g., Nb(1) = {2, 4}
in fig. 1. Let Nr(i) denote resources that are connected to the
agent i (e.g., Nr(2)={r1, r2} in fig. 1). For a resource r, Nb(r)
denotes agents that are connected to it (e.g., Nb(r2)={2, 3}).

3 Continuous Relaxation of RC-DCOP
In this section, we first present a continuous relaxation of the
DCOP and RC-DCOP problems. The continuous relaxation
is essentially a quadratic program (QP) for solving the DCOP
problem [Ravikumar and Lafferty, 2006]. The basis for this QP
lies in the near-equivalence of the DCOP problem and MAP
estimation in graphical models [Ravikumar and Lafferty, 2006;
Kumar et al., 2011a]. We associate a probability distribution
pi(xi) with each variable xi in the DCOP. We can then write
the following QP:

max
p={p1,...,pn}

∑
(i,j)∈E

∑
xi,xj

pi(xi)pj(xj)θij(xi, xj)

s.t.
∑
xi

pi(xi) = 1 ∀i ∈ V
(3)

The following result proved in [Ravikumar and Lafferty, 2006]
shows that such a QP relaxation is tight.

Theorem 1. Let f?dcop denote the optimal objective for the
DCOP problem (1) and f?qp denote the optimal objective for
the QP in (3). Then we have f?dcop =f?qp.

Therefore, optimally solving the QP (3) in a distributed
manner will also solve the DCOP problem. However, this QP
is non-convex, therefore, convergence to the global optimum
is not guaranteed.

RC-DCOP Relaxation Based on the QP formulation of the
DCOP problem, we now present a QP formulation of the RC-
DCOP problem in table 1. The key addition in the QP for RC-
DCOP are constraints (6) for each resource r. This constraint
says that for each resource r, the expected consumption of
this resource by all the agents (=Nb(r)) must be less than the
resource’s capacity C(r). Notice also that all these constraints
are linear in QP parameters pi, which would be advantageous
later.

Theorem 2. Let f?rcdcop denote the optimal objective for the
RC-DCOP problem (1) subject to constraints (2) and f?qprc
denote the optimal objective for the QP in table 1. Then we
have f?qprc ≥ f?rcdcop.
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We omit the formal proof for space reasons. It is easy to
show the connection of the QP in table 1 with the LP relaxation
of the knapsack problem.

Our goal in this work is to solve the QP relaxation of RC-
DCOP in table 1 in a distributed manner. We achieve this goal
via the following:
• We first transform the RC-DCOP problem to that of like-

lihood maximization (LM) in a mixture of Bayesian net-
works. The likelihood maximization problem is exactly
equivalent to solving the QP in table 1.

• We then use the well known Expectation-Maximization
(EM) framework [Dempster et al., 1977] to maximize the
likelihood in the Bayes net mixture. However, the M-step
in this EM formulation does not admit a closed form so-
lution. Therefore, we use tools from convex optimization
such as block coordinate descent, and tools from algebra
such as polynomial root finding to develop a message-
passing algorithm to efficiently perform the M-step.

Once the EM algorithm has converged, we use a sim-
ilar message-passing based rounding technique proposed
in [Ravikumar and Lafferty, 2006] to extract an integral vari-
able assignment from the QP solution.

4 Expectation-Maximization For RC-DCOPs
In this section, we follow the similar strategy as in [Kumar
and Zilberstein, 2010] to recast the RC-DCOP as a likelihood
maximization problem. The key idea is to decompose the
constraint network into a mixture model of simpler Bayes
nets with many hidden variables – all the variables xi of the
RC-DCOP. To incorporate the constraint functions θ’s of RC-
DCOP and achieve equivalence between the likelihood and
the RC-DCOP objective, a special binary reward variable θ̂
is introduced with its conditional distribution proportional to
potentials θ.

For each edge (i, j) in the constraint network, we create a
depth-1 Bayes net (BN). Notice that we do not consider edges
between resources and agents during this process. Each Bayes
net consists of a binary reward variable θ̂ with its parents
being the variables xi and xj . Fig. 2(a) shows the RACN for
a RC-DCOP instance over four variables. Fig. 2(b) shows the
equivalent mixture of Bayes nets for each of the four agent-to-
agent edges in this network. The mixture random variable l
(with domain being agent-agent edge setE), is used to identify
the Bayes nets for the corresponding edge. It has a uniform
distribution (= 1/|E|).

The parameters to estimate in this mixture are the probabil-
ities pi(xi) for each node xi. Intuitively, these are the same
as the variables in the QP of table 1. Furthermore, different
Bayes nets share the same parameter pi for any common vari-
able xi. E.g., variable x2 in figure 2(b) is involved in two
Bayes nets for l=(1, 2) and l=(2, 3). Therefore, p2(x2) is the
same for these two Bayes nets. The space Θ of all the valid
parameters is specified by the following linear constraints:

Θ :
∑

xi∈Di

pi(xi)=1 ∀i ;
∑

i∈Nb(r)

∑
xi

pi(xi)ui(r, xi)≤C(r)∀r∈R

Non-negativity of each pi is also included in Θ. Therefore,
the constraint on valid parameters in this BN mixture replicate

Figure 2: a) A RC-DCOP instance; b) Equivalent mixture
representation

those of in table 1. Next we set the conditional probability
distribution of the variable θ̂ for each of the Bayes nets. For a
BN l involving variables xi and xj , it is set as follows:

P
(
θ̂=1|xi, xj , l=(i, j)

)
= θ̂xi,xj =

θij(xi, xj)−θmin
θmax−θmin

(7)

where θmax and θmin are the maximum and minimum value
over all constraint functions. The probabilities θ̂xi,xj are essen-
tially normalized constraint functions θij for the RC-DCOP
instance.

Theorem 3. For each BN l, let the CPT of binary reward
variable θ̂ be set as per (7). Then maximizing the likelihood
Lp = P (θ̂ = 1;p) of observing the reward variable in the
mixture of Bayes nets is equivalent to solving the QP relaxation
of RC-DCOP in table 1.

The proof is similar to the one in [Kumar and Zilberstein,
2010] that shows the equivalence of likelihood maximization
and the QP formulation (3) for DCOP. The only difference in
our case is that the space of possible parameters Θ includes re-
source constraints, which makes the likelihood maximization
approach applicable to RC-DCOPs.

4.1 Expected Log-Likelihood
To derive the EM algorithm for BN mixture of figure 2(b),
we assume that only the reward variable θ̂ = 1; rest of the
variables are hidden. The full-joint for a BN l is given as:

P (θ̂=1, xi, xj , l=(i, j);p) =
1

|E| θ̂xi,xjpi(xi)pj(xj) (8)

The EM algorithm maximizes the following expected log-
likelihood, Q(p,p?), w.r.t.p? iteratively [Kumar and Zilber-
stein, 2010; Dempster et al., 1977]:∑

l∈E

∑
xl1 ,xl2

P (θ̂=1, xl1 , xl2 , l;p) logP (θ̂=1, xl1 , xl2 , l;p
?) (9)

where xl1 and xl2 denote the two variables that are involved
in the BN l, p denotes the previous iteration’s parameters and
p? denote the new parameters to be optimized. We take the
log of (8), and simplify Q(p,p?) as follows:∑
l∈E

∑
xl1 ,xl2

θ̂xl1 ,xl2
pl1(xl1)pl2(xl2)

{
log p?l1(xl1) + log p?l2(xl2)

}
In the above expression, we have ignored terms independent

of p?. We simplify the above expression by grouping together
terms for each variable xi:
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Q(p,p?) ∝
∑
i∈V

∑
xi

pi(xi) log p?i (xi)
∑

j∈Nb(i)

∑
xj

θ̂xixjpj(xj)︸ ︷︷ ︸
fi(xi)

(10)

Using the above expression, the M-step involves solving the
following convex optimization problem (minus sign used to
make it a minimization problem):

min
p?
−
∑
i∈V

∑
xi

pi(xi)fi(xi) log p?i (xi) (11)

s.t.
∑
xi

p?i (xi) = 1 ∀i ∈ V (12)

∑
i∈Nb(r)

∑
xi

p?i (xi)ui(r, xi) ≤ C(r) ∀r ∈ R (13)

4.2 Maximizing Expected Log-Likelihood
In this section, we detail how to solve the convex optimiza-
tion problem (11). Because of the complicating resource
constraints (13), this problem does not admit a closed form
solution unlike the case in [Kumar and Zilberstein, 2010].
Therefore, we use several tools from convex optimization and
algebra to develop a message-passing algorithm for this prob-
lem. Our high level approach is as follows:
• We write the dual of problem (11). The dual has simpler

structure than the original problem, making optimization
easier. Furthermore, as (11) is a convex optimization prob-
lem, there is no duality gap implying optimal dual quality
equals optimal of (11) [Bertsekas, 1999].
• To optimize the dual, we use results from convex opti-

mization [Bertsekas, 1999] that guarantee that a block
coordinate descent (BCD) strategy wherein we fix all the
dual variables except one, and then optimize the dual over
the one variable is guaranteed to converge to the opti-
mal dual solution. The BCD strategy gets translated into
message-passing over the RACN.

Dual of (11): We first write the Lagrangian function for
problem (11) by introducing dual variables λ,µ for con-
straints (12), (13) respectively:

L(p?,λ,µ)=−
∑
i∈V

∑
xi

pi(xi)fi(xi) log p∗i (xi) +
∑
i

λi·

(∑
xi

p∗(xi)− 1
)
+
∑
r∈R

µr

(∑
i,xi

p∗i (xi) · ui(r, xi)− C(r)
)

(14)

The dual function is q(λ,µ)=minp? L(p?,λ,µ). It is found
by setting derivatives of L(p?,λ,µ) w.r.t. each p?i to zero.
Upon simplification, the dual is given as:

q(λ,µ)=−
∑
i

∑
xi

pi(xi)fi(xi)
[

log pi(xi) + log fi(xi)

−1−log
(
λi +

∑
r

µrui(r, xi)
)]
−
∑
i

λi −
∑
r

µrC(r) (15)

Optimizing the dual (15): We now detail the problem of
maximizing the dual: maxλ,µ q(λ,µ). Notice also the fact that

the domain of function q(·) includes only those λ,µ where
q(·) is defined and is greater than −∞ [Bertsekas, 1999]. We
also have each variable µ ≥ 0 [Bertsekas, 1999]. These facts
will be exploited later.
Block Coordinate Descent (BCD) Consider the following it-
erative strategy to maximize (15). We choose an arbitrary dual
variable, say λi, fix all other variables, and optimize the func-
tion q(·) w.r.t.the chosen variable (λi). In general, this strategy
is not guaranteed to converge to the optimal solution. How-
ever, the function q(λ,µ) satisfies additional properties which
guarantee that the BCD approach will converge to the optimal.
These conditions are a) q(·) is continuously differentiable over
its domain; b) q(·) is strictly concave w.r.t.each dual variable
λi and µr due to the presence of log terms in (15), resulting
in a unique solution for each BCD iteration [Bertsekas, 1999,
Proposition 2.7.1].

We now detail optimization over a single λi variable, fix-
ing all other variables. This can be done by setting partial
derivative w.r.t. λi of q(·) to zero, resulting in:∑

xi

pi(xi) · fi(xi)
λi +

∑
r µr · ui(r, xi)

− 1 = 0 (16)

Roots of rational functions: Notice that (16) is a rational
function in λi, and solving for λi will result in multiple values
of λi. This complicates the BCD approach which requires a
unique value for λi. Fortunately, we show that despite mul-
tiple λis satisfying (16), there is one and only one λi that is
applicable in our approach. Essentially, we show that there
is just one λi for which the dual function q(·) in (15) is de-
fined, for every other possible λi, q(·) becomes undefined as
it involves taking the log of a negative quantity. We start by
considering a rational function of the form as:

g(x)=

T∑
t=1

at
x+ bt

− c (17)

where index T denotes total number of terms, at > 0,
bt ≥ 0 ∀t, and c > 0. Eq. (16) fits such a rational func-
tion categorization as numerator is positive and all variables µ
are also positive. We now analyze the roots of g(x)=0. Let
us consider an ascending order over the terms bt such that b1
is smallest and bT is the largest. For simplicity, assume that
each of bt is different and positive (> 0).
Theorem 4. The rational function g(x) of the form (17) has
exactly one root in each interval (−bt+1,−bt) ∀t=1 to T−1
and exactly one root in the interval (−b1,∞).

Proof sketch. Notice that discontinuity in the function g(x)
occurs only at points −bt ∀t. Consider the interval [−bt+1+
ε,−bt−ε] for any ε>0 such that −bt+1+ε<−bt. We have:

g(−bt+1+ε)=
at+1

ε
+. . . and g(−bt−ε)=

at
−ε + . . . (18)

As ε → 0, then we have g(−bt+1 + ε) → +∞ and
g(−bt−ε) → −∞. We also know that g(x) is continuous
and monotonically decreasing (using the first derivative test)
in the interval [−bt+1+ε,−bt−ε]. Therefore, we can deduce
that g(x) crosses the horizontal axis y=0 exactly once in this
interval. This proves the first part of the theorem.
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Algorithm 1: solveRCDCOP(θ, u)
1 Initialize: p∗i (xi)← 1

|Di|
∀xi∈Di, ∀i ∈ A

2 repeat
3 pi(xi)← p∗i (xi) ∀xi∈Di, ∀i∈A
4 send γi→j(xj)←

∑
xi
pi(xi)θ̂xixj ∀j∈Nb(i), ∀i∈A

5 send δi→r(xi)←pi(xi)
∑
k∈Nb(i)γk→i(xi) ∀r∈Nr(i), ∀i∈AR

6 {λ, µ} ← solveBCD(p, γ, δ)

7 p∗i (xi)←
pi(xi)

∑
k∈Nb(i) γk→i(xi)

λi+
∑
r∈Nr(i) µr→i·ui(r,xi)

∀xi∈Di, ∀i∈AR

8 p∗i (xi)←
pi(xi)·

∑
k∈Nb(i) γk→i(xi)∑

xi
pi(xi)·

∑
k∈Nb(i) γk→i(xi)

∀xi∈Di ∀i∈A−R
9 until p 6= p∗

10 pint ← Primal Extraction(p∗)

11 return pint

Using similar argument as above, we can show that there
is no root in the interval (−∞,−bT ) (proof omitted). Given
that the total number of roots of g(x) is T and total number
of intervals (−bt+1,−bt) are T − 1, it implies that there is
exactly one root in the remaining interval (−b1,∞).

We now relate the above theorem to our problem of deter-
mining a unique solution of (16). From analyzing log terms
in (15), we have:

λi+
∑
r

µrui(r, xi)≥0 ∀xi ⇒ λi≥max
xi
−
∑
r

µrui(r, xi) (19)

The term maxxi −
∑
r µrui(r, xi) is equivalent to the term

−b1 used in the theorem 4. Therefore, we require that a
feasible λi must lie in the interval (−b1,∞). Using theorem 4
we already know that there is just one root for any rational
function g(x) in this range. And this unique root in the interval
(−b1,∞) is the valid solution of (16) used by BCD approach.

Maximizing (15) w.r.t.µr requires finding the unique value
of µr from the following equation:∑
i∈Nb(r),xi

pi(xi) · fi(xi) · ui(r, xi)

µr · ui(r, xi)+λi+
∑

r′∈Nr(i)\r µr′ · ui(r′, xi)
=C(r)

As noted before, dual variables µ must be positive. Let r
denotes the largest root for the above rational function, we
can show that max(0, r) is the unique solution for the BCD
approach.
Message-passing implementation: All the steps of the EM
and the BCD approach can be implemented via message-
passing over the RACN for a RC-DCOP as shown in Alg. 1
and 2. Let A=AR ∪ A−R denote the set of all agents, AR
denotes agents that are directly connected to at least one re-
source and A−R denotes agents that do not participate in any
resource constraint. The EM algorithm for RC-DCOPs is a
double loop message-passing algorithm as shown in alg. 1.

In the outer loop (lines 2-9 of algo. 1), two types of mes-
sages are passed among agents and resources, as shown in
fig. 1(b) and lines 4 and 5 in algo. 1. Message γi→j (size=|Dj |)
is passed from agent i to its neighbor agent j, δi→r (size=|Di|)
is passed from agent i to connected resource r. In the inner
loop (lines 4 to 14 in algo. 2), the steps of the BCD approach
are implemented. In the inner loop, message νi→r (size =|Di|)
is passed from agent i to connected resource r, µr→i (size=1)

Algorithm 2: solveBCD(p, γ, δ)

1 Initialize:
2 Set λi ← 0; send νi→r(xi)← λi ∀r ∈ Nr(i), ∀i∈AR
3 Set µr ← 0; send µr→i ← µr ∀i ∈ Nb(r), ∀r ∈ R
4 repeat
5 for each resource r ∈ R do
6 Find largest root µr for g(µr)=0:

7 g(µr) =
∑
i∈Nb(r)

∑
xi

δi→r(xi)ui(r,xi)
µrui(r,xi)+νi→r(xi)

−C(r)

8 send µr→i ← max(0, µr) ∀i ∈ Nb(r)
9 for each agent i∈Nb(r) do

10 Find largest root λi for g(λi)=0:

11 g(λi)=
∑
xi

pi(xi)·
∑
k∈Nb(i) γk→i(xi)

λi+
∑
r∈Nr(i) µr→i·ui(r,xi)

− 1

12 send νi→r̂(xi)← λi+

13
∑
r′∈Nr(i)\̂r µr′→iui(r

′, xi) ∀r̂ ∈ Nr(i)

14 until convergence
15 return {λ, µ}

is passed from resource r to agent i. Both these message types
are shown in fig. 1(c).

The core of the BCD approach is implemented in lines 5 to
12 in algo. 2. Line 6 updates the µr variable by finding the
largest root of the given rational function; similarly line 10
updates the λi variable. Notice that while root finding, agents
and resources use the latest µ or ν message they have received.
Main idea is that whenever a variable is updated, its updated
value must be communicated to all other relevant entities that
depend upon the updated variable. For example, after the
variable λi is updated in line 11, an updated message ν is sent
to all the resources r connected to i in line 12. Convergence
is detected in the inner loop if messages change by a value
smaller than a given threshold.
Primal Extraction: Upon convergence, we extract the inte-
gral solution from p? using a similar rounding technique as
proposed in [Ravikumar and Lafferty, 2006, Theorem 3.2] by
adding to it support for handling resources. This rounding
technique also has a message-passing structure.
Complexity: Let m denote the maximum number of agents
involved in any single resource; m′ denote the maximum
number of resources any single agent is connected to. If inner
loop (lines 4 to 14 in algo. 2) is run for I iterations, then total
µ messages are O(mI|R|). Total number of ν messages is
O(mm′I|R|). In each outer loop iteration (lines 2 to 9 in algo.
1), the total number of messages exchanged (both γ and δ)
equals to the number of edges in the RACN. The maximum
size of any message (in inner or outer loop) is bounded by the
maximum domain |D|max of any variable. Thus, our message-
passing approach is highly efficient and scales gracefully with
the number of edges or resources in the RACN.

5 Experiments
We compare our EM approach with the popular approximate
DCOP algorithm max-sum (MS). Resource constraints were
encoded as n-ary constraints for MS. As both the EM and
MS lack quality guarantees, we also show results against an
optimal efficient constraint solver ‘toulbar2’ [Allouche et al.,
2010]. We imposed a time limit of 1 hour for toulbar2. We
used the MS implementation provided by the Frodo 2.0 soft-
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Figure 3: Failure frequency of EM and MS on random graphs
and graph coloring problems

ware [Léauté et al., 2009]. Our approach was implemented in
Python and used Bisection method for root finding. We test
on two benchmarks, random graphs and graph coloring.
Random graphs: We tested with 30 and 40 node graphs with
domain size |Di|=5. We vary the edge density from 0.5 to
0.9 resulting in challenging problems. Each utility, θij(·, ·), is
a random value between 1 and 10. Each resource constraint
involved three agents. Total number of resources created were
such that about 50% of all the agents were involved in at least
one resource constraint. A 30 node problem had 5 resource
constraints on an average, and a 40 node problem had about
7 resource constraints. The resource consumption of agents
for each resource was also generated randomly between 1 to
5. We controlled the resource capacity C(r) of each resource
carefully. Let Mr, mr denote the maximum and minimum
amount of resource r respectively that can be consumed by
all the involved agents. To control the tightness of capac-
ity constraints, we use a parameter tr varied from 0.2 to 0.6.
The capacity C(r) is set as mr+tr(Mr−mr). For each set-
ting 〈#Nodes, edge density, resource capacity〉, we generated
4 instances.
Failure rate: We first report on the failure rate of MS and
EM for random graphs and graph coloring for varying node
sizes in Figure 3. If a particular run of the algorithm fails to
find a resource feasible solution for a given feasible instance,
it is classified as a failed run. For MS, we ran it 3 times for
each instance. We set 1000 iterations for each run and used
the best solution over all the iterations. MS gave variable
results for each run. In contrast, we ran EM just once for
each instance, and EM’s final solution is deterministic for a
given initialization of parameters. We report two statistics for
MS, the best failure rate (MS∗ in figure 3) denotes percentage
of instances for whom none of MS’s three runs produced a
feasible solution. The ‘MS-All’ in figure 3 denotes the total
percentage of runs where MS failed to find a feasible solution.

Figure 3 clearly shows the instability of the MS algorithm
in the presence of resource constraints. Even the best failure
rate of MS (‘MS∗’) was as high as 32% for 40 node random
graphs. The overall failure rate of MS (‘MS-All’) was much
higher, more than 50% for random graphs and about 40%
for graph coloring problems. This shows that a significant
fraction of MS’s runs resulted in failure. In contrast, EM’s
failure rate is extremely low (less than 5%) across all the
problems despite EM being run just once for each instance.
These results further show that by accounting for resources
explicitly, the EM algorithm is significantly more stable and
better than MS across different settings.

Quality: Figure 4(a) shows (average) quality comparisons
between EM and toulbar2 on common 40 node instances
where both EM and toulbar2 return a resource feasible solu-
tion. The x-axis shows resource tightness varied from tr=0.2
to tr = 0.6, and edge density varied from 0.5 to 0.9. We
show normalized quality for EM by assigning 1 to the qual-
ity achieved by toulbar2. As we can clearly see, EM was
always able to achieve a solution very close to toulbar2. In-
deed, for harder instance with higher edge density, such as
‘density=0.9’, EM provided better quality than toulbar2, which
did not find the optimal solution within 1 hour limit. The
average time required by EM was 180 sec., showing that EM
was significantly faster than the toulbar2 solver.

Figure 4(b) shows (average) quality comparisons between
EM, MS and toulbar2 on common instances where each algo-
rithm found a resource feasible solution. These results also
show clearly that EM always provided similar or better quality
than MS. Figure 4(c) and (d) show the same previous two sets
of comparisons for 30 node problems. For these problems,
toulbar2 was able to achieve the optimal solution for most
instances. EM achieved very close to the optimal solution.
From figure 4(d) we further observe that EM provided better
quality than MS.
Graph coloring: We also tested EM on graph coloring in-
stances generated in the same fashion as [Farinelli et al., 2008].
Resource constraints are generated similarly as for random
graphs. Figure 4(e) shows the results for 20 to 50 nodes and
varying resource tightness tr from 0.2 to 0.6 on the x-axis.
These results further show that EM is highly competitive even
with a centralized solver, while having a low failure rate (less
than 5%) when compared against the existing MS algorithm.
Timing results: Figure 4(f) shows the (average) runtime (in
log scale) for toulbar2, EM and MS for the most challenging
40 node random graphs. The toulbar2 had a time limit of
1 hour. While MS is the fastest of all, as shown before, its
solution quality is worst and failure rate high. In contrast,
EM almost always converged within 3 min for all the settings
and also provided comparable quality solutions to toulbar2 for
higher density graphs. Therefore, EM proved very effective
for these challenging problems.

6 Conclusion
We presented a promising new class of algorithms based on
probabilistic inference for RC-DCOPs. We showed a close
connection between likelihood maximization and RC-DCOPs,
and using this connection developed the EM algorithm for
RC-DCOPs. By using tools from convex optimization, we
showed that EM algorithm takes a message-passing structure
over the constraint network. Unlike previous approaches, such
as MS, EM is guaranteed to converge. Empirically, EM had
significantly lower failure rate than MS even in the presence
of tight resource constraints, and proved highly competitive to
a centralized constraint solver.
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