
SAT Is an Effective and Complete Method for
Solving Stable Matching Problems with Couples

Joanna Drummond and Andrew Perrault and Fahiem Bacchus
Department of Computer Science

University of Toronto
{jdrummond,perrault,fbacchus}@cs.toronto.edu

Abstract
Stable matchings can be computed by deferred accep-
tance (DA) algorithms. However such algorithms be-
come incomplete when complementarities exist among
the agent preferences: they can fail to find a stable match-
ing even when one exists. In this paper we examine stable
matching problems arising from labour market with cou-
ples (SMP-C). The classical problem of matching resi-
dents into hospital programs is an example. Couples in-
troduce complementarities under which DA algorithms
become incomplete. In fact, SMP-C is NP-complete.
Inspired by advances in SAT and integer programming
(IP) solvers we investigate encoding SMP-C into SAT
and IP and then using state-of-the-art SAT and IP solvers
to solve it. We also implemented two previous DA algo-
rithms. After comparing the performance of these differ-
ent solution methods we find that encoding to SAT can
be surprisingly effective, but that our encoding to IP does
not scale as well. Using our SAT encoding we are able
to determine that the DA algorithms fail on a non-trivial
number of cases where a stable matching exists. The SAT
and IP encodings also have the property that they can ver-
ify that no stable matching exists, something that the DA
algorithms cannot do.

1 Introduction
Finding a stable matching is an important problem (SMP)
with many real-world applications. These include college ad-
missions, school choice, reviewer paper matching, and var-
ious labor market matching problems. Probably the best
known of these applications is the problem of matching resi-
dents into hospital programs (the residency matching prob-
lem) [Niederle et al., 2008; Roth, 1984; Abdulkadiroglu
et al., 2005]. The National Resident Matching Program
(NRMP) began in 1952 to match medical students to resi-
dency positions [NRMP, 2013]. First implemented because
the market was unraveling, the NRMP has adapted to the
needs of participants over the years. To address the prob-
lem of couples wanting to coordinate their placements, the
NRMP began allowing couples to jointly express their pref-
erences over residency programs. This gave rise to interest in
solving the Stable Matching Problem with Couples (SMP-C).

Intuitively, given participants’ preferences, we want to find
a match under which no pair (one from each side of the mar-

ket) has an incentive to defect. Such a matching is called
stable. In their seminal paper, Gale and Shapley provided a
polynomial time deferred acceptance (DA) algorithm to solve
SMP [Gale and Shapley, 1962]. They also showed that a
stable matching always exists and that their DA algorithm
always finds one. However, once we add couples a stable
matching might not exist, and the problem of finding one be-
comes NP-complete [Ronn, 1990].

To address this complexity previous literature has investi-
gated techniques to find matches that are not guaranteed to be
stable, such as local search techniques [Marx and Schlotter,
2011]; or techniques that find stable matches, but are not com-
plete [Roth and Peranson, 1999; Kojima et al., 2013]. These
latter works focus on extending the classic Gale-Shapley DA
algorithm to incorporate couples. However, in these exten-
sions many nice properties of DA are lost. The resulting algo-
rithms are not able to decide whether or not a stable matching
exists; even when a stable matching exists they might not be
able to find one; and any matching they are able to find is no
longer guaranteed to be proposer-optimal.

Since SMP-C is NP-complete it is natural to consider en-
coding it into SAT or Integer Programming (IP) given the
tremendous advances in SAT and IP solvers over the past
decade. Solving hard social choice problems (especially sta-
ble matching problems) by encoding into SAT or IP has nu-
merous benefits. Most important is that modern SAT and IP
solvers are complete, so given sufficient compute resources,
they are able to find a stable match if one exists or prove that
no such matching exists. Furthermore, unlike DA-style algo-
rithms, where the algorithm must be re-designed to incorpo-
rate new constraints, adding new constraints to a SAT or IP
encoding simply involves extending the encoding.

In this paper develop a SAT and IP encoding for SMP-C
(SAT-E and IP-E). SAT-E is new while IP-E is based on a
previous LP encoding for SMP [Roth et al., 1993]. We solve
these encodings with the SAT solver Lingeling [Biere, 2013]
and IBM’s IP solver CPLEXTM, both of which are state-of-
the-art. We also implement two previous deferred acceptance
style algorithms, RP99 [Roth and Peranson, 1999] and KPR
[Kojima et al., 2013]. We show that using SAT is a com-
petitive strategy for solving these kinds of problems, solving
fairly large problem instances quite quickly, outperforming IP
and RP99. SAT also allows us to determine how frequently
a stable matching exists and see how that changes as the per-

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

518



centage of couples increases.

2 Background
We cast our formalization of SMP-C (stable matching with
couples) in terms of matching doctors into hospital residency
programs [Roth and Peranson, 1999].

In SMP-C, doctors wish to be placed into (matched with)
some hospital program. Both doctors and hospitals have
preferences over who they are matched with, expressed as a
ranked list. Some doctors are paired into couples, and these
couples wish to provide their preferences as a joint ranked
list. Both doctors and hospitals can provide incomplete lists,
where they list only the hospitals (resp. doctors) they would
accept being matched with (i.e., unlisted alternatives are un-
acceptable). We wish to find a stable matching from which
no doctor-hospital pair has an incentive to defect.

Notation. Let D be a set of doctors and let P be a set of hos-
pital programs. Each doctor is looking to be matched (placed)
in a program, and each program is looking to be matched with
(accept) some number of doctors. Each program p ∈ P has
an integer quota capp > 0, which is the maximum number of
doctors p can accept. A matching µ is a function from D to
P , it assigns each doctor to a specific program. We say that
a doctor d is matched to program p under µ when µ(d) = p,
and that p is matched to d when d ∈ µ−1(p).
S ⊂ D is the set of single doctors. The remaining doc-

tors D−S are in a couple relationship specified by a set C of
ordered pairs of doctors, (d1, d2) ⊆ (D−S ) × (D−S ). A
doctor from D−S must appear in one and only position of
one pair of C (monogamy).

We use nil to denote the null “doctor” or “program”:
matching a program p to nil (nil ∈ µ−1(p)) indicates that
p has an unfilled slot, while matching a single doctor d to nil
(µ(d) = nil ) or a couple c = (d1, d2) to nil (µ(d1) = nil
and µ(d2) = nil ) indicates that they are unmatched. We use
P+ and D+ to denote P ∪ {nil} and D ∪ {nil}.

Each market participant a has preferences over their possi-
ble matches. These preferences are specified by a partial or-
der relation x �a y indicating that a prefers x to y or x = y.
For single doctors d, �d is a partial order over P+, for cou-
ples c,�c is a partial order over pairs from P+×P+, and for
programs p, �p is a partial order over D+.

We say that x is acceptable for a if x �a nil . Although
we allow a’s preferences to be incomplete, we require that a
has a total preference order order over its acceptable options:
(x �a nil ∧ y �a nil) → (x �a y ∨ y �a x). Preferences
between unacceptable matches need not be specified. We also
standardly define the relations ≺a, �a, and �a.

Since �a is a total order over the acceptable matches, we
can represent it using a rank order list, rola, which simply
lists the acceptable matches from most to least preferred (nil
is always least preferred).

We define a choice function Chp() for programs p ∈ P .
Given a set of doctors R, Chp(R) returns the subset of R
that p would prefer to accept. Intuitively, p will select from R
only doctors it finds to be acceptable, no more doctors than its
quota, and the doctors ofR it most prefers. Hence, Chp(R) is
the maximal subset of R such that for all d ∈ Chp(R), d �p

nil , for all d′ ∈ R−Chp(R), d �p d
′, and |Chp(R)| ≤ capp .

It is convenient to give the null program a choice function as
well: Chnil(O) = O, i.e., nil will accept any and all matches.

We also introduce the notation ranked(a) to denote the
set of options that a could potentially be matched with. For
single doctors d and programs p this is simply the set rold
and rolp. For a doctor d1 that is part of a couple (d1, d2),
ranked(d1 ) = {p1|∃p2.(p1, p2) ∈ rol (d1,d2)} ∪ {nil} and
similarly for d2. Note that nil ∈ ranked(a).

Finally, we use the function ranka(x) to find the index of
match x in a’s rol : ranka(x) = i iff x appears at index i
(zero-based) on rola or |rola| if x does not appear on rola.
Also we use rola as an indexable vector, e.g., if x is accept-
able to a then rola[ranka(x)] = x.

Solving an SMP-C instance involves finding a stable
matching. Intuitively, a stable matching is a matching µ that
(a) satisfies all quotas, and no doctor or program is matched
to an unacceptable partner (Individual Rationality); and (b)
has no pair consisting of doctor and a program, or consisting
of a couple and a pair of hospitals, that has mutual incentive
to defect from µ.

A pair with mutual incentive to defect from µ is called a
blocking pair—stability requires that no blocking pair exists.
A single doctor d and program p form a blocking pair if d
and p prefer each other to their match under µ. If d and p are
a blocking pair then d would prefer to switch from µ(d) to
p and p would be happy to accept d in place of some other
doctor in µ−1(p) making µ unstable.

A couple c = (d1, d2) and a pair of programs (p1, p2) form
a blocking pair if c prefers (p1, p2) to its match under µ and
p1 and p2 prefer to accept d1 and d2 respectively over their
current match. For couples, however, we have to deal with
the special case when p1 = p2: in this case p1 must prefer to
accept both d1 and d2 rather than keep its current match (i.e.,
it is not sufficient for p1 to prefer each one individually).

Definition 1 A stable matching µ for 〈D ,C ,P ,�〉, where
� is the set of all preference relationships, is a matching that
satisfies conditions 1-3 given below.

Individual Rationality: This condition specifies that µ re-
spects all quotas and does contain any unacceptable matches.
1a: ∀p ∈ P . |µ−1(p)| ≤ capp
1b: ∀d ∈ S . µ(a) ∈ rola
1c: ∀(d1, d2) ∈ C . (µ(d1), µ(d2)) ∈ rol (d1,d2)

1d: ∀p ∈ P .∀d ∈ µ−1(p). d ∈ rolp

To express the stability conditions we introduce the abbre-
viation willAccept(p,R, µ) ≡ R ⊆ Chp(µ

−1(p)∪R), where
p is a program and R is a set of doctors. This means that if p
was allowed to choose from all of the doctors in R as well as
the doctors it is matched to, µ−1(p), it would choose a match
that includes R. Note that if p is already matched to the doc-
tors in R, i.e., R ⊆ µ−1(p) then willAccept(p,R, µ) will be
true (as long as µ−1(p) is individually rational).

For doctors and couples the “will accept” condition is more
simply expressed: a single doctor d will accept p over its cur-
rent match if p �d µ(d) and a couple c = (d1, d2) will accept
(p1, p2) over its current match if (p1, p2) �c (µ(d1), µ(d2)).

Stability for Singles: No individual single doctor can find a

519



better matching than µ.
2: ∀d∈S .@p∈P . p �d µ(d) ∧ willAccept(p, {d}, µ)

Stability for Couples: No couple can find a better matching.
3a: ∀(d1, d2)∈C .@(p1, p2)∈(P+×P+).

p1 6= p2 ∧ (p1, p2) �(d1,d2) (µ(d1), µ(d2))
∧ willAccept(p1, {d1}, µ) ∧ willAccept(p2, {d2}, µ)

3b: ∀(d1, d2)∈C .@p∈P+.(p, p) �(d1,d2) (µ(d1), µ(d2))
∧willAccept(p, {d1, d2}, µ)

For case (3a) it can be that p1 = µ(d1) or p2 = µ(d2)
(i.e., only one member of the couple is switching programs)
but not both since (p1, p2) �(d1,d2) (µ(d1), µ(d2)) (strict
preference). If p1 = µ(d1) then, as explained above,
willAccept(p1, {d1}, µ(d1)) will automatically be true, sim-
ilarly when p2 = µ(d2). Hence case (3a) covers the case
when only one member of the couple wants to switch. Case
(3b) covers the case when both couples want to enter the same
program p (even if one member of the couple is already in p).

3 Prior DA algorithms
The basic principle of DA algorithms is that agents from one
group propose down their rol until they are accepted. Agents
from the other group can reject a previously made match if
they obtain a better proposal, in which case the rejected agent
must continue proposing down its rol .

Roth and Peranson developed a DA algorithm, RP99, ca-
pable of dealing with couples [1999]. This well known al-
gorithm has been used with considerable success in practice,
including most famously for finding matches for the NRMP
which typically involves about 30,000 doctors [NRMP,
2013]. Using the description in [Roth and Peranson, 1999] we
have implemented RP99. RP99 employs an iterative scheme.
After computing a stable matching for all single doctors, cou-
ples are added one at a time and a new stable matching com-
puted after each addition. The algorithm uses DA to find
a matching. Matching a couple can make previously made
matches unstable and in redoing these matches the algorithm
might start to cycle. Hence, cycle checking (or a timeout)
is needed to terminate the algorithm. Randomization can be
used to restart the algorithm to obtain a different outcome.1

Kojima et al. develop a simple “sequential couples algo-
rithm” [2013]. This algorithm is analyzed to prove that the
probability of a stable matchings existing goes to one under
certain assumptions. However, this simple algorithm is not
useful in practice as it declares failure under very simple con-
ditions (this algorithm and analysis was extended in [Ashlagi
et al., 2014]). Kojima et al. also provide a more practical DA
algorithm, KPR, that they use in their experiments. We have
implemented KPR. The main difference between KPR and
RP99 is that KPR deals with all couples at the same time—it
does not attempt to compute intermediate stable matchings.
As will be seen this makes KPR much more successful (and
efficient) in practice.

1We implemented randomization but did not find a significant
difference in our experiments, so we omit further discussion of ran-
domization here.

4 Encodings to NP-Complete Problems
Recent years have seen a tremendous increase in our abil-
ity to solve instances of NP-complete problems coming from
real world applications. In particular, solvers for Integer Pro-
grams (IP) and Satisfiability (SAT) have both seen orders of
magnitude performance improvements.

One of the contributions of this paper is to show that
SAT solvers in particular, can be quite effective for solving
SMP-C. Besides solving matching problems, exact solvers
can also be used to evaluate and analyze the empirical be-
haviour of popular DA algorithms. This can be a useful
addition to recent theoretical results [Ashlagi et al., 2014;
Kojima et al., 2013], as most of these are results that hold
as the market size tends to infinity. Such results in the limit
are useful, but not completely informative when dealing with
markets seen in practice.

In order to use SAT or IP solvers we need to encode the
matching problem into SAT and IP. A major contribution of
this paper is SAT-E, an innovative SAT encoding utilizing
a collection of variables that track the remaining capacity
of each program at each level of that program’s preference.
These variables allow us to express the stability conditions
more compactly. We present the details of SAT-E below. For
the IP encoding, IP-E, we extended a prior linear program-
ming (LP) encoding for solving SMP, [Roth et al., 1993], to
handle couples. The extension requires integrality constraints
making the LP into an IP.

Little work has investigated using constraint programming,
SAT solvers, or IP solvers for NP-complete stable matching
problems. Some work investigated encoding Stable Match-
ing with Incomplete Lists and Ties as either a CSP encod-
ing or a SAT encoding (e.g., [Gent et al., 2001; Unsworth
and Prosser, 2005; Prosser, 2014; Manlove et al., 2007;
Gent and Prosser, 2002]); integer programming has been used
to find minimum regret matchings with partial preference in-
formation ([Drummond and Boutilier, 2013]). To our knowl-
edge, only one other encoding for SMP-C exists; Biró et al.
independently developed an IP encoding for SMP-C [2014].
While similar to the IP encoding we developed and present
in Section 4.2, the simulation results described in their paper
are not comparable to ours, as we draw from very different
preference distributions.

4.1 SAT-E
We assume that the doctor (singles and couples) rols have
been preprocessed so as to remove from them any program
that does not find that doctor acceptable. For d ∈ S we re-
move p from rold if d /∈ rolp. For couple (d1, d2) ∈ C we
remove (p1, p2) from rol (d1,d2) if d1 /∈ rolp1

or d2 /∈ rolp2
.

This ensures that individual rationality conditions 1b-c are
trivially satisfied in our encodings.

Variables. We utilize three sets of Boolean variables.
1. Doctor Matching Variables:{md[p] | d ∈ D ∧ p ∈ rold}.
md[p] is true iff d is matched into program p. Note that
md[nil ] is true if d is unmatched.
2. Couple Matching Variables: {mc[i] | c ∈ C ∧ (0 ≤
i < |rolc|)}. mc[i] is true iff couple c is matched into

520



a program pair (p, p′) that it ranks between 0 and i, i.e.,
0 ≤ rank c((p, p

′)) ≤ i. (Lower ranks are more preferred).
3. Program Matching Variables: {mp[i, s] | p ∈ P ∧ (0 ≤
i ≤ |rolp|−2)∧(0 ≤ s ≤ min(i+1, capp+1))}. mp[i, s] is
true iff s of the doctors in rolp[0] to rolp[i] have been matched
into p. Note that i ranges up to |rolp| − 2 which is the index
the last non-nil doctors on rolp (rolp is terminated by nil ).

The program matching variables are the main innovation
of our encoding. We found that we could maintain the proper
truth value for these variables with a small set of clauses, and
with them express the stability constraints more compactly.

Now we give the clauses of the encoding. Rather than give
the more lengthy clauses directly, we often give higher level
constraints whose CNF encoding is straightforward.
Unique Match. A doctor must be matched into exactly one
program (possibly the nil program). For all d ∈ D

1a. at-most-one({md[p]|p ∈ ranked(d)})
1b.

∨
p∈ranked(d)md[p]

In our experiments we converted the at-most-one con-
straint to CNF using the binomial encoding which re-
quiresO(|ranked(d)|2) binary clauses but no additional vari-
ables. More compact linear encodings can be used for large
ranked(d) sets [Frisch and Giannaros, 2010]. 1b ensures that
some match (possibly to the nil program) is made.
Couple Match. Themc[∗] variables must have their intended
meaning. For all couples c ∈ C , for all k such that 1 ≤ k ≤
|rolc|, letting c = (d1, d2) and (p1[i], p2[i]) = rolc[i],

2a. mc[0] ≡ md1
[p1[0]] ∧md2

[p2[0]]
2b. mc[k] ≡ (md1

[p1[k]] ∧md2
[p2[k]]) ∨mc[k − 1]

2c. mc[|rolc|]

The final condition ensures that c is matched to some program
pair on its rol (possibly nil ), and the at-most-one constraint
for d1 and d2 ensures that c is uniquely matched.
Program Match. The mp[∗, ∗] variables must have their in-
tended meaning. For all programs p ∈ P , for all i such
that 1 ≤ i ≤ |rolp| − 2, and for all s such that 0 ≤ s ≤
min(i+ 1, capp + 1), letting di = rolp[i] (the i-th doctor on
p’s rol ),

3a.
(
mp[0, 0] ≡ ¬md0

[p]
)
∧
(
mp[0, 1] ≡ md0

[p]
)

3b.mp[i, s] ≡ (mp[i−1, s]∧¬mdi
[p])

∨ (mp[i−1, s−1]∧mdi
[p])

3c. ¬mp[i, capp + 1]

The last condition, captured by a set of unit clauses, ensures
that p’s quota is not exceeded at any stage. Falsifying these
variables along with the other clauses ensures that no more
matches can be made into p once p hits its quota. Note that
i only indexes up to the last non-nil doctor on rolp since nil
does not use up any program capacity.
Stability for Singles: For each single doctor, d ∈ S and for
each p ∈ rold

4.
(∨

p′�dp
md[p

′]
)
∨mp[rankp(d)− 1, capp ]

This clause says that if d has not been matched into a program
preferred to or equal to p, then it must be the case that p will
not accept d. Note that mp[rankp(d) − 1, capp ] means that

p has been filled to capacity with doctors coming before d on
its rol .
Stability for Couples (A): For each couple c = (d1, d2) ∈ C
and for each (p1, p2) ∈ rolc with p1 6= p2

5a1. md1 [p1] ∧ ¬mc[rank c((p1, p2))]
→ mp2 [rankp2(d2)− 1, capp2 ]

5a2. md2
[p2] ∧ ¬mc[rank c((p1, p2))]

→ mp1
[rankp1

(d1)− 1, capp1
]

5b. ¬md1
[p1] ∧ ¬md2

[p2] ∧ ¬mc[rank c((p1, p2))]
→ mp1

[rankp1
(d1)− 1, capp1

]
∨mp2

[rankp2
(d2)− 1, capp2

]

Clause 5a1 says that when d1 is already matched to p1 but
c has not been matched into (p1, p2) or into a more preferred
program pair, then it must be the case that p2 will not accept
d2. 5a2 is analogous.

Clause 5b says that if neither d1 nor d2 is matched into p1
or p2 and c has not been matched into (p1, p2) or into a more
preferred program pair, then either p1 will not accept d1 or p2
will not accept d2.
Stability for Couples (B): For each couple c = (d1, d2) ∈ C
and for each (p, p) ∈ rolc we have one of constraint 6a1 or
6b1. 6a1 is needed when d1 �p d2, while 6b1 is needed
when d2 �p d1.

6a1. md1 [p] ∧ ¬mc[rankc((p, p))]
→ mp[rankp(d2)− 1, capp ]

6b1. md1 [p] ∧ ¬mc[rankc((p, p))]
→ mp[rankp(d1)− 1, capp − 1]

6c. ¬md1 [p] ∧ ¬md2 [p] ∧ ¬mc[rankc((p, p))]→
mp[rankp(d1)−1, capp ] ∨mp[rankp(d1)−1, capp−1]
∨mp[rankp(d2)−1, capp ] ∨mp[rankp(d2)−1, capp−1]

Clauses 6a1 or 6b1 say that if d1 is already in p and c is not
matched to (p, p) or into a more preferred program pair, then
p will not accept d2. 6b1 differs because when d2 �p d1 and
d1 is already in p, p will definitely accept d2. In this case,
however, the couple is not accepted into (p, p) if accepting
d2 causes d1 to be bumped. That is, when mp[rankp(d1) −
1, capp − 1] is true (adding d2 will cause mp[rankp(d1) −
1, capp ] to become true).

There are also analogous clauses 6a2 and 6b2 (one of
which is used) to deal with the case when d2 is already in
p and we need to ensure that p won’t accept d1. Clause 6c
handles the case when neither member of the couple is cur-
rently matched into p.

Let P = 〈D ,C ,P ,�〉 be a matching problem. We say
that a matching µ for P and a truth assignment π for SAT-E
of P are corresponding when π |= md[p] iff µ(d) = p. The
following theorem shows that the satisfying assignments of
SAT-E are in a 1-1 relationship with the stable models.

Theorem 1 If µ and π are corresponding, then µ is stable if
and only if π is satisfying.

Proof Sketch: First we observe that there is only one satisfy-
ing assignment for any fixed setting of the doctor matching
variables md[p]—the other variables’ truth assignments are
determined by clause sets 1–3. So any stable matching has a
single corresponding truth assignment if it has any.

Showing that any π corresponding to a stable matching µ
satisfies SAT-E is straightforward: the individual rationality

521



conditions µ ensure that clause sets 1–3 are satisfied, and the
stability conditions ensure that clause sets 4-6 are satisfied.

Suppose π is a satisfying assignment. It is similarly
straightforward to see that the fact it satisfies clause sets 1–3
implies that its corresponding matching µ is individually ra-
tional. For example, clause set 3 ensures that no program is
matched beyond its quota.

To see that all singles are stable in the µ let md[µ(d)] be
true. This forces all other md[p] variables to be false by the
clauses 1a. md[µ(d)] appears in and hence satisfies all of the
clauses of 4 for p �d µ(p). For p �d µ(d) the clauses of 4
are reduced to the units mp[rankp(d)− 1, capp ]. These units
along with the clauses of 3 ensure that all programs p pre-
ferred by d to µ(d) are already filled with doctors p prefers to
d. Hence none of these more preferred programs will accept
d and µ must satisfy the stability condition for singles 2.

The argument is similar for couple stability. The only other
potentially complex case is clause set 6c which handles the
case where both members of a couple (d1, d2) would prefer
to go into the same program p, and neither are matched into
p. Without loss of generality, suppose d1 �p d2. If p was to
accept d2, then mp[rankp(d2)− 1, capp ] must be false. Fur-
thermore, if p also accepts d1 the number of doctors accepted
who are preferred by p to d2 will go up by one. Hence, for
d2 to be accepted mp[rankp(d2)− 1, capp − 1] must also be
false. These two imply that both mp[rankp(d1) − 1, capp ]
and mp[rankp(d1) − 1, capp − 1] are false, since the num-
ber accepted before d1 must be less than the number accepted
before d2. Thus, p will only accept (d1, d2) if all four condi-
tions are false. The other clauses of 5–6 show that in all cases
no couple c will be accepted into a program pair it prefers
to µ(c) and hence that µ satisfies the stability condition for
couples 3.

4.2 IP-E
We briefly describe the IP encoding (IP-E) we developed to
compare against SAT-E. IP-E is an extension of a previous LP
encoding for stable matching without couples (SMP) [Roth et
al., 1993]. Constraints 1, 2, and 4 are the natural many-to-one
extension of the constraints in the Roth et al. LP; constraints
1, 4, 5, and 6 are analogous to those constraints in SAT-E.
Variables. We utilize three sets of binary variables.
1. Couple Matching Variables: {mc[(p1, p2)] | c ∈ C ∧
(p1, p2) ∈ rolc}. mc[(p1, p2)] = 1 iff mc is matched to
(p1, p2).
2. Doctor Matching Variables: {md[p] | d ∈ D ∧ p ∈
rold}. md[p] = 1 iff md is matched to p. If d is
in a couple c = (d, d′), md[p] is an abbreviation for∑

p′ | (p,p′)∈rolc mc[(p, p
′)].

3. Auxiliary Variables: {αd2,p2
| c = (d1, d2) ∈ C ∧ p2 ∈

ranked(d2 )}. αd2,p2 being true implies that p2 is full to ca-
pacity with doctors it prefers to d2.
Unique Match. A doctor must be matched into exactly one
program (possibly the nil program). For all d ∈ D

1.
∑

p∈ranked(d)md[p] = 1

Program Capacity. For all p ∈ P ,

2.
∑

d∈ranked(p)md[p] ≤ capp

Auxiliary Variables. The αd2,p2 variables capture capac-
ity/preference constraints. For all c = (d1, d2) ∈ C and for
each p2 ∈ ranked(d2 )

3.
∑

d′�p2d2
md′ [p2] ≥ capp2

αd2,p2

Stability for Singles: For each single doctor, d ∈ S and for
each p ∈ rold

4.
∑

d′�pd
md′ [p] + capp

∑
p′�dp

md[p
′] ≥ capp

Intuitively, for all couple stability constraints, the first line
checks if the constraint is applicable, the second line checks
if the couple is already matched to a program pair at least
as desirable as the potential blocking program pair, and the
third line checks if the program or programs are full. If the
constraint is applicable, only one of the terms must be “true”
to prevent a blocking pair.
Stability for Couples (A): For each couple c = (d1, d2) ∈ C
and for each (p1, p2) ∈ rolc with p1 6= p2

5a1. capp2
(1−md1

[p1])
+capp2

∑
(p′

1,p
′
2)�c(p1,p2)

mc[(p
′
1, p
′
2)]

+
∑

d′�p2d2
md′ [p2] ≥ capp2

5b. capp1md1 [p1] + capp1md2 [p2]
+capp1

∑
(p′

1,p
′
2)�c(p1,p2)

mc[(p
′
1, p
′
2)]

+
∑

d′�p1
d1
md′ [p1] + capp1αd2,p2 ≥ capp1

There is an analogous clause 5a2 to deal with the case when
d2 is already in p2 and we need to ensure that p1 won’t accept
d1.
Stability for Couples (B): We assume, without loss of gen-
erality, that d1 �p d2. For each couple c = (d1, d2) ∈ C and
for each (p, p) ∈ rolc

6a1. capp(1−md1 [p])
+capp

∑
(p′

1,p
′
2)�c(p,p)

mc[(p
′
1, p
′
2)]

+
∑

d′�pd2
md′ [p] ≥ capp

6b. cappmd1
[p] + cappmd2

[p]
+capp

∑
(p′

1,p
′
2)�c(p,p)

mc[(p
′
1, p
′
2)]

+
∑

d′�pd1
md′ [p] + cappαd2,p ≥ capp − 1

There is an analogous clause 6a2 to deal with the case when
d2 is already in p and we need to ensure that p won’t accept
d1.

5 Empirical Results
We evaluate our SAT encoding, SAT-E (Sec. 4.1), by compar-
ing it to previously published DA algorithms KPR and RP99
(Sec. 3) and to our IP encoding, IP-E (Sec. 4.2). We use
IBM’s CPLEXTM system to solve IP-E, and Lingeling [Biere,
2013] to solve SAT-E. All instances were run on Intel Xeon
E5540 2.53GHz CPUs. We used a timeout of 5400 seconds
and a memory limit of 16GB. We draw instances from the
same uniform preferences model presented by Kojima et al.
[2013] (Section B of the online appendix). In our experiments
we drew 50 instances per instantiation of the parameters.

We first evaluate one-to-one matching problems. In these
instances we set the number of programs to be equal to the
number of single doctors, and included some extra number

522



of couples. We focus on the highest density of couples in
the market presented in Kojima et al.’s empirical evaluation
[2013], as these are the more difficult cases for their KPR al-
gorithm. All results for the one-to-one instances are presented
in Tables 1 and 2. Table 1 shows satisfiability performance
results, and Table 2 shows runtimes.

For Table 1, the fraction of satisfiable instances was calcu-
lated as follows. SAT-E solved all instances of size less than
size 50,000. In these cases it either found a stable matching
or proved that none exists. Hence we know the exact frac-
tion of instances that are satisfiable up to size 20,000. For
50,000, KPR successfully solved 86% of all instances, giving
us a lower bound on the fraction of satisfiable instances. SAT-
E on these problems returned UNSAT for 12% and SAT for
4% of the instances (timing out on the remaining 84%). The
12% UNSAT result gives us an upper bound on the fraction of
satisfiable instances of 88%. SAT-E was unable to solve any
instance of size 100,000 before the timeout, so we only have
the lower bound provided by KPR of 96% for the fraction of
satisfiable instances.

First, note that KPR outperforms RP99 with respect to all
measures presented in Tables 1 and 2. KPR solves many more
instances, and always does so faster than RP99. KPR is by far
the fastest method, returning a matching in under a second for
small instances, and only a few seconds for large ones. SAT-
E scales quite well for moderately-sized instances, solving all
until market size of 50,000. Interestingly, it seems as though
declaring unsatisfiability may be easier than finding a satisfy-
ing assignment, as most of the solvable instances with 50,000
residents were UNSAT. SAT-E outperforms IP-E on all mea-
sures; while IP-E solved the same number of small instances
as SAT-E, it required more time (and significantly more mem-
ory) to do so, and also scaled poorly.

Most importantly, note that there are instances for which
KPR does not find a solution even though one exists; with
couples consisting of roughly 15% of the market, KPR has a
failure rate of 1.55%. Thus, even though KPR is very fast,
its incompleteness leads to it being unable to solve certain
instances that are easy for SAT-E.

One concern with SAT-E is that since KPR and RP99 are
resident proposing algorithms the resulting match might be
better suited for the resident. Good outcomes for residents is
stated an important desiderata by Roth and Peranson [1999]
and no resident bias is designed into SAT-E. We analyse the
matchings where both KPR and SAT-E found a stable match-
ing. In 86.5% of these cases, the matchings that KPR and
SAT-E found were identical. For the remaining instances
where KPR and SAT-E found a different stable matching,
very few of the residents were assigned to a different pro-
gram; an average of 0.29% of all single residents and 1.07%
of all couples were affected. On average, KPR tended to
find better matches for the residents; when residents could
improve, single residents tended to improve by an average
of 2.58 positions on their ROL (of length 11), and couples
tended to improve 4.09 positions (out of a joint ROL of ex-
pected length 41). However, there are instances where KPR
significantly outperforms SAT-E, and where SAT-E signifi-
cantly outperforms KPR. In one case, KPR finds a matching
where some single resident is 9 positions better than SAT-E’s

# programs/ # % satisfiable
# singles couples instances SAT-E IP-E KPR RP99
250 20 98 1.00 1.00 * 0.98 0.88
500 50 92 1.00 1.00 0.90 0.70
1,000 100 90 1.00 1.00 0.88 0.74
2,000 250 98 1.00 1.00 0.96 0.60
5,000 500 90 1.00 1.00 0.88 0.62
10,000 1,000 88 1.00 1.00 * 0.88 0.68
20,000 2,000 92 1.00 1.00 0.90 0.62
50,000 5,000 86 – 88 0.16 TO 0.86 0.68
100,000 10,000 ≥ 96 TO TO 0.96 0.72

Table 1: Fraction of one-to-one instances solved by each solv-
ing method. As KPR and RP99 are sound but not complete, *
denotes when all possible solutions were found. TO denotes
all instances timed out.

# programs #
/singles couples SAT-E IP-E KPR RP99
250 20 1.414 1.871 0.001 0.004
500 50 3.046 4.788 0.003 0.0241
1,000 100 6.700 10.795 0.009 0.204
2,000 250 17.779 36.394 0.027 1.616
5,000 500 80.927 113.683 0.104 10.965
10,000 1,000 262.539 315.408 0.341 165.475
20,000 2,000 945.721 1202.060 1.005 780.384
50,000 5,000 1,844.627 TO 2.485 592.780
100,000 10,000 TO TO 6.919 2,500.593

Table 2: Average runtime of one-to-one instances, in seconds.
Timeouts excluded. TO denotes all instances timed out.

matching; in another, SAT-E finds a matching where some
single resident is 9 positions better than KPR’s matching.
Likewise with couples, for some instance KPR finds a match-
ing where a couple improves 19 positions, and there is an
instance where SAT-E improves a couple’s matching by 14
positions. Thus, while KPR tends to provide more resident-
optimal stable matchings than the unguided SAT-E, it cer-
tainly does not always find a matching that’s better for res-
idents than SAT-E.

We also investigate how the various solution techniques
compare as the density of couples in the match grows. In
Figure 1 we examine the performance of KPR, compared to
the true fraction of satisfiable instances. All instances were
one-to-one matching problems, drawn with 24,000 residents
and 20,000 programs and varying percentage of residents that
were in couples, from 16.67% to 50.00%. SAT-E returned ei-
ther SAT or UNSAT for all instances allowing us to know
the satisfiability of each instance; KPR never solved all sat-
isfiable instances. The fraction of satisfiable instances was
above 80% until the percentage of residents in couples ex-
ceeded 37%. Even with half of the residents in couples, 56%
were satisfiable. However, KPR did not find a solution for
any of these.

We next investigate the solvers’ performance on many-to-
one stable matching problems with couples; many real-world
instances of SMP-C are many-to-one (e.g., NRMP). For our
experiments, each program uniformly draws a quota of 5–9
available slots (resulting in an expected 7 slots per program).
We use the same number of singles and couples as is Table
1, and n/7 programs, where n is the number of singles for
that instance (giving us one slot per single in expectation as
in our one-to-one experiments). Residents rank their top 10

523



20 25 30 35 40 45 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Percentage of residents in couples

Fr
ac

tio
n 

of
 S

at
si

fy
in

g 
A

ss
ig

nm
en

t F
ou

nd

% Satisfiable Instances
% Instances KPR Solved

Figure 1: KPR performance as density of couples increases,
one-to-one instances. SAT-E solved all instances, giving
known percentage of satisfiable instances.

programs. Results are presented in Tables 3 and 4. Due to
the poor performance of RP99 on one-to-one problems, it
was not included in this analysis. First, note that these in-
stances seem much more difficult than their corresponding
one-to-one instances listed in Table 1. SAT-E times out on
all of size 10,000 and higher (we only ran up to 20,000). IP-
E performed very poorly, being unable to find all solutions
within the 90 minute timeout even for the smallest problem
size (250). Furthermore, KPR never successfully finds a so-
lution for all satisfiable instances. KPR had an average failure
rate of 12.89%, with a maximum failure rate of 22.91%; fur-
thermore, this failure rate increased monotonically with the
size of the problem. However, KPR was able to solve some
of the problems that were too large for SAT-E, finding sta-
ble matches for 76% and 70% of the larger instances. While
SAT-E solves most (before it times out) in a reasonable time-
frame, taking at most roughly half an hour, KPR solves all
problems in less than a second, except for the largest, which
it solves in roughly 2 seconds.

The residents’ outcome with respect to their preferred
match has similar trends in the many-to-one case as in the
one-to-one case. More matchings were different; 23.4% of
the instances had different matchings between KPR and SAT-
E. Again, in those matchings that differed, very few residents
were affected; 0.68% of singles were affected, and 1.64% of
couples were affected. KPR on average outperformed SAT-
E: single residents had an average rank improvement of 6.57,
and couples had an average rank improvement of 3.84. As
before, there exists instances where KPR significantly out-
performs SAT-E, and SAT-E significantly outperforms KPR.

Thus, as a summary of our results, IP-E is inefficient w.r.t.
both space and time constraints, and never outperforms SAT-
E. While KPR scales quite well, it misses solutions to a large
proportion of instances, particularly in the many-to-one case,
but even in the one-to-one case. As the density of couples
in the problem increases, the performance of KPR declines
rapidly, quickly being unable to solve any instances. SAT-E
is remarkably effective for small to medium sized markets,
solving every instance with up to 50,000 residents in the one-
to-one case (which is a similar size to the NRMP), and up to
and including 5,000 residents in the many-to-one case. Fur-
thermore, performance did not degrade as the density of cou-

# # # %
singles couples programs satisfiable SAT-E IP-E KPR

250 20 35 96 1.00 0.96 0.94
500 50 71 94 1.00 0.08 0.84

1,000 100 142 96 1.00 TO 0.84
2,000 250 285 98 1.00 TO 0.82
5,000 500 714 96 1.00 TO 0.74

10,000 1,000 1,428 ≥ 76 TO † 0.76
20,000 2,000 2,857 ≥ 70 TO † 0.70

Table 3: Percentage of many-to-one instances solved by each
method. As KPR and RP99 are sound but not complete, *
denotes when all possible solutions were found. TO denotes
all instances timed out. †denotes instances were not run due
to poor performance on smaller instances.

# singles # couples # programs SAT-E IP-E KPR
250 20 35 13.27 1258.33 0.0021
500 50 71 38.24 2216.33 0.0085

1,000 100 142 111.18 TO 0.0182
2,000 250 285 398.99 TO 0.0585
5,000 500 714 1,917.30 TO 0.2038

10,000 1,000 1,428 TO † 0.7388
20,000 2,000 2,857 TO † 2.2915

Table 4: Average runtime of many-to-one instances, in sec-
onds. Timeouts excluded. TO denotes all instances timed out.
†denotes instances were not run due to poor performance on
smaller instances

ples in the match increased. There is mixed evidence for how
desirable a match is for residents; SAT-E and KPR do not al-
ways find the same matching. Though KPR tends to find a
better match than the unguided SAT-E, it doesn’t always.

6 Conclusions and Future Work
In this paper we presented a new SAT encoding, SAT-E, for
SMP-C and showed that it can solve SMP-C quite effectively.
Incomplete DA algorithms can still be much faster and solve
larger problems, but they also miss many problems that can
be solved with SAT-E. We also found evidence that SAT is
more effective for solving SMP-C than IP (although perhaps
other IP models might perform better).

We believe that there are many future research opportuni-
ties for the further use of SAT technology in solving stable
matching problems. For example, when no stable match ex-
ists it is possible to extract from the SAT solver a proof of
unsatisfiability. Potentially, techniques could be developed
for analyzing these proofs to find adjustments that would per-
mit a stable match. Similarly, MAXSAT could be used to find
matchings that optimize some form of social welfare. Finally,
applications like NRMP might require further constraints and
refinements to the problem formulation as the market devel-
ops (e.g., minimum diversity quotas for programs, even/odd
conditions for program acceptance lists, other complementar-
ities, etc.). When using a SAT encoding like SAT-E to solve
the problem, incorporating these new constraints is greatly
simplified.
Acknowledgements. We acknowledge the support of
NSERC. Drummond and Perrault were additionally sup-
ported by OGS. We thank the reviewers for helpful sugges-
tions.

524



References
[Abdulkadiroglu et al., 2005] Atila Abdulkadiroglu, P.A.

Pathak, Alvin E. Roth, and Tayfun Sönmez. The
Boston public school match. American Economic Review,
95(2):368–371, 2005.

[Ashlagi et al., 2014] I. Ashlagi, M. Braverman, and A. Has-
sidim. Stability in large matching markets with comple-
mentarities. Operations Research, 62(4):713–732, 2014.

[Biere, 2013] Armin Biere. Lingeling, plingeling and treen-
geling entering the SAT competition 2013. In Proceed-
ings of the SAT Competition 2013, pages 51–52, 2013.
http://www.satcompetition.org/2013/proceedings.shtml.

[Biró et al., 2014] Péter Biró, David F Manlove, and Iain
McBride. The hospitals/residents problem with couples:
Complexity and integer programming models. In Experi-
mental Algorithms, pages 10–21. Springer, 2014.

[Drummond and Boutilier, 2013] Joanna Drummond and
Craig Boutilier. Elicitation and approximately stable
matching with partial preferences. In Proceedings of the
International Joint Conference on Artificial Intelligence
(IJCAI), pages 97–105, 2013.

[Frisch and Giannaros, 2010] A. Frisch and P. A. Giannaros.
SAT encodings of the at-most-k constraint some old, some
new, some fast, some slow. In The 9th International Work-
shop on Constraint Modelling and Reformulation (Mod-
Ref). http://www.it.uu.se/research/group/astra/ModRef10/
programme.html, 2010.

[Gale and Shapley, 1962] D. Gale and L. S. Shapley. Col-
lege admissions and the stability of marriage. American
Mathematical Monthly, 69(1):9–15, Jan 1962.

[Gent and Prosser, 2002] Ian P Gent and Patrick Prosser.
SAT encodings of the stable marriage problem with ties
and incomplete lists. In Proceedings of Theory and Ap-
plications of Satisfiability Testing (SAT), pages 133–140,
2002.

[Gent et al., 2001] Ian P Gent, Robert W Irving, David F
Manlove, Patrick Prosser, and Barbara M Smith. A con-
straint programming approach to the stable marriage prob-
lem. In Principles and Practice of Constraint Program-
ming (CP), pages 225–239, 2001.

[Kojima et al., 2013] F. Kojima, P. Pathak, and A. E. Roth.
Matching with couples: Stability and incentives in large
markets. Quarterly Journal of Economics, 128(4):1585–
1632, 2013.

[Manlove et al., 2007] David Manlove, Gregg O’Malley,
Patrick Prosser, and Chris Unsworth. A constraint pro-
gramming approach to the hospitals/residents problem. In
Integration of AI and OR Techniques in Constraint Pro-
gramming (CPAIOR), pages 155–170, 2007.

[Marx and Schlotter, 2011] Dániel Marx and Ildikó Schlot-
ter. Stable assignment with couples: Parameterized com-
plexity and local search. Discrete Optimization, 8(1):25–
40, 2011.

[Niederle et al., 2008] Muriel Niederle, Alvin E. Roth, and
Tayfun Sonmez. Matching and market design. In
Steven N. Durlauf and Lawrence E. Blume, editors, The
New Palgrave Dictionary of Economics (2nd Ed.), vol-
ume 5, pages 436–445. Palgrave Macmillan, Cambridge,
2008.

[NRMP, 2013] NRMP. National resident matching program,
results and data: 2013 main residency match, 2013.

[Prosser, 2014] Patrick Prosser. Stable roommates and con-
straint programming. In Integration of AI and OR Tech-
niques in Constraint Programming (CPAIOR), pages 15–
28, 2014.

[Ronn, 1990] Eytan Ronn. NP-complete stable matching
problems. Journal of Algorithms, 11(2):285–304, 1990.

[Roth and Peranson, 1999] A. E. Roth and E. Peranson. The
redesign of the matching market for American physicians:
Some engineering aspects of economic design. The Amer-
ican Economic Review, 89(1):748–780, September 1999.

[Roth et al., 1993] Alvin E Roth, Uriel G Rothblum, and
John H Vande Vate. Stable matchings, optimal assign-
ments, and linear programming. Mathematics of Opera-
tions Research, 18(4):803–828, 1993.

[Roth, 1984] Alvin E. Roth. The evolution of the labor mar-
ket for medical interns and residents: A case study in game
theory. Journal of Political Economy, 92(6):991–1016,
1984.

[Unsworth and Prosser, 2005] Chris Unsworth and Patrick
Prosser. A specialised binary constraint for the stable mar-
riage problem. In Abstraction, Reformulation and Approx-
imation (SARA), pages 218–233, 2005.

525




