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Abstract

Self-play Monte Carlo Tree Search (MCTS) has
been successful in many perfect-information two-
player games. Although these methods have been
extended to imperfect-information games, so far
they have not achieved the same level of prac-
tical success or theoretical convergence guaran-
tees as competing methods. In this paper we
introduce Smooth UCT, a variant of the estab-
lished Upper Confidence Bounds Applied to Trees
(UCT) algorithm. Smooth UCT agents mix in
their average policy during self-play and the re-
sulting planning process resembles game-theoretic
fictitious play. When applied to Kuhn and Leduc
poker, Smooth UCT approached a Nash equilib-
rium, whereas UCT diverged. In addition, Smooth
UCT outperformed UCT in Limit Texas Hold’em
and won 3 silver medals in the 2014 Annual Com-
puter Poker Competition.

1 Introduction
MCTS [Coulom, 2007] is a simulation-based search al-
gorithm that has been incredibly successful in perfect-
information domains [Browne et al., 2012; Gelly et al.,
2012]. Its success is often attributed to prioritising the most
promising regions of the search space by sampling trajecto-
ries of the game selectively. Furthermore, by planning online
it can focus its search effort on a relevant subset of states.

Applications of MCTS to imperfect-information games
have faced major difficulties. Common MCTS variants lack
convergence guarantees and have failed to converge in prac-
tice [Ponsen et al., 2011; Lisý, 2014]. Furthermore, solving a
subgame of an imperfect-information game, by using online
search, can produce exploitable strategies [Burch et al., 2014;
Ganzfried and Sandholm, 2015]. Online Outcome Sampling
[Lisý et al., 2015], a variant of Monte Carlo counterfactual
regret minimization (MCCFR) [Lanctot et al., 2009], is the
first MCTS approach that addresses both of these problems
in a theoretically sound manner. It is guaranteed to converge
to a Nash equilibrium in all two-player zero-sum games, us-
ing either full-game or online search. In computer poker,
Ponsen et al. [2011] compared the performance of Outcome

Sampling to UCT [Kocsis and Szepesvári, 2006], a popu-
lar MCTS variant. They concluded that UCT quickly finds
a good but suboptimal policy, while Outcome Sampling ini-
tially learns more slowly but converges to the optimal policy
over time. In this paper, we address the question whether the
inability of UCT to converge to a Nash equilibrium can be
overcome while retaining UCT’s fast initial learning rate. We
focus on the full-game MCTS setting, which is an important
step towards developing sound variants of online MCTS in
imperfect-information games.

In particular, we introduce Smooth UCT, which combines
the notion of fictitious play [Brown, 1949] with MCTS. Fic-
titious players perform the best response to other players’
average behaviour. We introduce this idea into MCTS by
letting agents mix in their average strategy with their usual
utility-maximizing actions. Intuitively, apart from mimicking
fictitious play, this might have further potential benefits, e.g.
breaking correlations and stabilising self-play learning due to
more smoothly changing agent behaviour.

We evaluated Smooth UCT in two sets of experiments.
Firstly, we compared to UCT and Outcome Sampling in Kuhn
Poker and Leduc Hold’em. Confirming the observations
of [Ponsen et al., 2011], both UCT-based methods initially
learned faster than Outcome Sampling but UCT later suf-
fered divergent behaviour and failure to converge to a Nash
equilibrium. Smooth UCT, on the other hand, continued to
approach a Nash equilibrium, but was eventually overtaken
by Outcome Sampling. Secondly, we evaluated Smooth UCT
and UCT in Limit Texas Hold’em (LHE). This poker variant
has been a major driver of advances in computational game
theory and is one of the primary games of the Annual Com-
puter Poker Competition (ACPC) [Bard et al., 2013]. Smooth
UCT outperformed UCT in two- and three-player LHE and
achieved 3 silver medals in the 2014 ACPC. The most im-
pressive aspect of this result is that it was achieved using a
fraction of the computational resources relative to other com-
petitors.

2 Background
2.1 Extensive-Form Games
Extensive-form games are a model of sequential interaction
involving multiple agents. The representation is based on a
game tree and consists of the following components: N =
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{1, ..., n} denotes the set of players. S is a set of states cor-
responding to nodes in a finite rooted game tree. For each
state node s ∈ S the edges to its successor states define a
set of actions A(s) available to a player or chance in state
s. The player function P : S → N ∪ {c}, with c denoting
chance, determines who is to act at a given state. Chance is
considered to be a particular player that follows a fixed ran-
domized strategy that determines the distribution of chance
events at chance nodes. For each player i there is a cor-
responding set of information states U i and an information
function Ii : S → U i that determines which states are in-
distinguishable for the player by mapping them on the same
information state u ∈ U i. Finally, R : S → Rn maps termi-
nal states to a vector whose components correspond to each
player’s payoff.

A game has the property of perfect recall if each
player’s current information state uik implies knowledge
of the sequence of their information states and actions,
ui1, a

i
1, u

i
2, a

i
2, ..., u

i
k, that led to this information state. If a

player only knows some strict subset of this sequence then
the game is said to have imperfect recall.

An abstraction of an extensive-form game aggregates some
of the players’ information states and therefore does not let
the players distinguish between the aggregated states. For-
mally, an abstraction of an extensive-form game Γ is a col-
lection of surjective functions, f iA : U i → Ũ i, i ∈ N , that
map the information states of Γ to alternative information
state spaces Ũ i. An abstraction can significantly lower the
size of a game while partially retaining its strategic structure.

A player’s behavioural strategy, πi(u) ∈ ∆ (A(u)) , ∀u ∈
U i, determines a probability distribution over actions given an
information state, and Πi is the set of all behavioural strate-
gies of player i. A strategy profile π = (π1, ... , πn) is
a collection of strategies for all players. π−i refers to all
strategies in π except πi. Ri(π) is the expected payoff of
player i if all players follow the strategy profile π. The set
of best responses of player i to their opponents’ strategies
π−i is bi(π−i) = arg maxπi∈Πi Ri(πi, π−i). For ε > 0,
biε(π

−i) = {πi ∈ Πi : Ri(πi, π−i) ≥ Ri(bi(π−i), π−i)− ε}
defines the set of ε-best responses to the strategy profile π−i.

Definition 1. A Nash equilibrium of an extensive-form game
is a strategy profile π such that πi ∈ bi(π−i) for all i ∈ N .
An ε-Nash equilibrium is a strategy profile π such that πi ∈
biε(π

−i) for all i ∈ N .

2.2 MCTS
MCTS [Coulom, 2007; Browne et al., 2012] is a simulation-
based search algorithm. It is able to plan in high-dimensional
environments by sampling episodes through Monte Carlo
simulation. These simulations are guided by an action se-
lection mechanism that explores the most promising regions
of the state space, resulting in asymmetric search trees that
provide high quality value estimates in practice. MCTS pro-
duces optimal policies in some Markovian environments, e.g.
partially observable Markov decision processes (POMDPs)
[Silver and Veness, 2010] and perfect-information two-player
zero-sum games [Kocsis and Szepesvári, 2006].

A MCTS algorithm requires the following components: a)

A black box simulator that, given a state and action, samples
a successor state and reward. b) A learning algorithm that
uses simulated trajectories and outcomes to update statistics
in the search tree’s visited nodes. c) A tree policy to define
an action selection mechanism that chooses actions based on
a node’s statistics. d) A rollout policy that determines the
default behaviour for states that are out of the scope of the
search tree. For a specified amount of planning time, MCTS
repeats the following. It starts each Monte Carlo simulation at
the root node and follows its tree policy until either reaching
a terminal state or the boundary of the search tree. Leaving
the scope of the search tree, the rollout policy is used to play
out the simulation until reaching a terminal state. In this case,
we expand our tree by a state node where we have left the
tree. This approach selectively grows the tree in areas that
are frequently encountered in simulations. After reaching a
terminal state, the rewards are propagated back so that each
visited node can update its statistics.

Common MCTS keeps track of the following node val-
ues. N(s) is the number of visits by a Monte Carlo sim-
ulation to node s. N(s, a) counts the number of times ac-
tion a has been chosen at node s. Q(s, a) is the estimated
value of choosing action a at node s. The action value es-
timates are usually updated by Monte Carlo evaluation, e.g.
Q(s, a) = 1

N(s,a)

∑N(s,a)
k=1 G(s, a, k), where G(s, a, k) is the

cumulative discounted reward achieved after visiting state s
and taking action a in the k-th simulation that encountered s.

[Kocsis and Szepesvári, 2006] suggested using the bandit-
based algorithm UCB [Auer et al., 2002] to recursively se-
lect actions in the search tree. The resulting MCTS method,
UCT, selects greedily amongst action values that have been
enhanced by an exploration bonus,

πtree(s) = arg max
a∈A(s)

Q(s, a) + c

√
logN(s)

N(s, a)
, (1)

breaking ties uniformly at random. The exploration bonus
parameter c adjusts the balance between exploration and ex-
ploitation. For suitable c, the probability of choosing a sub-
optimal action converges to 0 [Kocsis and Szepesvári, 2006].

3 Self-Play MCTS in Extensive-Form Games
This section develops Smooth UCT, a self-play MCTS algo-
rithm for planning in extensive-form games. We first extend
the work of [Auger, 2011] and [Cowling et al., 2012] to a
general MCTS algorithm for extensive-form games, and then
introduce Smooth UCT as a particular instantiation of this
family of methods.

The asymmetry of information in an extensive-form game
with imperfect information does not allow for a single collec-
tive search tree. We therefore describe an algorithm that uses
a separate search tree for each player. For each player we
grow a tree T i over their information states U i. T i(ui) is the
node in player i’s tree that represents their information state
ui. In a game with perfect recall, a player i’s sequence of pre-
vious information states and actions, ui1, a

i
1, u

i
2, a

i
2, ..., u

i
k, is

incorporated in the information state uik and therefore T i is a
proper tree. The imperfect-recall abstractions that we used in
our LHE experiments yield recombining trees.
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Algorithm 1 describes MCTS that has been adapted to the
multi-player imperfect-information setting of extensive-form
games. The game mechanics are sampled from transition
and reward simulators G and R. The transition simulator
takes a state and action as inputs and generates a sample of
a successor state st+1 ∼ G(st, a

i
t), where the action ait be-

longs to the player i who makes decisions at state st. The
reward simulator generates all players’ payoffs at terminal
states, i.e. rT ∼ R(sT ). The information function, Ii(s),
determines the acting player i’s information state. OUT-OF-
TREE keeps track of which player has left the scope of their
search tree in the current episode.

This algorithm can be specified by the action selection
and node updating functions, SELECT and UPDATE. These
functions are responsible to sample from and update the tree
policy. In this work, we focus on UCT-based methods.

Algorithm 1 Self-play MCTS in extensive-form games
function SEARCH(Γ)

while within computational budget do
s0 ∼ Γ
SIMULATE(s0)

end while
return πtree

end function
function ROLLOUT(s)

a ∼ πrollout(s)
s′ ∼ G(s, a)
return SIMULATE(s′)

end function
function SIMULATE(s)

if ISTERMINAL(s) then
return r ∼ R(s)

end if
i = PLAYER(s)
if OUT-OF-TREE(i) then

return ROLLOUT(s)
end if
ui = Ii(s)
if ui /∈ T i then

EXPANDTREE(T i, ui)
a ∼ πrollout(s)
OUT-OF-TREE(i)← true

else
a = SELECT(ui)

end if
s′ ∼ G(s, a)
r ← SIMULATE(s′)
UPDATE(ui, a, ri)
return r

end function

3.1 Extensive-Form UCT
Extensive-form UCT uses UCB to select from and update the
tree policy in algorithm 1. It can be seen as a multi-agent
version of Partially Observable UCT (PO-UCT) [Silver and
Veness, 2010], that searches in trees spanned over informa-

tion states of a perfect-recall extensive-form game instead of
histories of observations and actions of a POMDP.

3.2 Extensive-Form Smooth UCT
Smooth UCT is a MCTS algorithm that selects actions from
Smooth UCB, a variant of the bandit algorithm UCB. Smooth
UCB is inspired by fictitious play [Brown, 1949; Leslie and
Collins, 2006] which is a game-theoretic model of learning in
games. In fictitious play, players repeatedly play a game and
at each iteration choose a best response to their opponents’
average strategies. The average strategy profile of fictitious
players converges to a Nash equilibrium in certain classes of
games, e.g. two-player zero-sum and potential games.

By counting how often each action has been taken, UCB
already keeps track of an average strategy π. It can be readily
extracted by setting π(a) = N(a)

N , ∀a ∈ A. However, UCB
does not use this strategy and therefore potentially ignores
some useful information while planning.

The basic idea of Smooth UCB is to mix in the average
strategy when selecting actions in order to induce the other
agents to respond to it. This resembles the idea of fictitious
play, where agents are supposed to best respond to the average
strategy. The average strategy might have further beneficial
properties. Firstly, it is a stochastic strategy and it changes
ever more slowly over time. This can decrease correlation
between the players’ actions and thus help to stabilise the
self-play process. Furthermore, a more smoothly changing
strategy can be relied upon by other agents and is easier to
adapt to than an erratically changing greedy policy like UCB.

Smooth UCB requires the same information as UCB but
explicitly makes use of the average strategy via the action
counts. In particular, it mixes between UCB and the aver-
age strategy with probability ηk, where ηk is an iteration k-
adapted sequence with ηk → γ > 0 as k →∞. In this work,
we use

ηk = max

(
γ, η

(
1 + d

√
Nk

)−1
)
, (2)

where γ, η and d are constants that parameterise the schedule
and Nk is the total number of visits to the respective node.

As UCT is obtained from applying UCB at each informa-
tion state, we similarly define Smooth UCT as a MCTS algo-
rithm that uses Smooth UCB at each information state. Al-
gorithm 2 instantiates extensive-form MCTS with a Smooth
UCB tree policy. For a constant ηk = 1, we obtain UCT as
a special case. Compared to UCT, the UPDATE operation is
left unchanged. Furthermore, for a cheaply determined ηk the
SELECT procedure has little overhead compared to UCT.

4 Experiments
We evaluated Smooth UCT in the Kuhn, Leduc and Limit
Texas Hold’em poker games.

Kuhn poker [Kuhn, 1950] and Leduc Hold’em [Southey et
al., 2005] are small imperfect-information two-player zero-
sum games, for which the quality of an approximate Nash
equilibrium can be readily evaluated. Both games feature typ-
ical elements of poker, e.g. hiding information via a balanced
stochastic strategy. Kuhn poker consists of only one betting
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Algorithm 2 Smooth UCT
SEARCH(Γ), SIMULATE(s) and ROLLOUT(s) as in algo-
rithm 1
function SELECT(ui)

z ∼ U [0, 1]
if z < ηt(u

i) then
return arg maxaQ(ui, a) + c

√
logN(ui)
N(ui,a)

else
∀a ∈ A(ui) : p(a)← N(ui,a)

N(ui)

return a ∼ p
end if

end function
function UPDATE(ui, a, ri)

N(ui)← N(ui) + 1
N(ui, a)← N(ui, a) + 1

Q(ui, a)← Q(ui, a) + ri−Q(ui,a)
N(ui,a)

end function

round and does not include public community cards. A pa-
rameterization of its Nash equilibrium solutions is known in
closed form. Leduc Hold’em is a poker variant that is simi-
lar to Texas Hold’em. However, with two betting rounds, a
limit of two raises per round and only 6 cards in the deck it
is a much smaller game. Texas Hold’em is a poker game that
is not only popular with humans but it is also a focus of re-
search in computational game theory [Sandholm, 2010]. The
Limit variant restricts betting to fixed increments, which puts
it just within reach of current approaches. Recently Bowl-
ing et al. [2015] solved two-player LHE after more than 10
years of effort since it had been identified as a fruitful and
challenging research topic [Billings et al., 2002].

4.1 Kuhn Poker
[Ponsen et al., 2011] tested UCT against Outcome Sampling
in Kuhn poker. We conducted a similar experiment, compar-
ing UCT to Smooth UCT. Learning performance was mea-
sured in terms of the average policies’ mean squared errors
with respect to the closest Nash equilibrium determined from
the known parameterization of equilibria. Smooth UCT’s
mixing parameter schedule (2) was manually calibrated and
set to γ = 0.1, η = 0.9 and d = 0.001. We calibrated the ex-
ploration parameters of UCT and Smooth UCT by training 4
times for 10 million episodes each with parameter settings of
c = 0.25k, k = 1, ..., 10. The best average final performance
of UCT and Smooth UCT was achieved with 2 and 1.75 re-
spectively. In each main experiment, each algorithm trained
for 20 million episodes. The results, shown in figure 1, were
averaged over 50 repeated runs of the experiment.

The results demonstrate that Smooth UCT approached a
Nash equilibrium, whereas UCT exhibited divergent perfor-
mance. Furthermore, after 600 simulated episodes Smooth
UCT performed strictly better.

4.2 Leduc Hold’em
We also compared Smooth UCT to Outcome Sampling and
UCT in Leduc Hold’em. Due to not knowing the Nash equi-
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Figure 1: Learning curves in Kuhn poker.

libria in closed form, we used the exploitability of a strat-
egy profile to measure learning performance. In a two-player
zero-sum game, the exploitability of a strategy profile, π, is
defined as δ = R1

(
b1(π2), π2

)
+ R2

(
π1, b2(π1)

)
. An ex-

ploitability of δ yields at least a δ-Nash equilibrium.
Smooth UCT’s mixing parameter schedule (2) was man-

ually calibrated and set to γ = 0.1, η = 0.9 and d =
0.002. Smooth UCT and UCT trained 5 times for 500 mil-
lion episodes each with exploration parameter settings of
c = 14 + 2k, k = 0, ..., 4. We report the best average perfor-
mance which was achieved with c = 20 and c = 18 for UCT
and Smooth UCT respectively.

We used both Parallel and Alternating Outcome Sam-
pling [Lanctot, 2013]. Both variants trained for 500 mil-
lion episodes with exploration parameter settings of ε =
0.4 + 0.1k, k = 0, ..., 4. We report the best results which
were achieved with ε = 0.5 for both variants.

The results in figure 2 show that both UCT-based meth-
ods initially learned faster than Outcome Sampling. However,
UCT diverged rather quickly and never reached a level of low
exploitability. Smooth UCT, on the other hand, learned just
as fast as UCT but continued to approach a Nash equilibrium.
Only after about 85 million simulated episodes and at an ex-
ploitability of 0.036 Alternating Outcome Sampling achieved
better performance. Parallel Outcome Sampling overtook
Smooth UCT after about 170 million episodes and at an ex-
ploitability of 0.028.

The results suggest that Smooth UCT is an interesting can-
didate for online MCTS. In online MCTS the computational
budget for local replanning is usually very limited and being
able to learn fast initially is therefore a very beneficial prop-
erty. However, for a longer-time full-game search Outcome
Sampling might yield better performance than Smooth UCT.

4.3 Limit Texas Hold’em
Finally, we consider LHE with two and three players. The
two-player game tree contains about 1018 nodes. In order
to reduce the game tree to a tractable size, various abstrac-
tion techniques have been proposed in the literature [Billings
et al., 2003; Johanson et al., 2013]. The most common ap-
proach is to group information states according to strategic
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Game Preflop Flop Turn River
two-player LHE 169 1000 500 200
three-player LHE 169 1000 100 20

Table 1: E[HS2] discretisation grids used in experiments.

similarity of the corresponding cards and leave the players’
action sequences unabstracted.

A player i’s information state can be described as a tuple
uit = (āt, ct,p

i
t), where āt is the sequence of all players’

actions except chance, pit are the two private cards held by
player i and ct is the sequence of community cards publicly
revealed by chance by time t. Card-bucketing [Billings et
al., 2003] maps combinations of cards, (c,p), to an abstrac-
tion bucket identified by a number n ∈ N. Thus it defines
an abstraction that maps the information states to alternative
information states that have the form of tuples (ā, n), where
ā is the unabstracted sequence of all players’ actions except
chance and n ∈ N identifies the abstraction bucket.

In this work, we use a common bucketing metric called
expected hand strength squared [Zinkevich et al., 2007]. At
a final betting round the hand strength of a combination of
cards, (c,p), is defined as its winning percentage against all
combinations of cwith any other possible private holding. On
any betting round, E[HS2] denotes the expected value of the
squared hand strength on the final betting round. We have dis-
cretised the resulting E[HS2] values with an equidistant grid
over their range, [0, 1]. Table 1 shows the grid sizes that we
used in our experiments. We used an imperfect recall abstrac-
tion that does not let players remember their E[HS2] values of
previous betting rounds.

In LHE, there is an upper bound on the possible final pot
size given the betting that has occurred so far in the episode.
This is because betting is capped at each betting round. To
avoid potentially unnecessary exploration we dynamically
update the exploration parameter during a simulated episode
at the beginning of each betting round and set it to

c = min (C, potsize + k ∗ remaining betting potential) (3)

where C and k ∈ [0, 1] are constant parameters and the re-

maining betting potential is the maximum possible amount
that players can add to the pot in the remainder of the episode.

Annual Computer Poker Competition
We submitted SmooCT, an agent trained with an early version
of the Smooth UCT algorithm [Heinrich and Silver, 2014], to
the 2014 ACPC, where it achieved three silver medals in the
LHE competitions. The Smooth UCT agent presented in this
paper fixes several issues present in the SmooCT agent sub-
mitted to the competition: We use a more principled mixing
parameter schedule (2), we fixed a bug in SmooCT’s imple-
mentation of preflop abstractions and we do not use any re-
finement of abstraction granularity in often-visited subtrees.

Two-player
We trained strategies for two-player LHE by UCT and
Smooth UCT. Both methods performed a simulation-based
search in the full game. For evaluation, we extracted a greedy
policy profile that at each information state takes the action
with the highest estimated value. Learning performance was
measured in milli-big-blinds won per hand, mb/h, in play
against benchmark opponents. To reduce variance, we av-
eraged the results of symmetric play that permuted the posi-
tions of players, reusing the same random card seeds. We had
access to the ACPC’s benchmark server, which enabled us to
evaluate against the contestants of the 2014 competition.

Based on the experiments in Kuhn and Leduc poker, we
selected a parameterization for Smooth UCT’s mixing pa-
rameter schedule (2) and set it to γ = 0.1, η = 0.9 and
d = 20000−1. In the exploration schedule (3) we set k = 0.5
and C = 24, which corresponds to half of the maximum pot-
size achievable in two-player LHE. This results in exploration
parameter values of c ∈ [10, 24], which is centred around
17, a value that has been reported in a previous calibration of
UCT in LHE by [Ponsen et al., 2011].

UCT and Smooth UCT planned for 14 days each, gener-
ating about 62.1 and 61.7 billion simulated episodes respec-
tively; note that Smooth UCT had almost no computational
overhead compared to UCT. We trained on a modern desktop
PC, using a single thread and less than 200 MB of RAM. Each
greedy strategy profiles’ uncompressed size was 8.1 MB.

During training, snapshots of the strategies were taken at
regular time intervals in order to measure learning perfor-
mance over time. In particular, we evaluated each snapshot
by symmetric play for 2.5 million games against SmooCT,
the silver-medal contestant of the 2014 ACPC. In addition, we
compared UCT’s and Smooth UCT’s snapshots by symmet-
ric play against each other. The results in figure 3 show that
UCT performed slightly better for a training time of under 72
hours. After 72 hours Smooth UCT outperformed UCT and
was able to widen the gap over time.

Table 2 presents an extensive evaluation of greedy policies
that were obtained from UCT and Smooth UCT. The table
includes results against all but one contestants of the 2014
ACPC, in the order of their ranking in the competition. We
had to omit the one contestant because it was broken on the
benchmark server. The table also includes matches between
Smooth UCT and UCT. Smooth UCT performed better than
UCT against all but one of the top-7 benchmark agents. Per-
formance against the weaker 6 ACPC contestants was more
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Figure 3: Learning curves in two-player Limit Texas
Hold’em. The estimated standard error at each point of the
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even, with Smooth UCT performing better in just half of
the match-ups. Finally, Smooth UCT won in the match-up
against UCT and achieved a higher average performance.

Smooth UCT lost against all but 2 of the top-7 contestants
of the 2014 ACPC. This might be partly due to the much big-
ger and sophisticated abstractions and resources used by most
of these agents. However, Smooth UCT achieved strong av-
erage performance against the whole field of agents. This
suggests that despite being a self-play approach without prior
knowledge, using tiny resources and a small abstraction,
Smooth UCT can train highly competitive policies that per-
form well in an ecosystem of variable player types. However,
given the losses against the top agents, it is unclear whether
Smooth UCT is able to efficiently compute good approximate
Nash equilibria in larger abstractions.

Three-player
Next we performed a similar evaluation in three-player LHE.
Smooth UCT used the same mixing parameter schedule as
in two-player LHE. The exploration schedule (3) was set to
k = 0.5 and C = 36, which corresponds to half of the
maximum potsize achievable in three-player LHE. UCT and
Smooth UCT planned for 10 days each, generating about 50.9
and 49.4 billion simulated episodes respectively. Once again
we trained on a modern desktop PC, using a single thread and
less than 3.6 GB of RAM. Each final greedy strategy profiles’
uncompressed size was about 435 MB.

The 2014 ACPC featured two three-player LHE com-
petitions that were won by Hyperborean tbr and Hyper-
borean iro. In both competitions SmooCT and KEmpfer fin-
ished second and third out of 5 respectively.

Table 3 presents our three-player results. Smooth UCT out-
performed UCT in all but 3 match-ups and achieved a higher
average performance overall.

5 Conclusion
We have introduced Smooth UCT, a MCTS algorithm for
extensive-form games with imperfect information. In two
small poker games, it was able to learn as fast as UCT but

Match-up Smooth UCT UCT
escabeche -23.49 ± 3.2 -30.26 ± 3.2
SmooCT 10.78 ± 0.8 3.64 ± 0.9
Hyperborean -24.81 ± 4.2 -25.03 ± 4.3
Feste 28.45 ± 4.0 20.02 ± 4.1
Cleverpiggy -25.22 ± 4.0 -30.29 ± 4.0
ProPokerTools -18.30 ± 4.0 -19.84 ± 3.9
652 -20.76 ± 4.0 -19.49 ± 4.0
Slugathorus 93.08 ± 5.7 93.13 ± 5.8
Lucifer 139.23 ± 4.7 138.62 ± 4.7
PokerStar 167.65 ± 4.9 173.19 ± 5.0
HITSZ CS 14 284.72 ± 4.5 281.55 ± 4.5
chump9 431.11 ± 7.7 435.26 ± 7.8
chump4 849.30 ± 8.5 789.28 ± 8.7
Smooth UCT 0 -5.28 ± 0.6
UCT 5.28 ± 0.6 0
average 51.38 48.33
average* 135.50 128.89

Table 2: Two-player limit Texas Hold’em winnings in mb/h
and their standard errors. The average results are reported
with and without including chump4 and chump9.

Match-up Smooth UCT UCT
Hyperborean iro, KEmpfer 27.1 ± 8 11.4 ± 8
Hyperborean tbr, KEmpfer 8.8 ± 9 2.8 ± 9
Hyperborean tbr, SmooCT -17.1 ± 8 -31.5 ± 9
Hyperborean tbr,
HITSZ CS 14 69.9 ± 10 74.7 ± 10
SmooCT, KEmpfer 42.3 ± 8 50.4 ± 8
SmooCT, HITSZ CS 14 133.5 ± 9 125.8 ± 9
KEmpfer, HITSZ CS 14 172.0 ± 9 194.6 ± 9
2x SmooCT 6.2 ± 1 -5.8 ± 1
2x Smooth UCT 0 -8.2 ± 1
2x UCT 7.5 ± 1 0
average 50.0 46.0

Table 3: Three-player limit Texas Hold’em winnings in mb/h
and their standard errors.

approached a Nash equilibrium whereas UCT diverged. Fur-
thermore, in two- and three-player LHE, a game of real-world
scale, Smooth UCT outperformed UCT and achieved three
silver medals in the 2014 ACPC. The results suggest that
highly competitive strategies can be learned by a full-game
simulation-based search with Smooth UCT.

In addition, in Leduc Hold’em Smooth UCT initially
learned much faster than Outcome Sampling and was only
outperformed after 85 million simulated episodes. This sug-
gests Smooth UCT is a promising step toward the devel-
opment of sound and efficient online MCTS algorithms for
imperfect-information games.
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