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Abstract
Weighted voting games allow for studying the dis-
tribution of power between agents in situations of
collective decision making. While the conventional
version of these games assumes that any agent is
always ready to cooperate with all others, recently,
more involved models have been proposed, where
cooperation is subject to restrictions. Following
Myerson [1977], such restrictions are typically rep-
resented by a graph that expresses available com-
munication links among agents.
In this paper, we study the time complexity of
computing two well-known power indices – the
Shapley-Shubik index and the Banzhaf index – in
the graph-restricted weighted voting games. We
show that both are #P -complete and propose
a dedicated dynamic-programming algorithm that
runs in pseudo-polynomial time for graphs with the
bounded treewidth.

1 Introduction
Weighted voting games allow for studying the distribution
of power between individual agents in situations of col-
lective decision making. Various aspects of these games
have been extensively studied in the multi-agent and AI lit-
erature [Chalkiadakis et al., 2011]. The research has es-
pecially focused on power indices and their computational
properties [Elkind et al., 2009]. In this respect, two most
prominent power indices, i.e., the Banzhaf power index and
the Shapley-Shubik index, were shown to be #P -complete
[Prasad and Kelly, 1990; Deng and Papadimitriou, 1994;
Chalkiadakis et al., 2011].

Most works in the literature consider the conventional ver-
sion of coalitional games, and weighted voting games in par-
ticular, where it is idealistically assumed that any agent is al-
ways ready to cooperate with all others. Recently, however,
attention has been drawn to more involved models, with re-
strictions on agents’ ability to cooperate [Napel et al., 2012;
Fernández et al., 2002]. Such restrictions naturally arise in
multi-agent systems due to communication costs, distance,
distrust, or other factors [Meir et al., 2011].

Restrictions in cooperation can be conveniently expressed
in the form of a graph. A canonical model of graph-restricted

coalitional games is due to Myerson [1977]. In this formal-
ism, the graph represents communication links between the
agents and cooperation between any two agents is possible
if and only if there exists a direct or indirect (i.e., through
intermediaries) link between them. This rule naturally ex-
tends to coalitions – a coalition can cooperate if and only
if all the agents involved induce a connected subgraph of a
communication graph. The extensions of the Banzhaf and
Shapley-Shubik indices to graph-restricted weighted voting
games were proposed by Owen [1986] and Myerson [1977],
respectively. Building upon Deng and Papadimitriou [1994],
we show that, under graph restrictions, computing both in-
dices is also #P -complete.

Our starting point to develop an algorithm for power in-
dices in graph-restricted weighted voting games is the al-
gorithm for standard weighted voting games by Matsui and
Matsui [2000]. In particular, the authors showed that the
Banzhaf and Shapley-Shubik indices can be computed in
pseudo-polynomial time using the dynamic programming ap-
proach, where agents are considered one after the other, and
their weights are added to the aggregated data on (weights of)
previously generated coalitions.

Unfortunately, with graph restrictions the situation be-
comes much more involved because we have to account for
the fact that an agent must be connected to the coalition he
cooperates with. In other words, we cannot add the weight
of an agent to aggregated data of previously generated coali-
tions without checking to which of these coalitions the agent
is connected to. This is not an easy task. To perform it, we
could use Skibski et al.’s [2014] algorithm for general graph-
restricted games that enumerates all connected coalition in
the graph. However, as the number of connected coalitions
can be exponential, this algorithm can take an exponential
number of steps.

Interestingly, however, for graphs with the bounded
treewidth, we propose in this paper an algorithm that com-
putes both the Banzhaf and Shapley-Shubik indices in
pseudo-polynomial time. To this end, using tree decompo-
sition, we develop a technique that allows to gather needed
information about all connected coalitions in polynomial
time, even if the number of connected coalitions is expo-
nential. Overall, the time complexity of our algorithm is
O(2d

2+ddn5q2), where n is the number of agents, d is the
treewidth, and q is the voting quota.
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2 Preliminaries
Let N be the set of agents. In the classic form, a coalitional
game is a tuple (N, v), where v is the characteristic function
that assigns a payoff to every coalition S ⊆ N with v(∅) = 0.

Weighted voting games: An important class of coalitional
games are weighted voting games. Such a game is defined by
a sequence of non-negative integersQ = [q;w1, w2, . . . , wn],
where wi is the number of votes (or weight) of agent i, and
q is a threshold (quota) needed for a coalition to win. All
winning coalitions are assigned the value of 1 while all losing
coalitions the value of 0. Formally:

vQ(S) =

{
1 if

∑
i∈S wi ≥ q

0 otherwise.
(1)

We will denote the set of all winning coalitions in Q byWQ.
As common in the literature, we assume that the quota

is higher than a half of all votes, i.e., 1
2

∑
i∈N wi < q ≤∑

i∈N wi. This condition implies that the weighted voting
game is proper: if S is a winning coalition, thenN\S is a los-
ing one, and does not violate supperadditivity (vQ(S ∪ T ) ≥
vQ(S) + vQ(T ) for every disjoint S, T ⊆ N ). Typically, we
will refer to the coalitional game simply by its characteristic
function (e.g., v) or by Q to a weighted voting game.

Graph-restricted games: An implicit assumption embedded
in the above definitions is that all agents can cooperate with
each other. This is, however, not always the case as there may
exists various physical or procedural restrictions on which
coalitions are feasible and which are not. A popular model
of such a situation was introduced by Myerson [1977]. For-
mally, Myerson’s graph-restricted game is a triple (N, v,G),
whereG = 〈N,E〉 is an undirected graph andE ∈ N×N 1 is
a set of unordered pairs which denote links between agents. G
describes the underlining communication structure between
the agents with the interpretation that an agent can cooperate
only with nodes connected to him directly (called neighbours
and denoted N (i)), or through a path. At the same token,
coalition S can cooperate if it is connected in G, i.e., any two
agents of S are connected in G by a path contained in S. The
set of all connected coalitions in G is denoted CG. If S is
not connected, the agents in this coalition cooperate in the
connected components of S:

S/G = {S′⊆S |S′ is a maximal connected subgraph of S}.

Formally, S′ ⊆ S is a maximal connected subset of S in
G, if it is connected and there exists no superset S′′ ) S′

connected in G. Given the above, the graph-restricted game,
denoted v/G, is defined as follows:

v/G(S) =
∑

T∈S/G

v(T ). (2)

Note that the definition of restricted game is – though not
explicitly – based on the assumption that game is superaddi-
tive. Otherwise, we would end up with a paradox: the sum of
values of coalitions could be bigger than the value they can

1A×B denotes the set of unordered pairs (a, b), a ∈ A, b ∈ B.

get together, i.e., graph-restriction would yield better perfor-
mance.

Graph-restricted weighted voting games: In this paper,
we are interested in graph-restricted weighted voting games
which combine features of weighted voting games with
graph-restricted games [Napel et al., 2012]. Formally, a
graph-restricted weighted voting game is a pair (Q,G), where
Q is a weighted voting game of agents N , and G = 〈N,E〉
is an underlining communication structure. In these games:

• the value of coalition S is the sum of the values of its
connected components S/G (formula (2)); and

• the value of a connected component T ∈ S/G equals 1
only if the sum of weights of its members exceeds the
threshold:

∑
i∈T wi ≥ q (formula (1)).

Based on the assumption that threshold exceeds half of the
sum of weights of all agents, we have that in every coalition
S there exists at most one connected component with non-
zero value. Consequently:

vQ/G(S) =

{
1 if

∑
i∈T wi ≥ q for some T ∈ S/G,

0 otherwise.
(3)

Consider a winning coalition from game Q which is con-
nected in G. We will denote the set of all such coalitions,
called winning connected coalitions, byWC. Formally:

WC =WQ∩CG ={S⊆N |
∑
i∈S

wi≥q, and S is connected}.

A set of winning connected coalitions with agent i is de-
noted WCi. Now, rephrasing the definition of characteristic
function vQ/G, the coalition is winning in graph-restricted
weighted voting games, if it contains a winning connected
coalitions, i.e., vQ/G(S) = 1, iff S/G ∩WC 6= ∅.
Power indices: Let us now consider the issue of measur-
ing power of agents in weighted voting games. Two well-
known power indices are the Shapley-Shubik index [Shapley
and Shubik, 1954] and the Banzhaf index [Penrose, 1946]. To
formalize them, let us denote by Π(N) the set of all permu-
tations of N and by Sπi the coalition made of agents which
are in a permutation π ∈ Π(N) before i. Now, the Shapley-
Shubik index and the Banzhaf index can be defined as fol-
lows, for all i ∈ N :

SSIi(v) =
1

|N |!
∑

π∈Π(N)

(v(Sπi ∪ {i})− v(Sπi )) , (4)

BIi(v) =
1

2|N |−1

∑
S⊆N\{i}

(v(S ∪ {i})− v(S)) , (5)

respectively (we use a normalized version of Banzhaf index
proposed by Dubey and Shapley [1979]). Intuitively, both in-
dices remunerate agents by considering the number of times
they are pivotal, i.e., how often a given agent changes a los-
ing coalition to a winning one. While the Banzhaf index is a
simple average over all coalitions, the Shapley-Shubik index
considers all possible orders in which agents could join the
game one after the other. Both indices can be applied to an
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arbitrary coalitional game (N, v) (not only to weighted vot-
ing games). In this case the Shapley-Shubik index is called
the Shapley value.

Our aim in this paper is to compute the Shapley-Shubik
and the Banzhaf indices in graph-restricted weighted voting
games, i.e., to compute SSIi(vQ/G) and BIi(vQ/G) for all
i ∈ N . We note that the Shapley-Shubik index applied to the
restricted game vQ/G has an alternative name, i.e., the My-
erson value [Napel et al., 2012], while the Banzhaf index ap-
plied to the restricted game vQ/G is also called the restricted
Banzhaf index [Owen, 1986]. However, for clarity, we will
refer to them the Shapley-Shubik index and the Banzhaf in-
dex, respectively.

3 Closed-Form Formulas
Let us now derive more compact closed-form formulas for the
indices. They show that the key challenge in computing both
indices is to count the number of winning connected coali-
tions of a given size and with a given number of neighbours.

Recall that the basic idea behind both the Shapley-Shubik
index and the Banzaf index is to remunerate agents by con-
sidering how often they are pivotal in different coalitions.
In conventional weighted voting games, all such situations
can be found by considering all coalition that almost reach
the threshold – for a given agent i, all sets S 63 i such that
q >

∑
j∈S ωj ≥ q − ωi [Matsui and Matsui, 2000].

Graph-restricted voting games are more involved since we
have to account for the communication structure between the
agents. In particular, agent i will not turn loosing coalitions
to winning ones if it is not connected to them. On the other
hand, i may turn out to be pivotal in a coalition with an ar-
bitrary large sum of weights if, without i, this coalition is
disconnected. More precisely, agent i is pivotal in S if:

(a) S \ {i} does not contain a winning connected coalition,
and

(b) S contains a winning connected coalition.

Thus, agent i must produce a winning connected coalition
by connecting some (non-winning) components of S \ {i},
joining a single component, or forming a new singleton com-
ponent (if ωi > q). Thus, the set of all pivotal winning con-
nected coalition of agent i is defined as follows:

PWCi = {S ∈ WCi | ((S \ {i})/G) ∩WC = ∅}. (6)

In the two following theorems we provide the general for-
mula for the Shapley-Shubik index and the Banzhaf index in
graph-restricted weighted voting games. We define N (S) as
a set of neighbours of S: N (S) =

(⋃
i∈S N (i)

)
\ S.

Theorem 1. Let (Q,G) be a graph-restricted weighted vot-
ing game with the set of winning connected coalitions WC.
The Shapley-Shubik index satisfies the following formulas:

SSIi(vQ/G) =
∑

S∈PWCi

γS1 =
∑

S∈WCi

γS1 −
∑
S∈WC
i∈N (S)

γS2 ,

where γS1 = (|S|−1)!(|N (S)|)!
(|N (S)|+|S|)! and γS2 = (|S|)!(|N (S)|−1)!

(|N (S)|+|S|)! .

Proof. Let us consider formula (4) for the Shapley-Shubik
index. Since, by definition, (Q,G) is proper, there are no
negative marginal contributions. The only case when agent
i ∈ N may be pivotal and have the positive marginal contri-
bution of 1 is when T is a winning coalition, but T \ {i} is
losing. Let us denote the set of such coalitions with WT i.
Formally: WT i = {T ∈ W | i ∈ T, T \ {i} 6∈ W}.

Now, we can rewrite formula (4) as follows:

SSIi(vQ/G) =
1

|N |!
∑

π∈Π(N):Sπi ∪{i}∈WT i

1. (7)

Recall that coalitions in WT i do not have to be necessar-
ily connected, but, from the assumption on q, they have
to contain exactly one winning connected coalition: S =
WT i∩WCi. Since S\{i} cannot belong toWCi (this would
imply that T \ {i} ∈ W), we have that S ∈ PWCi, and:

SSIi(vQ/G) =
1

|N |!
∑

S∈PWCi

∑
π∈Π(N):S∈(Sπi ∪{i})/G

1. (8)

Let us now compute the number of permutations such that
S is a connected component of Sπi . To this end, all other
agents from S have to come before agent i, all neighbors of
S after i, and all other agents do not play a role. Simple cal-
culations show that there are (|S|−1)!N (S)!

(|S|+|N (S)|)! such permutations
which concludes the proof of the first part of the formula.

Now, consider the set difference WCi \ PWCi. This
set consists of winning connected coalitions C that, with-
out agent i, contain winning connected component S =
C\{i}∩WC. Note that imust be a neighbour of S. Analysing
the permutations, we see from the set of permutations that
contain winning connected coalitions in Sπi ∪ {i} we have to
exclude those that contain winning connected coalitions ad-
jacent to i in Sπi :

SSIi(vQ/G) =
1

|N |!
∑

S∈WCi

∑
π∈Π(N):S∈(Sπi ∪{i})/G

1

− 1

|N |!
∑

S∈WC,i∈N (S)

∑
π∈Π(N):S∈Sπi /G

1.

Now, it is enough to calculate permutations as above.

Theorem 2. Let (Q,G) be a graph-restricted weighted vot-
ing game with the set of winning connected coalitions WC.
The Banzhaf index satisfies the following formulas:

BIi(vQ/G) =
∑

S∈PWCi

γS =
∑

S∈WCi

γS −
∑
S∈WC
i∈N (S)

γS ,

where γS = 1/2|S|+|N (S)|.

Proof. The proof is analogous to the one of Theorem 1. For
the Banzhaf index, the key formula (8) iterates not over per-
mutations, but coalitions of N that contain S. Thus, calcula-
tions are easier – the probability that S forms a component in
a random coalition equals 1/2|S|+|N (S)|), as coalition must
contain S, but not a neighbour of S. We omit details due to
space constraints.
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Algorithm 1: General algorithm for power indices in
graph-restricted weighted voting games

Input: Weighted voting game Q = [q;w1, . . . , wn],
graph G = 〈N,E〉

Output: Shapley-Shubik index SSIi(vQ/G), and
Banzhaf index BIi(vQ/G) of game (Q,G)

1 calculate table Ai;
2 for s← 0 to |N | do
3 for k ← 0 to |N | − s do
4 for w ← q to

∑
j∈N ωj do

5 SSIi(v
Q/G)← SSIi(v

Q/G)+

WCi[s, k, w] (s−1)(k)!
(s+k)! −NWCi[s, k, w] (s)(k−1)!

(s+k)! ;

6 BIi(v
Q/G)← BIi(v

Q/G)+

WCi[s, k, w] 1
2s+k

−NWCi[s, k, w] 1
2s+k

;

Before we move on to our main algorithm, we introduce
the general scheme for calculating both power indices. Look-
ing at the formulas from Theorems 1 and 2, we see that it
involves enumerating two sets: WCi and NWCi = {S ∈
WC | i ∈ N (S)}. Set NWCi is the set of all winning con-
nected coalitions that contain at least one neighbour of agent
i, but not i itself. Now, each element of both sets contributes
to the power index a value which depends on the size of the
set and number of neighbours. Thus, for a given set of con-
nected coalitions A ⊆ C, we will associate a table A[] such
that A[s, k, w] is the number of connected coalition of size s
with k neighbours and sum of weights w:

A[s, k, w] = |{S ∈ C | |S| = s, |N (S)| = k,
∑
j∈S

ωi = w}|.

Algorithm 1 presents the general scheme for calculating the
indices using tablesWCi[] andNWCi[]. Our main algorithm
presented in the next section will focus on calculating both
tables. We end this section with the complexity result.

Proposition 1. Calculating the Shapley-Shubik index and
Banzhaf index in graph-restricted weighted voting games is
#P -complete.2

Proof. Deng and Papadimitriou [1994] proved that calculat-
ing the Shapley-Shubik index in the standard weighted voting
games is #P -complete (similarly, the Banzhaf index). This
problem can be reduced to our problem, as it can be mod-
elled using a complete graph as a restriction. Finally, comput-
ing n!SSIi(vQ/G) and 2N−1BIi(vQ/G) can be considered
as the number of accepting paths of nondeterministic Turing
machine, so both problems are in class #P , and – because of
the reduction – they are #P -complete.

2#P is the set of counting problems associated with the decision
problems in the set NP . A problem is #P -complete if and only if
it is in #P and every problem in #P can be reduced to it by a
polynomial counting reduction [Valiant, 1979].

Figure 1: An example of a tree decomposition with width 2.
In the middle, a standard tree decomposition. On the right, a
nice tree decomposition: yellow nodes have type LEAF, red
– INTRODUCE, green – FORGET, and blue – JOIN.

4 Traversing Induced Connected Subgraphs
The key challenge in implementing the formulas from the
previous section is to count the number of winning connected
coalitions of a given size and with a given number of neigh-
bours. In this section, we propose a pseudo-polynomial algo-
rithm that does this task in graphs with bounded treewidth.

We start with some basic definitions. Given a graph G =
〈N,E〉, the tree decomposition is a tree 〈X,T 〉 such that, with
each node x ∈ X , a subset of N is associated, denoted Bx,
and such that the following three conditions are satisfied:

(1) for every node i ∈ N , i ∈ Bx for some x;

(2) for every edge (i, j) ∈ E, {i, j} ⊆ Bx for some x;

(3) for every node i ∈ N , nodes x such that i ∈ Bx form
a subtree of 〈X,T 〉.

The width of the tree decomposition is the size of the biggest
set of nodes minus one. Now, the treewidth of the graph is
the minimum width among all possible tree decompositions.
Even though finding the tree decomposition with the minimal
treewidth is NP-hard, a heuristic method is able to find one
with reasonably small treewidth [Bodlaender, 1996].

A rooted tree decomposition is called nice if every node x
is of one of the four types:

• LEAF: no children and |Bx| = {v} for some v;

• INTRODUCE: one child y with Bx=By∪{v} for some v;

• FORGET: one child y with Bx = By \ {v} for some v;

• JOIN: two children, y1, y2, such that Bx = By1 = By2 .

See Figure 1 for an example. Any tree decomposition of
width d and n nodes can be turned into a nice tree decom-
position of width d and O(dn) nodes in time O(d2n) [Kloks,
1994]. Thus, without the difference for the time complexity
of our algorithm, we consider only nice tree decompositions.

In our problem, we aim to find all winning connected coali-
tions (those containing agent i or adjacent to him). In the
graph notation, connected coalitions correspond to induced
connected subgraphs – graph 〈S,M〉 is an induced connected
subgraph of 〈N,E〉 if S ⊆ N and M = (S × S)∩E consist
of all edges between nodes from S that appear in E. We will
not discuss not-induced subgraphs; hence, we will often skip
this word. The goal of our algorithm is to find all (induced)
connected subgraphs with given properties.
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Figure 2: Example of two graphs with similar properties.

Assume that 〈X,T 〉 is a nice tree decomposition such that
node i is in the setBr of the root r ∈ X . In our algorithm, we
will traverse the tree decomposition bottom-up and, for every
node, construct a data structure cx based on the data struc-
tures of the children. However, accounting for all connected
subgraphs based only on children is far from trivial. Consider
the following example that corresponds to INTRODUCE node
with i added to set {j, k}.
Example 1. Let G = 〈N,E〉 be a graph and let X =
{i, j, k} ⊆ N . We denote by cx(S) the number of induced
connected subgraphs that contain exactly nodes S ⊆ X .
Now, assume node i has only two neighbours j and k, not
connected directly to each other. Based on the information
about connected subgraphs of j and k (without i), we would
like to calculate the number of connected subgraphs with i.
We can easily see that cx({i}) = 1, cx({i, j}) = cx({j}) and
cx({i, k}) = cx({k}). Consider cx({i, j, k}). If j and k are
connected only by i (i.e., cx({j, k}) = 0), then the number
of induced connected subgraphs that contain all three nodes
can be easily calculated: cx({i, j, k}) = cx({j}) · cx({k}).
However, if j and k are connected with a path that does not
go through i, then this number cannot be determined based
on cx({j}), cx({k}) cx({j, k}). To see that, consider two
graphs from Figure 2. While the cx({j}) = cx({k}) = 6
and cx({j, k}) = 5 for both graphs, the number cx({i, j, k})
equals 7 for the left graph and 6 for the right one.

To tackle this problem, we provide the following obser-
vation. The proposition below states that, to account for
all induced connected subgraphs with an additional node, it
is enough to consider all induced connected subgraphs of a
graph with all possible edges between nodes connected to the
new node. While, in general, it is an exponential task, given a
bounded treewidth, it will require the exponential number of
steps, but only in respect to the treewidth.
Proposition 2. Let G = 〈N,E〉 be a graph, and i ∈ N be a
node. Then, there exists a bijection between a set of induced
connected subgraphs with i ∪ N (i) in graph G, and induced
connected subgraphs with N (i) in graph G′ obtained by re-
moving node i and connecting nodes from X in clique.

Let us describe our algorithm, the pseudocode of which
is presented in Algorithm 2. For clarity of presentation, we
focus first on the algorithm that calculates setWCi. Later, we
discuss a simple modification that allows for computing set
NWCi simultaneously. In Algorithm 2, we find first the tree
decomposition 〈X,T 〉 and adjust it in such a way that the root

Algorithm 2: DP-algorithm calculating tableWCi
Input: Weighted voting game Q = [q;w1, . . . , wn],

graph G = 〈N,E〉 with treewidth d, agent i
Output: TableWCi[]

1 find a nice tree decomposition 〈X,T 〉 of G
with width d and root r such that i ∈ Br;

2 add Forget nodes, so that Br = {i} for root r;
3 S ← empty stack; // main stack with nodes from X

4 Q← empty queue; // auxiliary queue to build S

5 Q.add(root r);
6 while Q is not empty do // building S top-down

7 x← Q.pop();
8 Q.add(children of x);
9 S.add(x);
// we are traversing tree 〈X,T 〉 bottom-up

10 while S is not empty do
11 x← S.pop(); // all children of x are processed

12 switch type of x do
13 case LEAF: (with Bx = {v})
14 cx(∅, ∅) = ∅;
15 cx({v}, ∅) = {(1, 0, ωv)}; // tuple (s,k,w)

16 case INTRODUCE: (with child y and v = Bx \By)
17 foreach S ⊆ By , M ⊆ 2By×By , Nv ⊆ By do
18 Mv ← (v ×Nv);
19 if S ∩Nv 6= ∅ then
20 foreach (s, k, w) ∈ cy(S,M) do
21 cx(S,M ∪Mv).add((s, k + 1, w));

// based on Proposition 2

22 foreach (s, k, w) ∈ cy(S,M ∪ (Nv ×Nv)) do
23 cx(S∪{v},M ∪Mv).add((s+ 1, k, w+ωv));

24 else
25 cx(S,M ∪Mv) = cy(S,M);
26 if S 6= ∅ then cx(S ∪ {v},M ∪Mv) = ∅;
27 else cx(S ∪ {v},M ∪Mv) = {(1, |Mv|, ωv)};

28 case FORGET: (with child y and v = By \Bx)
29 Mv ← {(v, j) ∈ E | j ∈ Bx}; // real edges

30 foreach S ⊆ Bx, M ⊆ 2Bx×Bx do
31 cx(S,M) = cy(S,M∪Mv)∪cy(S∪{v},M∪Mv);

32 case JOIN: (with children y1, y2)
33 foreach S ⊆ Bx, M ⊆ 2Bx×Bx do
34 if S 6= ∅ then
35 foreach (s1, k1, w1) ∈ cy1(S,M) do
36 foreach (s2, k2, w2) ∈ cy2(S,M) do
37 s← s1 + s2 − |S|;
38 k ← k1 + k2 − |{(S ×Bx) ∩M}|;
39 ω ← ω1 + ω2 −

∑
i∈S ωi;

40 cx(S,M).add(s, k, ω);

41 else cx(S,M) = cy1(S,M) ∪ cy2(S,M);

42 return cx({i}, ∅); // x = root of 〈X,T 〉 here
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node r consists of only agent i: Br = {i} (lines 1–2). Then,
we prepare stack S with all nodes in a bottom-up order, i.e.,
in such a way that children are processed before their parent
(lines 3–8). Technically, we do it by going through the tree
in a top-down order, and by adding children at the top of the
parent in the stack. Then, our main loop starts.

In each step of the main loop, we calculate data structure
cx for node x ∈ X based on the data gathered in children
nodes. Let us denote by B∗x the set of nodes that appear in a
subtree rooted at x. For a given subset of (potential) edges3

M ⊆ (Bx × Bx), consider a graph G restricted to nodes
B∗x and with the edges between Bx replaced by M . Now,
for each subset of nodes S ⊆ Bx, in variable cx(S,M), we
store (parameters of) all connected coalitions of this graph
that intersect with Bx on S. Let us define the following set:
Dx(S,M) = {C ∈ WC(〈N,E\(Bx×Bx)∪M〉) | C∩Bx = S}.
Then, cx(S,M) is a multiset

cx(S,M) = {(|C|, |N (C)|,
∑
j∈C

ωj) | C ∈ Dx(S,M)}.

Before we proceed, note that only the FORGET case in-
volves real edges of graph G. This is because, until we re-
move a node, we have to consider all possible edges between
it and other nodes in order to apply the technique from Propo-
sition 2. When we remove the node, because of the tree de-
composition structure, we know it will not occur again.

Let us now briefly describe all four cases of nodes. The
LEAF case (lines 12–14) is trivial. In the INTRODUCE case
(lines 15–26), in order to extend structure to another node for
every pair (S,M), we consider also any Nv ⊆ By so that we
account for all possible edges that v can have. Now, if – in
given scenario withM∪(v×Nv) edges – v is connected to S,
then every subgraph with S gains a new neighbour (lines 19–
20). To count subgraphs that contain S ∪ {i}, we use the
technique from Proposition 2. On the other hand, if v is not
connected to S, then coalitions with S are just copied, and
S ∪ {v} exists only if S is empty.

The FORGET case (lines 27–30), as discussed above, is
the only one that uses real edges of graph G. When forget-
ting node v, for each subset of nodes S, we join connected
subgraphs that, in the child node, were assigned to S and to
S ∪ {v}.

In the JOIN case (lines 31–40), node x has two children.
Consider two subgraphs – one from each child – that con-
tain exactly S (S is connected according to some set of edges
M ). The important observation is that the intersection of both
these subgraphs is also set S. In other words, subgraphs can-
not intersect outside of S. This is because, from the tree de-
composition definition, if some element would appear in both
children’s subtrees, then it must appear in their parent node.
The same applies to joined neighbours – they are limited to
set Bx. Thus, every pair yields a new connected subgraph
with sum of values decreased by the intersection – S. How-
ever, if intersection S is an empty set, then subgraphs can-
not be merged, and sets of subgraphs are simply added. Fi-
nally, variable cx({i}, ∅) consists parameters of all connected

3We note that we could only consider sets of edges M that in-
clude the real set of edges between Bx × Bx. For the clarity of
presentation we consider all possible sets.

subgraphs with i, and cx(∅, ∅) – without i (line 41). Note,
however, that we cannot easily distinguish those that contain
neighbours of agent i, i.e., set NWCi. Let us describe below
a simple modification that allows for finding this set simulta-
neously.

To this end, we add the fourth element a to the tuple of pa-
rameters stored in cx(S,M). Now, a = 1 if connected sub-
graph contains a neighbour of i, and 0 otherwise. Updating
this information is easy – whenever we add a new tuple (lines
14, 26), we set it to 0. When we join two coalitions (lines
36–39), we take a maximum of both values. Now, when for-
getting a node v, if v is a neighbour of i, then, in all sets that
contained v (cx(S ∪ {v},M ∪ Mv) in line 30), we update
the value of a to 1. At the end, NWCi consists of all tuples
from cx(∅, ∅) with a = 1 (line 41). This modification does
not change the complexity of the algorithm.

Time and Space Complexity: Let n = |N |. Crucial for
the time and space complexity is the data structure used for
multiset cx(S,M). Here, we assume that cx(S,M) is a three-
dimension table [0..n+1][0..n+1][0..2q], where q is a thresh-
old and the dimensions corresponds to the size of the coali-
tion, number of neighbours and sum of weights. Thus, for
every possible tuple (s, k, w) we store the number of occur-
rences. That way, we are achieving pseudo-polynomial time
and space complexity. Note that for special cases – for exam-
ple, when the number of connected subgraphs is polynomial
in n – different data structure may be better and lead to real
polynomial time.

Let us consider the time complexity of our algorithm. The
initialization (lines 1–9) has complexity O(d2n) (for n =
|N |) and produces a tree decomposition with at most O(dn)
nodes. Thus, the main loop hasO(dn) iterations. In the LEAF
case, we perform O(1) steps. In the JOIN case, for every sub-
set of Bx (O(2d)) and subset of possible edges between Bx
(O(2d

2

)), we have to multiply two cx structures (O(n4q2)),
which overall gives time O(2d

2+dn4q2). Analogous analy-
sis leads to O(2d

2+2dn2q) and O(2d
2+dn2q) for the INTRO-

DUCE and FORGET cases, respectively. Thus, each iteration
have complexity O(2d

2+dn4q2). Overall, the time complex-
ity of our algorithm is O(2d

2+ddn5q2) which yields pseudo-
polynomial time if d is bounded.

As for the space complexity, note that in every node of
tree decomposition we store 2d

2+d arrays of size O(n2q).
As there are at most O(dn) nodes, the space complexity is
O(2d

2+dn2q).

5 Related work
One of the main motivations behind the graph-restricted
weighted voting games is modelling the political alliances –
a topic that raised considerable attention in the literature. The
first computational analysis is due to Fernández et al. [2002]
who proposed polynomial time algorithms for Banzhaf and
Shapley-Shubik indices for trees based on generating func-
tions. Palestini [2005] proved, that under some strong con-
dition on the set of winning coalitions, Shapley-Shubik in-
dex can be calculated in graph-restricted weighted voting
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games in the polynomial time. Recently, Napel et al. [2012]
performed the (non-computational) monotonicity analysis of
power indices graph-restricted weighted voting games.

In a related work, See et al. [2014] introduced compatibil-
ity weighted voting games, where all winning coalitions have
to be cliques. Aziz et al. [2009] considered computational
complexity of the power indices in the spanning connectivity
game. Here, however, agents are represented by edges, not
nodes.

Game-theoretic solution concepts, such as the Banzhaf in-
dex and the Shapley-Shubik index have been used as an ad-
vanced centrality measures [Gomez et al., 2003; Michalak et
al., 2013; 2015]. Thus, our paper directly contributes to this
growing body of literature (see Tarkowski et al., [2015] for an
overview).

6 Conclusions
In this paper, we studied the problem of computing the
Shapley-Shubik index and the Banzhaf index in graph-
restricted weighted voting games. For graph with a bounded
treewidth, we introduced a general technique for traversing all
induced connected subgraphs in polynomial time. We used it
to design a pseudo-polynomial algorithm for both indices. In
our future work, we would like to study computational prop-
erties of other power indices under graph restrictions.
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