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Abstract

Measuring similarity between nodes has been an
issue of extensive research in the social network
analysis literature. In this paper, we construct a
new measure of similarity between nodes based on
the game-theoretic interaction index (Grabisch and
Roubens, 1997). Despite the fact that, in general,
this index is computationally challenging, we show
that in our network application it can be computed
in polynomial time. We test our measure on two
important problems, namely link prediction and
community detection, given several real-life net-
works. We show that, for the majority of those net-
works, our measure outperforms other local simi-
larity measures from the literature.

1 Introduction
Vertex similarity is a fundamental network concept exten-
sively studied in the literature [Blondel et al., 2004; Jeh and
Widom, 2002]. An effective measure of node-similarity al-
lows for solving various real-life problems: establish trust-
base recommendation [Hang and Singh, 2010], detect similar
genes [Bass et al., 2013], or recover damaged network [Chen
et al., 2012]. Two particularly interesting problems that are
highly relevant to social networks are: (1) link prediction [Le-
icht et al., 2006] and (2) community detection [Fortunato,
2010]. Specifically, the former problem involves estimating
the likelihood of having a link between a given pair of nodes,
based on the observed links and the attributes of nodes. The
latter problem involves identifying groups of nodes such that
there are relatively many links among nodes of the same
group, and relatively few links among nodes belonging to dif-
ferent groups. Both problems are relevant to various fields
in which graph representations are common, including so-
ciology [Girvan and Newman, 2002] and computer science
[Misra et al., 2012].

There are two general classes of similarity measures: (1)
local, and (2) global. The first class focuses on a local neigh-
bourhood of the nodes in question (i.e., the nodes between
which we are determining whether a link exists). Conversely,
the second class considers the entire network. While global
measures generally yield better qualitative results, they are

more computationally involved, which limits their applica-
bility to smaller networks. In contrast, local measures are
scalable—they can be used even for very large networks.
Thus, in this paper, we focus on local similarity measures.

The majority of local similarity measures are built upon the
following concept: the more common neighbours two nodes
share, the more similar those nodes are. This reasoning can
be also extended to the entire neighbourhood of both nodes,
or, in other words, their spheres of influence. Thus, similarity
is proportional to the overlap of spheres of influence.

In this paper, we extend the above notion of similar-
ity, building upon the game-theoretic interaction index—
a concept developed in coalitional game theory and fuzzy
systems to measure the interaction between a pair of ele-
ments embedded in a larger set of elements [Owen, 1972;
Murofushi and Soneda, 1993; Grabisch and Roubens, 1999].

The basic form of the interaction index is built upon two
well-known solution concepts from game theory—the Shap-
ley value [Shapley, 1953b] and the Banzhaf index [Banzhaf,
1965]. It is also generalized to a wider class of solution con-
cepts called semivalues [Grabisch and Roubens, 2000].

Our methodology may be summarised as follows. We first
construct a coalitional game in which players are nodes in
the network and the payoff of a coalition is a function of its
sphere of influence parametrized by k, where k is the degree
of influence. Given this influence game, we use the above in-
teraction index to measure the similarity between the spheres
of influence of any two nodes, given all the possible coalitions
that those two nodes belong to.

Interestingly, despite the interaction index being hard to
compute in general, we show that, in our influence game,
it is computable in polynomial time. Specifically, the algo-
rithm we propose for computing semivalue interaction in-
dices runs in O(|V |2) time, after precomputations requiring
O(|V ||E|+|V |2). Better still, this polynomial-time result can
be further improved upon if we reduce the scope of interac-
tion in the network (defined by parameter k), or if we focus on
the Shapley value-based interaction index. In the latter case
computing similarities between two nodes requires O(|V |)
time, and this complexity is the same as for the fastest local
similarity measures in literature. Overall, in the worst case
scenario our link prediction and community detection algo-
rithms based on the Shapley value-based interaction index run
in O(|V |3) time.
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We use our algorithm to study a number of real-life net-
works, and show that the interaction index-based similarity
measure outperforms the other local measures in solving the
link prediction and community detection problems.

2 Preliminaries
Let N = {1, 2, . . . , n} be the set of players. A characteristic
function, ν, assigns a real value (or payoff ) to every coalition
of players: ν : 2N → R, with ν(∅) = 0. A tuple (N, ν) is
called coalitional game.
Semivalues: One of the fundamental problems in coopera-
tive game theory is how to evaluate the importance or con-
tribution of players in a coalitional game. Semivalues repre-
sent an important class of solutions to this problem [Dubey
et al., 1981]. To define semivalues, let us first denote by
MC(C, i) the marginal contribution of the player i to coali-
tion C, i.e., MC(C, i) = ν(C ∪ {i}) − ν(C). Furthermore,
let α : {0, 1, . . . , |N | − 1} → [0, 1] be a discrete probability
distribution. Intuitively, α(k) is the probability that a coali-
tion of size k is drawn from the set of all possible coalitions.
Now, given a function α, the semivalue φv(ν) of a player i in
the cooperative game ν is:

φi(ν) =
∑

0≤l<|N |

α(l)E[MC(Cl, i)], (1)

where Cl is the random variable that corresponds to a coali-
tion being drawn with uniform probability from the set of all
coalitions of size l in the set of players N \ {i}, while E[·]
is the expected value operator. For instance, some prominent
semivalues include the Shapley value [Shapley, 1953a] and
the Banzhaf index [Banzhaf, 1965]—two solution concepts
widely studied in cooperative game theory due to their vari-
ous desirable properties [Maschler et al., 2013].
Interaction index: To understand the notion of the interac-
tion index, we have to first introduce the definition of synergy
between two players in cooperative games. It is the additional
value (either positive or negative) that these players achieve
by cooperating. Formally: S(i, j) = ν({i, j}) − ν({i}) −
ν({j}). Similarly, the synergy between i and j with respect
to a coalition C is:

S(C, i, j) = MC(C, {i, j})−MC(C, i)−MC(C, j).

The notion of interaction among entities, or “players”, builds
upon the above notion of synergy. Apart from game theory, it
has been studied in various other fields, such as fuzzy sys-
tems, multi-criteria decision making, aggregation function
theory, statistics and data analysis [Marichal and Mathonet,
2008]. Informally, the value of interaction among a group of
players is the average synergy of this group over all coalitions
they could potentially belong to. In this paper we focus on
the semivalue interaction index between two players, which
is defined as follows:

Definition 1 The semivalue interaction index in (N, ν) is:

Iij(N, ν) =
∑

0≤l≤|N |−2

β(k)E[S(Cl, i, j)], (2)

where β : {0, 1, . . . , |N | − 2} → [0, 1] is a
discrete probability distribution and E[S(Cl, i, j)] =∑
C∈{C⊆N\{i,j} : |C|=l}

S(C,i,j)

(|V |−2
l )

.

The interpretation of these index is as follows: a) if Iij < 0
then i and j have an overall negative influence on each other,
b) if Iij > 0 then i and j have an overall positive influence
on each other, c) if Iij = 0 then i and j do not influence each
other, or their influences cancel out. Generally, if Iij is very
high, or low, the players interact between themselves inten-
sively. The three semivalue interaction indices widely studied
in literature are: Shapley interaction index [Grabisch, 1997]
(β(l) = 1/(|V | − 1)), Banzhaf interaction index [Roubens,
1996] (β(l) =

(|V |−2
l

)
/2|V |−2) and chaining interaction in-

dex [Marichal and Roubens, 1999] (β(l) = 2(l+1)
(n−1)(n−2) ).

3 Our Model
In this section we describe our approach to define new simi-
larity function. First, we introduce the influence games that
underpin the interaction index. Next, we define our key
concept—the semivalue k-steps interaction index defined on
networks. Finally, we translate desirable properties of this in-
dex from game-theory to the network context.
Influence games: Michalak et al. (2013b) studied a number
of coalition games defined on networks, in which the charac-
teristic function evaluates each subset of nodes proportionally
to the size of the sphere of influence that this subset has in
this network. If we denote the sphere of influence of the set
C ⊆ V as SF (C) ⊆ V then:
Definition 2 The influence game of a graph G = (V,E) is a
tuple (G, νG), where νG : 2V → R is an influence function
such than for each C ⊆ V we have νG(C) = SF (C).
In this paper we focus on the k-steps influence function.
Definition 3 The k-steps influence function is:

νk(S) = |{v ∈ V | d(S, v) < k} \ S|, (3)
where d(v, u) is the distance between two nodes and
d(S, v) = minu∈S d(u, v).
The interaction index on networks: In further sections we
use the following interaction index in order to measure simi-
larity between nodes in networks:
Definition 4 The semivalue k-steps interaction index is a tu-
ple (G, νk), where G = (V,E), νk is the k-step influence
function, and the interaction between any two nodes u, v ∈ V
is given by Iuv(V, νk).

The properties: Now, we translate the game-theoretic ax-
iomatization of the semivalue interaction index to the network
context [Grabisch and Roubens, 1999].
Property 1 Interaction between nodes is symmetric. That is,
∀v,u∈V Iuv = Ivu.
Property 2 If a node always contributes its singleton value
to any community, then its interaction is always zero:1

∀C⊆V\{v}MC(C, v)=νG({v})=⇒∀u∈V\{v} Ivu=0.

1Intuitively, if a node always contributes the same, its sphere
does not overlap with that of any coalition, and so it is considered to
have zero interaction with others.
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Property 3 If two influence functions are combined into one
νG = ν′G + ν′′G then Iuv(νG)=Iuv(ν′G)+Iuv(ν′′G).

Property 4 If two nodes contribute the same value to
all communities then they have the same interaction:
∀C⊆V\{v,u}MC(C, v)=MC(C, u)=⇒∀w∈V\{v,u} Ivw= Iuw.

4 Computing interaction index on networks
In this section, we tackle the problem of computing the k-
steps semivalue interaction index on large networks. Despite
the exponential space of all subsets of nodes in the network,
we present a combinatorial analysis that results in an algo-
rithm capable of measuring the interaction between any two
nodes in polynomial time. Our analysis is motivated by the
work done by Szczepański et al (2015), who defined the
class of polynomial-time computable game-theoretic network
centralities. Here, we focus on equation (2). More specifi-
cally, for each pair of nodes v, u ∈ V we will show how to
compute E[S(Cl, v, u)]—the expected value of their synergy
with respect to the random set Cl. Our main observation is
that this computation comes down to computing the expected
marginal contribution of v, and of u, to Cl. Formally:

E[S(Cl, u, v)] = E[MC(Cl, {u, v})]− E[MC(Cl, u)]

− E[MC(Cl, v)] (4)

Before presenting our main theorem, we need additional nota-
tion. For every node v ∈ V , let Nk(v) denote the set of nodes
reachable from v with at most k steps, and let degk(v) de-
note the number of such nodes. Formally, Nk(v) = {u ∈ V |
d(v, u) ≤ k∧v 6= u} and degk(v) = |Nk(v)|. We extend this
notation to sets of nodes. That is, Nk(C) =

⋃
v∈C Nk(v) \C

and degk(C) = |Nk(C)|. Now, we are ready to introduce the
following theorem:
Theorem 1 Given a graph, G, and a pair of nodes u, v ∈ V ,
the k-steps semivalue interaction index between u and v can
be computed in time polynomial in |V |.

Proof: Let us focus on one of the two nodes, say v, and
analyse its marginal contribution to Cl ⊆ V \ {v, u}. In this
analysis, we will first focus on the cases where the marginal
contribution is positive, and then move our attention to the
cases where it is negative. Regarding the case of positive
marginal contribution, when v joins Cl, such a contribution
is only made with the help of another node n ∈ Nk(v) where
n is not in Cl nor is it accessible within k steps from Cl.
Such a contribution is indeed positive because the node n is
not under the influence of coalition Cl but under the influ-
ence of coalition Cl ∪ {v}. Moving on to the case of nega-
tive marginal contributions, such a case only happens when
v is accessible within k steps from Cl. This is because the
coalition Cl has influence on the node v while the coalition
Cl ∪ {v} has no influence. In order to formalize the above
observations, we introduce two Bernoulli random variables.
The first one, denoted byB+

l,v,n, indicates whether the node v
makes a positive marginal contribution through node n to the
random set Cl. Formally, we have:

E[B+
l,v,n] = P [(Nk(n) ∪ {n}) ∩ Cl = ∅], (5)

where P [·] denotes probability, and E[·] denotes expected
value. The second one, denoted by B−l,v , indicates whether
the node v makes a negative marginal contribution through
itself to the random set Cl. More formally:

E[B−l,v] = P [Nk(v) ∩ Cl 6= ∅]. (6)

Now, we will use a combinatorial argument to compute the
probabilities in equations (5) and (6). For the sake of clarity
we will assume that

(
a
b

)
= 0 for a < b and that for any a

we have a
0 = 0. Recall that there are exactly

(|V |−2
l

)
possible

sets Cl. With this in mind, we will start by showing how the
probability in (5) is computed. Here, we will focus on the
following two complementary cases:
• Case 1: n ∈ (Nk(v) \ {u}) such that n 6= u and
u /∈ Nk(n). In this case, the probability in (5) can be
computed as follows:

P [(Nk(n) ∪ {n}) ∩ Cl = ∅] =
(|V |−2−degk(n)

l

)(|V |−2
l

) .

The nominator of the above fraction indicates that, in
order to satisfy the condition (Nk(n) ∪ {n}) ∩ Cl = ∅,
we can choose any of the nodes in V \ {u, v} except
those that are in n ∪ (Nk(n) \ {v}) .
• Case 2: n ∈ (Nk(v) \ {u}) such that n = u or
u ∈ Nk(n). In this case, since we have u /∈ Cl, the
probability in (5) is computed differently as follows:

P [(Nk(n) ∪ {n}) ∩ Cl = ∅] =
(|V |−2−degk(n)+1

l

)(|V |−2
l

) ,

By combining the above two cases, for v and any n ∈ Nk(v)
we obtain:

E[B+
l,v,n]=


(|V |−1−degk(n)

l )
(|V |−2

l )
if n = u or u ∈ Nk(n)

(|V |−2−degk(n)
l )

(|V |−2
l )

otherwise.

(7)
Having shown how to compute E[B+

l,v,n], we now move to
E[B−l,v]. In particular, we show how to compute the proba-
bility in (6). To this end, observe that P [Nk(v) ∩ Cl 6= ∅] =
1−P [Nk(v)∩Cl = ∅]). Based on this, instead of focusing on
the probability of the event Nk(v) ∩Cl 6= ∅, we focus on the
probability of the complementary event, i.e.,Nk(v)∩Cl = ∅,
as this simplifies our analysis. Using the same combinatorial
argument as before, we obtain the following for v:

E[B−l,v]=


1− (|V |−1−degk(v)

l )
(|V |−2

l )
if u ∈ Nk(v)

1− (|V |−2−degk(v)
l )

(|V |−2
l )

otherwise.
(8)

The final formula for E[MC(Cl, v)] combines equations (7)
and (8). That is,

E[MC(Cl, v)] =
∑

n∈Nk(v)

(
E[B+

l,v,n]
)
− E[B−l,v]. (9)
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So far, we have shown how to compute one of the three ex-
pressions in equation (4), namely E[MC(Cl, v)]. Moving on
the expression E[MC(Cl, u)] in (4), this can be computed in
exactly the same manner. Finally, the third expression in (4),
i.e., E[MC(Cl, {u, v})], is computed slightly differently. For
each n ∈ Nk({u, v}) we have:

E[B+
l,{v,u},n]=


(|V |−1−degk(n)

l )
(|V |−2

l )
if n∈(Nk(u)∩Nk(v))

(|V |−2−degk(n)
l )

(|V |−2
l )

otherwise,

(10)
and we also have:

E[B−l,{v,u}]= E[B−l,u] + E[B−l,v] (11)

Finally, we can combine all equations in order to compute the
expected synergy:

E[S(Cl, u, v)] =
∑

n∈Nk({v,u})

(
E[B+

l,{v,u},n]
)
− E[B−l,{v,u}]

−
∑

n∈Nk(u)

(
E[B+

l,u,n]
)
+ E[B−l,u]−

∑
n∈Nk(v)

(
E[B+

l,v,n]
)
+ E[B−l,v]

=
∑

n∈
(
Nk(v)∩Nk(u)

)
∪(

{u}∩Nk(v)
)
∪
(
{v}∩Nk(u)

)
(
−
(|V |−1−degk(n)

l

)(|V |−2
l

) )

(12)

The above formula can be used to compute E[S(Cl, u, v)] in
polynomial time. Therefore, the k-steps semivalue interaction
index between v and u can be computed in time polynomial
in |V | using equation (2), which ends our proof. �

4.1 Algorithm
Algorithm 1 directly implements expression (2). The ex-
pected value operator E[S(Cl, u, v)] is computed using equa-
tion (12). It computes the k-steps semivalue interaction index
for a given pair of nodes u, v ∈ V in the graph G. This algo-

Algorithm 1: k-steps semivalue interaction index
Input: Graph G = (V,E), nodes v, u ∈ V , functions β
Data: for u ∈ V : Nk(u) - the set of k-Neighbours
Output: Iku,v k-steps semivalue interaction index

1 Iku,v ← 0;
2 for l← 0 to |V | − 2 do
3 Sl,u,v ← 0;
4 foreach n ∈

(
Nk(v) ∩Nk(u)

)
do

5 Sl,u,v←Sl,u,v −
(|V |−1−degk(n)

l

)
;

6 if v ∈ Nk(u) then
7 Sl,u,v← Sl,u,v−

(|V |−1−degk(u)
l

)
−
(|V |−1−degk(v)

l

)
;

8 Iku,v ← Iku,v +
β(l)

(|V |−2
l )

Sl,u,v;

rithm requires some precomputations. For each node u ∈ V
we need to calculate Nk(u). We can store these values us-
ing O(|V |2) space and perform these precomputations in

O(|V |(|V |+ |E|)) time using breadth-first search. After this
precomputation, the algorithm itself runs in O(|V |2) time.
Our algorithm can be easily adapted to weighted graphs; the
only difference is that the precomputations should be carried
out using the Dijkstra algorithm (which takes O(|V |(|E| +
|V | log |V |)) time). The algorithm itself remains unchanged.

Algorithm 2: k-steps Shapley interaction index
Input: Graph G = (V,E), nodes v, u ∈ V
Data: for each node u ∈ V :
Nk(u) - the set of k-Neighbours
Output: Iku,v k-steps Shapley value interaction index

1 ISV,ku,v ← 0;
2 foreach n ∈

(
Nk(v) ∩Nk(u)

)
do

3 ISV,ku,v ← ISV,ku,v − 1
degk(n)−1 ;

4 if v ∈ Nk(u) then
5 ISV,ku,v ← ISV,ku,v − 1

degk(u)−1 −
1

degk(v)−1 ;

We note that our algorithm can be optimized for any spe-
cific semivalue interaction index. For instance, Algorithm 2 is
a version of our algorithm that computes the k-steps Shapley
value interaction index in O(|V |) time.

Our final observation is that Algorithms 1 and 2 always re-
sult in non-positive values of interaction between nodes. This
is due to the fact, that our coalitional game defined on graph
(G, νk) is weakly subadditive, that is in our game only nega-
tive synergies can occur. So, the more negative value ISV,ku,v is,
the more similar nodes u and v are.

5 The Performance of Interaction Index
In this section, we evaluate the effectiveness of our similar-
ity measure based on the Shapley k-steps interaction index.
More specifically, we compare it against the other measures
from Table 1, which are all based on both the topology of the
network (known as structural similarities) and local informa-
tion (known as local similarities) [Lü and Zhou, 2011]. In all
of these measures, a parameter k is used to define the influ-
ence of v, denoted by Nk(v). This is simply the set of nodes
that are k steps away from v in the network. That is to say, ev-
ery node v is assumed to have k degrees of influence. In our
experiments we test Shapley value-based interaction index as
it is the most prominent semivalue and it has been already
widely studied in the context of social networks [Michalak et
al., 2013b; Szczepański et al., 2014].

5.1 Link Prediction
Having proposed a new algorithm for computing vertex sim-
ilarity, in this subsection we show how to use it to solve the
link prediction problem on various real-life networks.
Link prediction and similarity measure: We evaluate the
effectiveness of each similarity measure using the following
standard procedure for solving the link prediction problem:
given a graphG with missing or not-yet-developed edges, the
procedure invovles two steps: (i) compute the similarity of
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Name Measure

Common Neighbors (CN): SCNu,v = Nk(u) ∩Nk(v)
Salton Index (SI): SSIu,v =

Nk(u)∩Nk(v)√
Nk(u)×Nk(v)

Jaccard Index (JI) SJIu,v =
Nk(u)∩Nk(v)
Nk(u)∪Nk(v)

Hub Promoted Index (HPI) SHPIu,v = Nk(u)∩Nk(v)
min(Nk(u),Nk(v))

Leicht-Holme-Newman Index (LHN) : SLHNu,v = Nk(u)∩Nk(v)
Nk(u)×Nk(v)

Adamic-Adar Index (AA) : SAAu,v =
∑
n∈Nk(u)∩Nk(v)

1
logNk(n)

Resource Allocation (RA) : SRAu,v =
∑
n∈Nk(u)∩Nk(v)

1
Nk(n)

Table 1: The seven measures used in our experiments.

each pair of nodes that have no edge between them, and (ii)
connect the most similar pairs.

Network SvII CN SI JI HPI LHN AA RA

PR AUC PR AUC PR AUC PR AUC PR AUC PR AUC PR AUC PR AUC
Zachary 278 758 255 655 143 627 148 702 144 566 132 553 265 748 248 744
Dolphins 187 793 168 743 039 676 174 770 034 657 023 674 172 774 176 766
PolBooks 275 829 265 802 160 802 209 808 166 795 122 762 270 818 270 824
Football 388 913 388 890 438 918 442 916 429 906 449 912 380 906 385 904
Proteins 032 630 041 525 013 373 033 531 016 374 016 372 035 531 032 533
Emails 123 817 095 766 002 759 089 808 010 724 010 652 101 780 119 806
Powergrid 042 661 034 616 005 510 032 616 005 512 005 512 035 617 035 615

Table 2: The precision (PR) and arena under curve (AUC) of
the effectiveness of different measures in link prediction on
seven real-life networks. If PR equals 1000 than all missing
edges were detected, and if AUC is 1000 than all original
edges from G all rank higher than not existing connections.

Experiment: Our experiment was performed on seven pop-
ular real-life networks.2 The basic idea is to remove some
edges from the network under consideration, then test the ef-
fectiveness of each similarity measure in predicting where the
missing edges should be. More specifically, the settings were
as follow:
• We randomly remove 40%3 of edges from the original

graph G = (V,E), thus obtaining the training graph
GT = (V,ET ).
• For each node v ∈ V we create 8× 3 different rankings

based on 8 similarity measures (the Shapley k-steps in-
teraction index , and the seven measures from Table 1)
and k ∈ {1, 2, 3}. Specifically, for each such configu-
ration, we rank all nodes that are not directly connected
to v. Then, we take the number of missing edges, i.e.,
degG(v) − degGT (v), from the top of the ranking, and
compute the precision. The AUC [Lü and Zhou, 2011]
is computed for the entire ranking.
• For each of the real-world networks in our experiments,

the above process is repeated 30 times, and the average
precision and AUC is computed.

Table 2 presents the results of the experiment. Here, the
bold text highlights the best performance out of all measures.
As can be seen, our new measure SvII outperforms the others
on most networks.

Interestingly, although our measure is very similar to the
Resource Allocation measure (RA) [Zhou et al., 2009], ours

2All datasets are at http://konect.uni-koblenz.de/networks/.
3Lower percentages 20% and 10% were also tested resulted in

higher precision and AUC and similar performance rankings.
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Figure 1: Dendrograms of the Zachary karate club network
for k = 2 and k = 3, respectively.

dominates RA on all networks. Perhaps the reason behind
this difference is the following: when measuring the simi-
larity between v and u, the RA measure assumes that node
v sends some resource to u through a common neighbor
n ∈ Nk(u)∩Nk(v), who simply divides this resource equally
among the nodes in Nk(n), meaning that u recieves exactly

1
degk(n)

of the resource. On the other hand, when using our
measure, the fraction in formula (12) is 1

deg(n)−1
, not 1

deg(n)
,

which may indicate that the node n does not send back any
of the resource to the sender, v. Another difference compared
to the RA measure is that, with our measure, if nodes u and
v happen to be within each others‘ sphere of influence, i.e.,
u ∈ Nk(v), then they can transmit resource directly to each
other (see formula (12) and Algorithm 2).

5.2 Community detection algorithm
In this subsection we show how to use our interaction index
to identify communities.
Hierarchical clustering: The effectiveness of each similar-
ity measure is evaluated using the following standard proce-
dure for detecting communities: starting with |V | communi-
ties, each containing a single node, the algorithm proceeds
by (i) merging the two most similar communities, and (ii)
evaluating the modularity [Newman, 2006] of the resulting
community structure. This procedure of merging communi-
ties and evaluating modularity is repeated until we end up
with a single community containing all nodes. Finally, the
community structure with the highest modularity is chosen.
We will refer to this procedure as the bottom-up hierarchi-
cal clustering algorithm, or simply clustering algorithm, for
community detection. Note that step (i) requires measuring
the similarity between two groups of nodes, not two individ-
ual nodes as is the case with all aforementioend measures of
similarity. To address this issue, we generalize each measure
based on the notion of complete linkage (furthest-neighbour)
[Jain et al., 1999], which basically states that an individual
should not join a community if his interaction with any of the
community members is too small. We are looking for commu-
nities containing tightly connected nodes and this is exactly
done by complete linkage: ”The complete-link algorithm pro-
duces tightly bound or compact clusters” [Jain et al., 1999]
Other popular linkage types, namely single linkage and aver-
age linkage, were also tested. However, the complete linkage
proved to yield the best results for all the similarity measures.

The above community detection algorithm runs in
O(|V |2 log |V |) time, provided that the similarity between
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Figure 2: The community structures with optimal modularity
for the Political Books network (k = 1, 2, respectively).

each pair of nodes has been precomputed, which takes
O(|V |3) time regardless of the measure used.

Next, we perform two experiments. In the first, we evalu-
ate the sensitivity of the clustering algorithm to the parameter
k when using our Shapley k-steps interaction index. In the
second experiment, we evaluate the effectiveness of our mea-
sure, compared to those in Table 1, in terms of the modularity
of the resulting community structure.
Experiment 1: the parameter k. Generally speaking, our
measure, as well as any of the other measures from Table 1,
can be controlled by the parameter k, which specifies the de-
gree of influence in the network. This is particularly useful
for community detection, as it allows for controlling the size
of the resulting communities. In other words, by using any
such measure, we obtain a multi-resolution method [Fortu-
nato, 2010]. We analyze the outcome given different values
of k and given our measure of similarity: if k is too small,
then some potentially important interactions may not be de-
tected. On the other hand, if k is too large, the interaction
between weakly related nodes may negatively affect the clus-
tering process.

Let us illustrate what happens when k is too large on the
widely studied friendship network of the Zachary karate club
[Zachary, 1977]. Figure 1 presents the hierarchical clustering
of this network. We observe that for k = 3 the dendrogram
has fewer levels compared to k = 2. This means that, for
k = 3, in each step of the clustering process, the interac-
tion computed between many pairs of clusters (possibly sin-
gle nodes) is the same. Thus, for this network, k = 3 is too
high, and results in a lower modularity compared to k = 2.

Next, let us consider what happens when k is too small.
In Figure 2 we can see two community structures for the Po-
litical Books network, in which an edge between two books
indicates that they were co-purchased by the same buyer on
Amazon [Krebs, 2004]. For k = 2 we obtained a division
into two communities: (roughly speaking) books supporting
government in one community, and criticising it in the other.
However, if we set k = 1 we obtain a division into 12 commu-
nities. This latter community structure turns out to be much
worse in terms of modularity than the former one.

Generally speaking, it certainly helps the algorithm to try
out all possible k and choose the one that yields the best com-
munity structure. However, this increases the computational
complexity, and slows down the algorithm especially given

Network SvII CN SI JI HPI LHN AA RA

mod cov mod cov mod cov mod cov mod cov mod cov mod cov mod cov
Zachary 391 628 313 846 301 808 301 808 313 846 310 666 313 846 313 846
Dolphins 447 679 464 811 381 730 379 723 370 660 445 698 421 736 442 780
Books 445 946 445 946 445 946 445 946 457 796 481 864 448 950 445 946
Football 601 690 601 690 601 690 601 690 601 690 601 690 601 690 586 674
Proteins 741 824 562 652 524 865 601 684 677 746 591 660 695 803 705 807
Emails 397 471 354 475 339 457 256 447 256 447 252 287 322 428 392 473
Powergrid 864 902 841 884 834 879 824 869 847 883 864 897 846 889 860 900

Table 3: Modularity and coverage for hierarchical community
detection algorithm with different interaction measures.

large networks.
Experiment 2: performance. Now, the performance of the
clustering algorithm given our similarity measure is com-
pared against its performance given other measures from Ta-
ble 1. Importantly, the ground-truth community structure is
unknown for all networks considered in this experiment, with
the only exception being the Zachary network. Therefore, fol-
lowing the standard practice in the literature, the quality of
any given community structure will be measured using mod-
ularity [Newman, 2006].

The results are reported in Table 3. The table also reports
the coverage [Brandes and Erlebach, 2005] of the selected
community structure, which simply measures the ratio be-
tween intra-edges (those within a community) and inter-edges
(those between communities). As can be seen, for most of
the networks, the clustering algorithm using our similarity
measure (SvII) gives the best results. Once again, ours dom-
inates the Resource Allocation (RA) measure on all datasets.
The second best measure is Leicht-Holme-Newman Index
(LHN) [Leicht et al., 2006]. It gives high similarity to nodes
that have many common neighbors compared to the expected
number of such neighbors.

6 Summary & Future Work
In this paper we proposed a new vertex similarity measure
based on the game-theoretic notion of the interaction index.
Despite the computational challenges posed by the combina-
torial nature of this measure, we showed that, given our influ-
ence game, it is possible to compute this index in polynomial
time. We tested our measure on two important applications:
link prediction and community detection. For both applica-
tions, our measure outperformed other alternatives from liter-
ature.

While in this work we focused on one particular influence
game, it would be interesting to study other, perhaps more
involved but still polynomially-computable ones like those
based on betwenness centrality [Szczepański et al., 2012] or
connectivity games [Michalak et al., 2013a]. Furthermore,
while we focused on standard games, it would be interesting
to study interaction index defined for generalized coalitional
games [Michalak et al., 2014] but extended to graphs.
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[Szczepański et al., 2012] P. L. Szczepański, T.P. Michalak, and
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