
Computing Optimal Mixed Strategies for Security Games with Dynamic Payoffs

Yue Yin1,2, Haifeng Xu3, Jiarui Gan1,2, Bo An4, Albert Xin Jiang5

1The Key Lab of Intelligent Information Processing, ICT, CAS
2University of Chinese Academy of Sciences, Beijing 100190, China
3University of Southern California, Los Angeles, CA 90007, USA

4School of Computer Engineering, Nanyang Technological University, Singapore 639798
5Department of Computer Science, Trinity University, San Antonio, TX 79968, USA

1{yiny, ganjr}@ics.ict.ac.cn,3haifengx@usc.edu,4boan@ntu.edu.sg,5xjiang@trinity.edu

Abstract
Security agencies in the real world often need to
protect targets with time-dependent values, e.g.,
tourist sites where the number of travelers changes
over time. Since the values of different targets of-
ten change asynchronously, the defender can relo-
cate security resources among targets dynamically
to make the best use of limited resources. We pro-
pose a game-theoretic scheme to develop dynamic,
randomized security strategies in consideration of
adversary’s surveillance capability. This differs
from previous studies on security games by con-
sidering varying target values and continuous strat-
egy spaces of the security agency and the adver-
sary. The main challenge lies in the computational
intensiveness due to the continuous, hence infinite
strategy spaces. We propose an optimal algorithm
and an arbitrarily near-optimal algorithm to com-
pute security strategies under different conditions.
Experimental results show that both algorithms sig-
nificantly outperform existing approaches.

1 Introduction
Security is a grand challenge faced by the world. Re-
cently, facing rising threats from ISIS, many major cities have
boosted security measures to protect potential attack targets,
e.g., subway stations, tourist sites, shopping centers [Park,
2014]. Since strategic attackers can take advantage of pat-
terns of security strategies, it is important to develop random-
ized security strategies considering both different weights of
targets and attacker’s surveillance capability.

One challenge lies in designing efficient security resource
allocation strategies is that the relative importance of differ-
ent targets can change over time. Thus the limited security
resources need to be dynamically allocated for the best use
of them. For example, the entrances of museums are usually
crowed in the morning, leading to their high weights in secu-
rity at that time; while the bar streets and entertainment cen-

ters usually require more security measures in the evening.
Intuitively, to make the best use of limited security resources,
the security agency should assign more resources to the mu-
seums in the morning, then transfer some resources to the bar
streets in the evening. In this work, we aim at computing ran-
domized dynamic defender strategies to protect targets with
time-dependent payoffs.

There has been lots of research on game theory based secu-
rity resource allocation [Tambe, 2011; Yang et al., 2011; An
et al., 2013]. Many systems based on defender-attacker secu-
rity game models have been successfully deployed [Tambe et
al., 2014]. However, most work assumes that the payoffs of
targets are static over time [Shieh et al., 2012; An et al., 2011;
Gan et al., 2015; Vorobeychik et al., 2014]. Some work con-
siders changing target values, but they only allow the security
agency or the adversary to move at pre-defined, discretized
time points [Varakantham et al., 2013; Fang et al., 2013;
Xu et al., 2014] without analyzing how much loss the dis-
cretization can lead to when continuous strategy spaces are
considered. While Yin et al. [2014] considered varying tar-
get values and that the defender can move resources at any
time, their algorithms can only compute optimal pure de-
fender strategies, which is unsuitable in domains where the
attacker can easily conduct surveillance and recognize pat-
terns of the defender’s pure strategy.

We make five key contributions in this work. First, we pro-
pose a new Stackelberg game model, in which the targets’
weights are time-dependent and both the defender and the at-
tacker can act at any time, i.e., the defender can transfer re-
sources at any time while the attacker can attack at any time.
Thus both agents have continuous strategy spaces. Second,
we propose COCO (Computing Optimal Coverage withOut
transfer time) to compute the optimal mixed strategy for the
defender when she can move security resources among tar-
gets without time delay. COCO represents mixed strategies in
a compact way and avoids traversing the whole strategy space
by exploiting the properties of the optimal defender strate-
gies. Our third contribution is an approach to sample pure
strategies based on the compact mixed strategy computed by

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

681

COCO. The defender can only make a finite number of trans-
fers of resources in a time period in the real world, despite
that she can transfer resources at any time point in this period.
We sample such ‘implementable’ pure strategies to realize the
compact optimal mixed strategy.

We also consider a more general case in which it takes non-
negligible time to move resources among targets. Our forth
contribution is an efficient approximation scheme to com-
pute the near optimal defender mixed strategy. We propose
an algorithm ADEN (computing Approximately optimal DE-
fender strategies in games with Nonzero transfer time) which
leads to a defender utility at most ε less than the optimal de-
fender utility. Our fifth contribution is detailed experimental
analysis on the solution quality and computational efficiency
of the proposed algorithms. Experimental results show that
both COCO and ADEN make the defender better off than
algorithms based on the assumptions of static payoffs or dis-
cretized strategy spaces.

2 Model
Assume that there are n targets T = {1, . . . , n} and the de-
fender has m identical security resources (n ≥ m). The de-
fender protects the targets during a time period [0, te] (e.g.
the operation hours of a day) everyday. The importance of
targets changes over time. We use a continuous function
vi(t)(i ∈ T , t ∈ [0, te], vi(t) > 0) to represent the value of
a target i at time t and assume vi(t) to be piecewise linear1.
As in previous work, we model the problem as a Stackelberg
game, where the defender commits to a randomized strategy
first, and the attacker responds to this strategy.

Strategies. A pure defender strategy S includes the initial
assignment of resources at time 0 and the subsequent trans-
fers during [0, te], i.e., S = 〈(i, j, t) : i, j ∈ T , t ∈ [0, te]〉,
where (i, j, t) represents that a resource is transferred from
target i to target j at time t. (If a target i is protected at time
0, then (i, i, 0) ∈ S). We denote D = 〈dij : i, j ∈ T 〉 where
dij represents the time needed to transfer resources from tar-
get i to target j. We denote qi(S, t), a 0-1 indicator, to rep-
resent whether target i is protected at time t if the defender
plays pure strategy S. qi(S, t) is a piecewise constant func-
tion over time t ∈ [0, te] with values in {0, 1}. Let S be
the defender strategy space. Since the defender can trans-
fer resources at any time during [0, te], S is continuous. A
mixed defender strategy can be represented by a distribution
x = 〈xS : S ∈ S〉 with xS representing the probability den-
sity that pure strategy S is played by the defender. As in pre-
vious work, we restrict attacker strategies to pure strategies,
denoted as A = (i, ta), representing that the attacker attacks
target i at time ta.

Utilities and Equilibrium. We assume the game to be
zero-sum. If the attacker plays A = (i, ta) while the de-
fender plays a strategy S with qi(S, ta) = 0, i.e., the at-
tack succeeds, the attacker will gain the value of target i at
time ta, vi(ta), and the defender gains −vi(ta). Otherwise,
if qi(S, ta) = 1, the attack fails and both players get utility

1Piecewise linear functions are widely used to approximate com-
plex functions, while the accuracy of approximation can be con-
trolled by setting the number of linear segments.

0. Given a defender’s mixed strategy x and an attacker’s pure
strategy A = (i, ta), the expected attacker utility is

Ua(x, A) = vi(ta) · (1−
∫
S
xS · qi(S, ta)). (1)

The expected defender utility is Ud(x, A) = −Ua(x, A) due
to the zero-sum assumption.

The Stackelberg equilibrium is the same as the maximin
equilibrium given the zero-sum assumption: the defender
maximizes her minimum utility, or equivalently, minimizes
the maximum attacker utility, which indicates that the at-
tacker responds the best.

Compact Representation. It is complicated to directly
compute x given its infinite dimensions. We map a mixed
defender strategy into a compact form for the ease of compu-
tation. Given a mixed strategy x, for each target i ∈ T , we
define a coverage function ci(t) which describes the proba-
bility of target i being covered by a resource at time t.

ci(t) =

∫
S
xSqi(S, t). (2)

ci(t) is a function ranging in [0, 1] over time t ∈ [0, te]. A
mixed strategy x corresponds to a coverage vector, c(t) =
〈ci(t) : i ∈ T , t ∈ [0, te]〉. Given x and A = (i, ta),
the expected attacker utility can also be represented as
Ua(c(t), A) = vi(ta) · (1− ci(ta)).

3 Negligible Transfer Time
We begin with a simple case in which the transfer time of
resources is negligible, i.e., dij = 0. Zero transfer time is
a realistic assumption in domains in which targets are close
to each other or resources can be transferred quickly (e.g.,
using helicopters), thus transfer time is negligible compared
with the operation time of a pure strategy, i.e., [0, te]. We will
relax this assumption in the next section. In this section, we
first propose an approach to compute the optimal coverage
vector, then propose an approach to sample pure strategies
with finite transfers to produce the optimal coverage vector.

3.1 Computing Optimal Coverage Vector
If the transfer time is negligible, we can treat each time point
in [0, te] as an independent time point, and just need to com-
pute the optimal coverage vector by computing the ‘locally’
optimal coverage at each time point. Formally, at a specific
time point t0, c(t0) is locally optimal at t0 if it satisfies that

max
i∈T

vi(t0)(1− ci(t0)) ≤ max
i∈T

vi(t0)(1− c′i(t0)),∀c′(t0).

This indicates that the locally optimal coverage minimizes
the maximum attacker utility if he attacks at t0. We then ex-
plore how to achieve the locally optimal coverage. Let I rep-
resent an ‘attack set’ consisting of targets which lead to the
locally optimal attacker utility at t0 if the coverage of targets
at t0 is c(t0). Formally,

vi(t0)(1−ci(t0))=vj(t0)(1−cj(t0)),∀i, j∈I; (3)
vi(t0)(1−ci(t0))>vj(t0)(1−cj(t0)),∀i∈I, j∈T \ I. (4)

We have the following Lemma on the properties of a locally
optimal coverage.

682

Lemma 1. A coverage vector c(t) is locally optimal at t0
if and only if it satisfies

∑
i∈I ci(t0) = m, hence cj(t0) =

0,∀j ∈ T \ I . m is the number of resources.

The detailed proofs for lemmas, propositions, and theo-
rems in this paper are available in the online appendix2. We
now consider computing a coverage vector which is locally
optimal at any t∈[0,te]. We first assume that all targets are in
the attack set all the time. Such an assumption may enlarge
the attack set, and result in infeasible coverage on some tar-
gets during some time intervals, i.e., some targets need to be
protected with negative probability. We then find these time
intervals, revise the attack set and the coverage. We use an
example to illustrate the process.

Example 1. Assume that te = 2. There are 3 targets, 1 re-
source. The value functions of targets are: v1(t) = t, v2(t) =
−t + 10, v3(t) = −0.5t + 5. First, assume that all targets
are in the attack set all the time. Based on Lemma 1 and the
definition of attack set, the coverage functions satisfy that{∑

i∈{1,2,3} ci(t) = 1

v1(t)·(1−c1(t))=v2(t)·(1−c2(t))=v3(t)·(1−c3(t)).

Thus we can get coverage functions based on value functions
vi(t). It is easy to compute that when t ∈ [0, 2], c1(t) <
0, c2(t) > 0, c3(t) > 0. It indicates that target 1 should not
be in the attack set during [0, 2]. Thus we can set c1(t) = 0
for t ∈ [0, 2], and remove target 1 from the attack set. Similar
to the previous step, we now compute the coverage functions
for targets 2 and 3 which stay in the attack set:{∑

i∈{2,3} ci(t) = 1

v2(t) · (1− c2(t)) = v3(t) · (1− c3(t)).

The new functions c2(t) ≥ 0, c3(t) ≥ 0,∀t ∈ [0, 2]. Thus the
coverage vector c = 〈ci(t)〉 is now locally optimal ∀t ∈ [0, 2]
since it satisfies the condition in Lemma 1 everywhere.

We propose COCO (Computing Optimal Coverage with-
Out transfer time) in Algorithm 1, which computes the op-
timal coverage vector for targets in set I during time period
[b, e) recursively. We call COCO(I = T , b = 0, e = te) to
compute the optimal coverage vector. In COCO, we first as-
sume that the target set I is the attack set during time period
[b, e), then compute the corresponding coverage functions of
the targets in I (Line 2). E is a vector of all roots of the
coverage functions with elements in increasing order, i.e., tk
represents the kth smallest root in time period (b, e) (Line 3).
If E is empty, Line 5 checks the sign of coverage functions
during (b, e). If there does not exist any function with nega-
tive value in this time period, the coverage vector is feasible
in [b, e) and the algorithm terminates (Line 6). Otherwise
assume the attack set includes all targets with positive cover-
age during (b, e) and repeat the process (Lines 7-9). If E is
not empty, during (tk, tk+1), no coverage function has values
with opposite signs since (tk, tk+1) is a time period between
the adjacent roots of any function. Line 15 uses a set I ′ to

2http://www.ntu.edu.sg/home/boan/papers/IJCAI15 Dynamic
Appendix.pdf

Algorithm 1: COCO(I, b, e)

1 while true do

2 ci(t)← 1−
(n−m) 1

vi(t)∑
j∈I

1
vj(t)

,∀i ∈ I, t ∈ [b, e);

3 E←{tk :ci(tk) = 0, tk ∈ (b, e),∀i ∈ I};
4 if E = ∅ then
5 I ′ ← {i : i ∈ I, ci(t) ≥ 0,∀t ∈ (b, e)} ;
6 if I ′ = I then break;
7 else
8 ci(t) = 0,∀i ∈ I \ I ′,∀t ∈ [b, e) ;
9 COCO(I ′, b, e);

10 else
11 E ← E ∪ {t0 = b, t|E|+1 = e};
12 for k ∈ {0, . . . , |E|} do
13 I ′ ← ∅;
14 if ci(t) ≥ 0,∀i ∈ I,∀t ∈ (tk, tk+1) then
15 I ′ ← I ′ ∪ {i};
16 else ci(t) = 0, ∀t ∈ [tk, tk+1);
17 COCO(I ′, tk, tk+1);

18 return c = {ci(t) : i ∈ I, t ∈ [b, e)};

record targets with positive coverage during (tk, tk+1). Tar-
gets in I ′ are considered as in the attack set in time period
[tk, tk+1) while other targets are not (Line 16). The process
is repeated for each time period [tk, tk+1) (Line 17) to com-
pute the coverage of targets in I ′ until the coverage vector at
any time is feasible.
Theorem 2. COCO computes the optimal coverage vector.

3.2 Sampling Pure Strategies
Coverage functions computed by COCO can be continuously
changing over time. It is computationally infeasible to treat
any t ∈ [0, te] as an independent time point and sample an
allocation of resources based on the coverage at t. We now
propose an approach to sample pure strategies. Given a cov-
erage vector c(t), we first discretize time period [0, te] as a
sequence of time points θ = 〈θk〉 (k is an index) such that
∀t ∈ (θk, θk+1),∀i ∈ T , ci(t) is differentiable and mono-
tone. Given the piecewise linear assumption of value func-
tions, Line 2 in COCO ensures ci(t) to be piecewise differ-
entiable functions. Hence the discretization is feasible. The
procedure of sampling a pure strategy is as follows.
Step 1: Sample an allocation of resources at θk.
Step 2: Given the allocation at θk, sample the depar-

ture targets and destination targets of transfers during
(θk, θk+1).

Step 3: Given the transfers sampled in the previous step,
sample the time of each transfer.

Step 4: Go to time point θk+1 and repeat steps 1 - 3.
Next, we describe the implementation of the first three

steps. For Step 4, although resources need to be reallocated at
θk+1, the number of transfers at this time point is finite given
the finite number of resources.

683

Step 1: Let L = 〈Li : i ∈ T , Li ∈ {0, 1},
∑
i Li =

m〉 represent an allocation of resources with Li indicating
whether target i is protected by a resource. Let yL represent
the probability of playing allocation L at time θk. Step 1 can
be implemented once we get the value of yL. Given c(θk),
yL can be computed by approaches used in previous work
on security games [Kiekintveld et al., 2009; Letchford and
Conitzer, 2013].

Step 2: We first show that a coverage vector can be real-
ized by a specific set of transfers, which is formally shown
in Proposition 3. Let Λ = {u : u ∈ T , dcu(t)

dt < 0,∀t ∈
(θk, θk+1)} be a set of targets whose coverage decreases dur-
ing (θk, θk+1); let V = {v : v ∈ T , dcv(t)

dt > 0,∀v ∈
(θk, θk+1)} be a set of targets whose coverage increases dur-
ing (θk, θk+1).
Proposition 3. For t ∈ (θk, θk+1), c(t) can be implemented
by sampling from pure strategies in which resources are only
transferred from targets u ∈ Λ to targets v ∈ V , and each
resource is transferred for at most once.

Proof Sketch: Assume that the defender uses a pure strat-
egy S1 with nonzero probability in which a resource is trans-
ferred from a target v ∈ V to another target i ∈ T at t0 ∈
(θk, θk+1). Since cv(t) increases continuously in (θk, θk+1),
the defender must also use some other pure strategy S2 with
nonzero probability in which a resource is transferred from
some target j ∈ T to target v at t0. Thus the defender can
cancel the transfer made from v in S1 and directly transfer
a resource from j to i in strategy S2. If the defender uses a
pure strategy S3 in which a resource is transferred from some
target i ∈ T to a target u ∈ Λ at t0 ∈ (θk, θk+1), she can
get rid of this transfer in a similar way. Given that resources
are only transferred from targets u ∈ Λ to targets v ∈ V , a
resource will not be transferred from target v ∈ V to other
targets during [θk, θk+1]. Thus each resource is transferred
for at most once.

We now consider implementing Step 2. Let ΓL = {(u, v) :
u ∈ Λ, v ∈ V,Lu = 1, Lv = 0} represent a ‘transfer set’ of
target pairs, i.e., ∀(u, v) ∈ ΓL, a resource is transferred from
target u to target v during (θk, θk+1). Step 2 can be done once
we get the probability of choosing each ΓL, i.e., p(ΓL). To
compute p(ΓL), we first denote p((u, v)|L) as the probability
that a resource is transferred from target u to target v during
(θk, θk+1) after L is set as the allocation at θk. Once we get
the value of p((u, v)|L), p(ΓL) can be computed based on the
following class of equations.∑

ΓL3(u,v)

p(ΓL) = p((u, v)|L),∀L (5)

To compute p((u, v)|L), we let Z((u, v), t) represent the
probability that a resource is transferred from target u to tar-
get v before time t. For t ∈ [θk, θk+1], Z((u, v), t) is a
function with respect to t. If we can get the expression of
Z((u, v), t), p((u, v)|L) can be computed based on the fol-
lowing equations.∑

L

yL·Lu·(1−Lv)·p((u, v)|L)=Z((u, v), θk+1),∀u,v (6)

p((u,v)|L)=0,∀u∈Λwith Lu= 0,∀v∈V with Lv= 1 (7)

Eq. 6 is based on the law of total probability. Eq. 7 in-
dicates that a resource can only be transferred from a target
which is protected at θk to a target which is not protected at
θk. Our problem now lies in computing the expression of
Z((u, v), t).

Computing Z((u, v), t): First, a feasible expression of
Z((u, v), t) satisfies the following ∀t ∈ [θk, θk+1].∑

v∈V
Z((u,v),t)=cu(θk)−cu(t),∀u ∈ Λ (8)∑

u∈Λ

Z((u,v),t)=cv(t)−cv(θk),∀v ∈ V (9)

Z((u, v), t) ≥ 0,∀u ∈ Λ,∀v ∈ V (10)

lim
∆t→0

Z((u, v),t+∆t)−Z((u, v),t)

∆t
≥0,∀u∈Λ, v∈V

(11)

Eqs. 8 - 9 are based on Proposition 3. Eqs. 10 - 11
are based on the definition of Z((u, v), t). At a time point
t ∈ [θk, θk+1], the value of Z((u, v), t) can be computed
based on Eqs. 8 - 11. But it is impossible to compute the
expression of Z((u, v), t) in this way due to the continuity of
time. Note that given Eqs. 8 and 9, the function Z((u, v), t)
can be represented as linear combinations of coverage func-
tions (∀t ∈ [θk, θk+1]), i.e.,

Z((u, v), t) =
∑
i∈Λ

ziuv(t)(cu(θk)− cu(t))

+
∑
j∈V

zjuv(t)(cv(t)− cv(θk)).
(12)

Here ziuv(t) are parameters depending on t, or ‘parameter
functions’. We can get Z((u, v), t) by computing these ‘pa-
rameter functions’. At a specific time t ∈ [θk, θk+1], we can
get the value of the parameter functions based on Eqs. 8 -
11. In addition, we have the following proposition which dis-
cusses the properties of the parameter functions.
Proposition 4. There exist parameter functions which lead
to a feasible expression of Z((u, v), t) satisfying that each
ziuv(t) is piecewise constant during [θk, θk+1].

The proof of Proposition 4 is based on Lemma 5.
Lemma 5. If |Λ| > 2 and |V | > 2, there exists feasible
Z((u, v), t) satisfying lim∆t→0

Z((u,v),t+∆t)−Z((u,v),t)
∆t >

0,∀u,∀v,∀t ∈ [θk, θk+1].
Based on Proposition 4 and Lemma 5, we propose

Algorithm 2 to compute the parameter functions, hence
Z((u, v), t). We first compute the value of the parameter
functions at a time point t0, hence we can get an expres-
sion of Z((u, v), t) whose parameter functions are constant
in [t0, θk+1]. Let R be the set of the roots of functions
dZ((u,v),t)

dt (Line 4). The expression of Z((u, v), t) is feasible
from time t0 to the minimum time point in R (tm, Line 8)
since for t > tm, Eq. 11 is violated. The process is repeated
for tm until we get the feasible expression of Z((u, v), t) for
t ∈ [θ,θk+1].
Theorem 6. Algorithm 2 computes a feasible expression of
Z((u, v), t),∀t ∈ [θk, θk+1] after finite loops.

684

Algorithm 2: Computing Z((u, v), t)

1 t0 = θk, kuv = 0;
2 while tm < θk+1 do
3 solve ziuv(t0) based on Eqs. 8 - 11 (change the ‘0’ in

Eq. 10 to kuv , change the ‘≥’ in Eq. 11 to ‘>’);
4 R = 〈t : dZ((u,v),t)

dt = 0 and t ∈ (t0, θk+1)〉;
5 if R = ∅ then
6 break;
7 else
8 tm = mintR; kuv = Z((u, v), t0);
9 ziuv(t) = ziuv(t0),∀t ∈ [t0, tm); t0 = tm;

Step 3: Let Z(t|L, (u, v)) be the cumulative distribution
function of t, representing the probability that a resource
is transferred from target u to target v before time t (t ∈
[θk, θk+1]) after L is set as the allocation at θk and step 2
takes a transfer set ΓL 3 (u, v). We can implement Step 3 as
long as we can get the expression of Z(t|L, (u, v)). Note that
the time at which the transfer made from target u to target v
occurs is independent of the allocation at θk. Thus we have

Z(t|L, (u, v))=Z(t|(u, v))=
Z((u,v),t)

Z((u,v),θk+1)
,∀t∈ [θk,θk+1].

(13)
Apparently, we can get the expression of Z(t|L, (u, v)) based
on the expression of Z((u, v), t).

4 Nonzero Transfer Time
In this section, we address general cases with non-negligible
transfer time, i.e., dij ≥ 0 and propose an efficient approx-
imation scheme to compute the optimal defender’s mixed
strategy. We first obtain a discretized version of the game by
properly partitioning the time space, and more importantly,
show that the defender’s optimal utility is at most ε less than
the optimal utility in the original continuous version. We then
approach the discrete game with a flow formulation. For con-
structing the discretized game, we first define an (ε, δ)-Mesh.
Definition 7. ((ε, δ)-Mesh) An (ε, δ)-mesh is a uniform
discretization of the time space [0, te], denoted as ζ =
〈t0, t1, ..., t|ζ|〉 with t0 = 0, t|ζ| = te, such that δ = tk −
tk−1 and vari(tk−1, tk) ≤ ε for all k = 1, ..., |ζ|, where
vari(tk−1, tk) = maxt∈[tk−1,tk] vi(t) − mint∈[tk−1,tk] vi(t)
is the oscillation of vi(t) in interval [tk−1, tk].

Continuity of value functions guarantees the existence of
such an (ε, δ)-Mesh, which can be easily found3. We now
convert a general game G into a discretized game Gd. First,
we restrict the defender’s resource move can only happen at
time points tk ∈ ζ and so is the attacker’s attack. Thus the
strategy space of Gd is a subset of the strategy space of G.
Let vi(t) represent the value functions in G, we construct the
value functions of Gd using the (ε, δ)-Mesh: ∀i ∈ T , let

v′i(t) = max
t′∈[tk−1,tk]

vi(t
′),∀t ∈ [tk−1, tk) (14)

3For Lipschitz continuous functions satisfying |vi(t)−vi(t′)| ≤
K|t− t′| for all i, we can simply take ε = Kδ.

Figure 1: Construction of the discrete game

be the value functions of Gd. Note that v′i(t) is a constant in
[tk−1, tk] and satisfies |v′i(t)−vi(t)|≤ ε,∀t. We also assume
that dij are multipliers of δ, i.e., dij = aijδ with aij being
some integer. This assumption holds if each dij is given as a
rational number and δ is small enough. To show the gap be-
tween the optimal defender utility in Gd and the initial game
G, we introduce a bridge game Gb, in which the value func-
tions are v′i(t) as in Gd while the defender and the attacker
can act at any time as in G. The following lemma shows the
relationship between defender utilities in Gd and Gb.
Lemma 8. Let x be a defender’s mixed strategy of Gd, then
UGd

d (x) = UGb

d (x), where UGd

d (x) and UGb

d (x) are the de-
fender’s utility inGd andGb respectively if the defender plays
x and the attacker responds the best.

This is because the value functions of Gd and Gb are the
same. Furthermore, a deeper conclusion holds.
Lemma 9. Assume that transfer time between any target pair
dij is multiplier of δ. If x is an equilibrium strategy of Gd, it
is an equilibrium strategy of Gb.

Note that this does not apply directly from Lemma 8, since
the strategy space of Gd is a subset of the strategy space of
Gb. Now we are ready to bound the defender’s utility gap
between Gd and G, as summarized in the following theorem.
Theorem 10. Let x′ be an equilibrium strategy of Gd and x
be an equilibrium strategy of G, we have

UGd (x′)− UGd (x) ≥ −ε,
whereUGd (x′) is the defender utility inG if the defender plays
x′ and the attacker responds the best, while UGd (x) is the
optimal defender utility in G.

In addition, we have UGd (x′) = UGd

d (x′) based on Eq.
14. Our task now reduces to computing the equilibrium of
Gd. Gd is a discretized spatio-temporal game as is shown
in Figure 1(a), in which x-axis is the (ε, σ)-Mesh and y-axis
indicates the targets, i.e., node (k, i) is target i at time tk.
An attacker’s pure strategy is a node in the graph. If we add
a departure node and a destination node to the graph as is
shown in Figure 1(b) and require that any edge of the graph
has capacity 1, the defender’s pure strategy is anm-unit 0−1
integer s − t flow on the graph, i.e., if the defender transfers
a resource from target i to target j at time tk, add an edge
between node (k, j) and (k+ aij , j); if the defender does not
transfer the resource on target i at time tk, add an edge be-
tween node (k, i) and node (k+ 1, i). We have the following
theorem about the defender’s mixed strategies in Gd.

685

Theorem 11. A mixed strategy of Gd is an m-unit fractional
flow, and vise versa.

Let f(i, j, tk) represent the probability that a resource is
transferred from target i to target j at tk. The optimal de-
fender utility can be computed by the following LP which
we call ADEN (computing Approximately optimal DEfender
strategies in games with Nonzero transfer time).

ADEN : min U (15)

s.t. U ≥ v′i(tk)(1−f(i, i, tk)),∀i∈T , tk∈ζ (16)∑
i∈T

f(s, i, t0) = m, (17)

f(s, i, t0)−
∑
j∈T

f(i, j, t0) = 0,∀i ∈ T (18)

∑
j∈T

f(j,i,tk−aji)−
∑
j∈T

f(i,j,tk)=0,∀i∈T , tk−aji, tk∈ζ (19)

Note that the probability that a target i is covered by a
resource at time tk is equal to the probability that a re-
source stays at target i during the time period after tk, i.e.,
ci(tk) = f(i, i, tk). Thus we have the objective and Eq. 16
together to guarantee the optimal defender utility. Eqs. 17 -
19 are for the properties of m-units s − t flow. The cover-
age vector c = 〈f(i, i, tk) : i ∈ T , tk ∈ ζ〉 computed by
ADEN can be directly mapped back to a mixed strategy with
a finite support, i.e., pure strategies which transfer resources
at tk(∀tk ∈ ζ). Technically, for a resource at any target i and
time tk, we can sample its next destination j with probabil-
ity propositional to f(i, j, tk) (j = i means staying at i). If
there is a move, this resource will be in transition from tk to
tk+aij . The initial assignment of resources can be sampled
based on f(s, j, t0). This LP has size poly(teδ n

2). When the
value functions are all Lipschitz continuous functions satis-
fying |vi(t) − vi(t′)| ≤ K|t − t′| for all i, we take ε = Kδ
and generate an LP with size poly(Kteε n2), which gives an
ε-approximation to the original problem.

5 Experimental Evaluation
We evaluate the performance of the proposed algorithms in
terms of attacker utility. A lower attacker utility indicates a
higher defender utility given the zero-sum assumption. We
assume te = 100. To illustrate the solution quality of the
proposed algorithms, we consider two baseline strategies.
The first one is the ORIGAMI algorithm [Kiekintveld et al.,
2009] assuming static payoffs. The second one, which we
call PDT, is based on the assumption that both the defender
and the attacker can act at pre-defined, discretized time points
Φ = {n·te7 : n = 0, 1, · · · , 7} as in Xu et al. [Xu et al., 2014].
We also evaluate the scalability of the proposed algorithms.

In each game, we sample piecewise linear value functions
with at most two sections, i.e., the number of sections is ran-
domly sampled in {1, 2}. If a value function is determined to
have two linear sections, the discontinuity point will be ran-
domly chosen in (0, te), then the values of the function at time
0, te and the discontinuity point will be randomly chosen in
(0, 100], thus the value of a value function ranges in (0, 100].
We perform 4 experiment sets to show the performance of

the algorithms. In the first experiment set, we restrict transfer
time to be zero, and test the solution quality of the algorithms
against increasing (1) number of targets; (2) number of re-
sources. We then test the effect of changing ε and changing
transfer time on the solution quality of ADEN. The third ex-
periment set tests the scalability of the proposed algorithms.
We also test the runtime of the sample procedure.

6 8 10 12 14
0

10

20

30

40

50

60

70

n−Targets

At
ta

ck
er

 U
tili

ty

ORIGAMI PDT ADEN COCO

(a) Increase] of targets

1 2 3 4 5
0

20

40

60

80

100

m−Resources

At
ta

ck
er

 U
tili

ty

ORIGAMI PDT ADEN COCO

(b) Increase] of resources

5 10 15 20 25 30
0

10

20

30

40

50

ε

At
ta

ck
er

 U
tili

ty

PDT ADEN

(c) Increase ε

5 10 15 20 25 30
0

10

20

30

40

50

Transfer time

At
ta

ck
er

 U
tili

ty

PDT ADEN

(d) Increase dij

Figure 2: Attacker utility

We first evaluate the solution quality of the algorithms. In
Figure 2, the y-axis of all subfigures indicate the optimal at-
tacker utility. Figures 2(a) and 2(b) consider zero transfer
time. In Figures 2(a), the x-axis indicates the number of tar-
gets. In Figure 2(b), the x-axis indicates the number of re-
sources. These two figures show that despite the number of
targets or resources, ADEN and COCO significantly perform
better than the baseline strategies. COCO achieves lower at-
tacker utilities than ADEN since it can compute the optimal
defender strategies. Figures 2(c) and 2(d) further evaluate the
solution quality of ADEN. Figure 2(c) evaluates the effect
of increasing ε on ADEN. As the value of ε increases, the
optimal attacker utility computed by ADEN increases gen-
tly. Since ε is an upper bound of the defender’s loss, the de-
fender’s loss can be far less than ε in reality. Solution quality
of PDT is not affected by the value of ε, but ADEN outper-
forms PDT even when ε = 30. Figure 2(d) evaluates the
effect of increasing transfer time on ADEN and PDT (ε is
fixed at 10). The x-axis indicates different levels of transfer
time, i.e., for x = 10, transfer time of resources is randomly
generated in [10

2 , 10]. Figure 2(d) shows that as transfer time
increases, both ADEN and PDT performs worse. While the
effect of increasing transfer time is more obvious on ADEN
than it is on PDT. ADEN outperforms PDT even when the
maximum transfer time reaches 30. If the transfer time is
very large, i.e., larger than the operation time of pure strate-
gies, then the defender’s optimal strategy is static and ADEN
and PDT will perform the same as ORIGAMI.

We then evaluate the scalability of the proposed algo-
rithms. In Figure 3, the y-axis indicates runtime in seconds.
In Figure 3(a), the x-axis indicates the number of targets.
Runtime of COCO shows obvious increasing trend while that
of ADEN does not change much as the number of targets

686

6 8 10 12 14
0

1000

2000

3000

n−Targets

Ru
nt

im
e(

se
c)

ADEN
COCO

(a) Increase] of targets

1 2 3 4 5
0

50

100

150

200

250

m−Resources

R
u

n
ti

m
e(

se
c)

ADEN
COCO

(b) Increase] of resources

10 20 30 40 50 60 70 80 90 1000

200

400

600

800

1000

n−Targets

Ru
nti
me

(se
c)

epsilon = 10
epsilon = 20

 = 30epsilon

(c) ADEN

6 8 10 12 141000

2000

3000

4000

5000

n−Targets

Ru
nt

im
e(

se
c)

Sample procedure

(d) Sample procedure

Figure 3: Runtime

ranges from 6 to 14. In Figure 3(b), the x-axis indicates the
number of resources, which does not affect the runtime of
COCO or ADEN much as is shown. Figure 3(c) extends the
number of targets to 100 and shows the scalability of ADEN
against different values of ε. Smaller ε leads to longer runtime
and more obvious increasing trend in runtime. When ε = 30,
ADEN can solve games with 100 targets in 20 minutes. We
did not show the runtime of COCO in Figure 3(c) since it runs
out of memory and fails to return a solution when the number
of targets n > 15. Figure 3(d) shows the runtime of the sam-
ple procedure for sampling pure defender strategies based on
the compact optimal mixed strategy computed by COCO.

6 Conclusion
This paper makes four key contributions in computing op-
timal mixed strategies to protect targets with dynamic pay-
offs: (1) A Stackelberg game model in which both agents
have continuous strategy spaces and the payoffs are dynamic.
(2) COCO for computing the optimal mixed defender strat-
egy in a compact form when the defender can move resources
from one target to another immediately. (3) A sample pro-
cedure for sampling implementable pure strategies based on
the compact optimal mixed strategy computed by COCO. (4)
ADEN for computing an approximately optimal mixed strat-
egy when transfer time of resources is non-negligible. We
also provide extensive experimental analysis that shows the
solution quality and scalability of the proposed algorithms.

7 Acknowledgements
This work is supported by NSFC grant No. 61202212 and
Singapore MOE AcRF Tier 1 grant MOE RG33/13. This
research is supported by the National Research Foundation,
Prime Minister’s Office, Singapore under its IDM Futures
Funding Initiative and administered by the Interactive and
Digital Media Programme Office.

References
[An et al., 2011] Bo An, Tambe Milind, Fernando Ordonez,

Eric Shieh, and Christopher Kiekintveld. Refinement of

strong Stackelberg equilibria in security games. In AAAI,
pages 587–593, 2011.

[An et al., 2013] Bo An, Matthew Brown, Yevgeniy Vorob-
eychik, and Milind Tambe. Security games with surveil-
lance cost and optimal timing of attack execution. In AA-
MAS, pages 223–230, 2013.

[Fang et al., 2013] Fei Fang, Albert Xin Jiang, and Milind
Tambe. Optimal patrol strategy for protecting moving tar-
gets with multiple mobile resources. In AAMAS, pages
957–964, 2013.

[Gan et al., 2015] Jiarui Gan, Bo An, and Yevgeniy Vorob-
eychik. Security games with protection externality. In
AAAI, pages 914–920, 2015.

[Kiekintveld et al., 2009] Christopher Kiekintveld, Manish
Jain, Jason Tsai, James Pita, Fernando Ordóñez, and
Milind Tambe. Computing optimal randomized resource
allocations for massive security games. In AAMAS, pages
689–696, 2009.

[Letchford and Conitzer, 2013] Joshua Letchford and Vin-
cent Conitzer. Solving security games on graphs via
marginal probabilities. In AAAI, pages 591–597, 2013.

[Park, 2014] Christine Park. Nyu reacts: Isis security threat.
http://www.nyunews.com/2014/09/30/isis-2/, 2014.

[Shieh et al., 2012] Eric Shieh, Bo An, Rong Yang, Milind
Tambe, Craig Baldwin, Joseph DiRenzo, Ben Maule, and
Garrett Meyer. PROTECT: An application of computa-
tional game theory for the security of the ports of the
United States. In AAAI, pages 2173–2179, 2012.

[Tambe et al., 2014] Milind Tambe, Albert Xin Jiang,
Bo An, and Manish Jain. Computational game theory for
security: Progress and challenges. In AAAI Spring Sympo-
sium on Applied Computational Game Theory, 2014.

[Tambe, 2011] Milind Tambe. Security and Game Theory:
Algorithms, Deployed Systems, Lessons Learned. Cam-
bridge University Press, 2011.

[Varakantham et al., 2013] Pradeep Varakantham,
Hoong Chuin Lau, and Zhi Yuan. Scalable random-
ized patrolling for securing rapid transit networks. In
IAAI, pages 1563–1568, 2013.

[Vorobeychik et al., 2014] Yevgeniy Vorobeychik, Bo An,
Milind Tambe, and Satinder Singh. Computing solu-
tions in infinite-horizon discounted adversarial patrolling
games. In ICAPS, pages 314–322, 2014.

[Xu et al., 2014] Haifeng Xu, Fei Fang, Albert Xin Jiang,
Vincent Conitzer, Shaddin Dughmi, and Milind Tambe.
Solving zero-sum security games in discretized spatio-
temporal domains. In AAAI, pages 1500–1506, 2014.

[Yang et al., 2011] Rong Yang, Christopher Kiekintveld,
Fernando Ordonez, Milind Tambe, and Richard John. Im-
proving resource allocation strategy against human adver-
saries in security games. In IJCAI, pages 458–464, 2011.

[Yin et al., 2014] Yue Yin, Bo An, and Manish Jain. Game-
theoretic resource allocation for protecting large public
events. In AAAI, pages 826–833, 2014.

687

