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Abstract
Modeling causal dependencies often demands cy-
cles at a coarse-grained temporal scale. If Bayesian
networks are to be used for modeling uncertainties,
cycles are eliminated with dynamic Bayesian net-
works, spreading indirect dependencies over time
and enforcing an infinitesimal resolution of time.
Without a “causal design,” i.e., without anticipating
indirect influences appropriately in time, we argue
that such networks return spurious results. By in-
troducing activator random variables, we propose
template fragments for modeling dynamic Bayesian
networks under a causal use of time, anticipating
indirect influences on a solid mathematical basis,
obeying the laws of Bayesian networks.

1 Introduction
Dynamic Bayesian networks (DBNs) are an extension to
Bayesian networks motivated from two perspectives, on the
one hand as a manifestation of cyclic dependencies over time,
closely related to Markov models [Murphy, 2002], on the other
hand as a stationary process repeated over time in fixed time
slices [Glesner and Koller, 1995]. Considering [Pearl, 2002]
who emphasized that Bayesian networks should be a direct rep-
resentation of the world instead of a reasoning process, both
views seem to be conflicting. A stationary model repeated
over time with cyclic dependencies would expand to infinity
already for one timeslice. Therefore, cyclic dependencies in a
stationary process are restricted [Jaeger, 2001] and forced into
a strict order, e.g., state variables of time t are only dependent
of states at t− 1. Unfortunately, this means that evidence at a
certain time point does not affect states at this time point, but
one slice later.

In the extreme form of a DBN, every state variable is depen-
dent on every other. In that case, there is no option to leave
such dependencies in their causally correct same timestep
as every dependency would cause cycles. Therefore, states
can only be dependent on states from a previous timestep.
However, this poses conflicts in causality, as a) the temporal
causality is simply inaccurate and b) no indirect effects are
considered, enforcing an infinitesimal resolution of time in-
stead of a world-representing designed time and heavily limits
the usage of a DBN.

To circumvent this problem, basically two options are avail-
able. As investigated by [Boutilier et al., 1996] variables
might be independent in certain contexts, which would allow
a causally correct network generation from rules such as those
presented in [Glesner and Koller, 1995] or [Ngo and Haddawy,
1997]. Still, then rules would need to be designed with a proce-
dural view, degrading a BN to a procedural tool in a reasoning
process, rather than designing it as a first-class declarative
representation. Further, such rules would inherently be cyclic
and might cause problems as stated by [Ngo et al., 1995]. A
second option would be to heavily restrict a DBN to special-
ized observation sets, e.g., to “single observations at a time” as
done in [Sanghai et al., 2005], s.t. no indirect causes need to
be considered. Again, this implies that observations are made
at an infinitesimal resolution of time.

The contribution of this paper can be summarized as fol-
lows. By introducing activator random variables, we propose
template fragments for modeling DBNs under an unrestricted
use of time, anticipating indirect influences on a solid mathe-
matical basis, obeying the laws of Bayesian networks. This is
beneficial for application contexts where causal models arise
naturally and require a view over time, e.g., automatic learn-
ing of causal influences from coarse observation sets and—as
a long-term goal—finding causally correct explanations and
relations in (temporally uncertain) knowledge bases requiring
anticipation of causal chains, e.g., DeepQA [Ferrucci et al.,
2010] or the Knowledge Vault [Murphy et al., 2014].

We discuss preliminaries on DBNs and context-specific in-
dependencies as introduced by [Boutilier et al., 1996] and
[Haddawy et al., 1995] in Sec. 2. By extending DBNs with
activator random variables, we propose Activator Dynamic
Bayesian Networks (ADBNs) in Sec. 3, derive common oper-
ations on ADBNs such as filtering and smoothing in Sec. 4,
discuss our results in Sec. 5, and conclude with Sec. 6.

2 Dynamic Bayesian Networks: Preliminaries
A DBN models a stationary Markov process of state influences
and transitions that is repeated over time.
Notation 2.1 (State Variables). Let Xt

i be the random vari-
able of the ith state variable Xi at time t, where Xt

i is
assignable to one of its possible values xi ∈ dom(Xt

i ). Let
~Xt be the set of all n state variables at time t, s.t.,

~Xt =
(
Xt

1, . . . , X
t
n

)ᵀ
.
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Let P (Xt
i = xi) (or P (xti) for brevity) denote the probability

of state Xi having xi as a value at time t. If dom(X) =
{true, false} we write xt for the event Xt = true and ¬xt
for Xt = false as usual. If Xt

i is unspecified and not defined
through a query, P (Xt

i ) denotes the probability distribution
of Xt

i for all its possible values.
Definition 1 (Dynamic Bayesian Network). A DBN is a tu-
ple (B0, B→) with B0 defining an initial Bayesian network
(BN) representing time t = 0 containing all states X0

i in
~X0 and a consecutively repeated Bayesian network fragment
B→ defining state dependencies between Xs

i and Xt
j , with

Xs
i ∈ ~Xs, Xt

j ∈ ~Xt, s ≤ t. By repeating B→ for every time
step t > 0, a DBN (B0, B→) is unfolded into a BN uniquely
defining a joint probability P ( ~X0:tᵀ). Notwithstanding, for
every random variable Xt

i a local conditional probability dis-
tribution (CPD), e.g., as a CPT, is defined.

State dependencies defined in B→ are limited, s.t. no cyclic
dependencies are created during unfolding. For t− 1 ≤ s ≤ t,
we speak of a first order Markov property, which we want
to discuss in this paper. For any probabilistic model with
t− 1 ≤ s < t, i.e., states at time t are only dependent of states
at time t − 1, an acyclicity constraint in the directed graph
holds. A limited set of dependencies of the form t−1 ≤ s ≤ t
are possible, as long as no directed cycles are created. N

Commonly, in such networks we distinguish between ob-
servable (sensors) and unobservable (hidden states) variables.
For our work, we consider a fully observable Markov model
containing only observable states.

Diagonal state dependencies (as in Fig. 1) with t − 1 ≤
s < t (acc. to Def. 1) are often due to syntactic constraints on
(D)BNs and stand in conflict with an actual causality. Such
dependencies exist causally at s = t, but create directed cycles.
While conflicting with causality, further, dependencies on
“sibling” states of one time slice are spread over the past. This
means, indirect causes among siblings are not anticipated, or
rather, that chain reactions are not covered.
Example 2.1 (Regulatory Compliance). In a company de-
liberately placed false information, e.g., faked payment sums
for bribe money, might divulge throughout a company until
every employee believes (unknowingly) in a lie. We therefore
model a probabilistic regulatory-compliance checking tool us-
ing a DBN to track and query possible violations of employees
over time and to track back potential sources of deliberately
placed false information. If one employee believes in false
information, we do not say that such an employee is “corrupt”,
but say that he is credulous. Every employee, Claire, Don and
Earl, say, is represented by one state in ~Xt. The probability
P (Xt

i ), encodes the belief in employee Xi being credulous xti
or being integrous ¬xti at time t. We model B0, s.t., it models
our prior belief in every employee being a source of false
information, i.e., B0 is a BN containing all ~X0 as prior ran-
dom variables; say P (c0) = 0.9, P (d0) = 0.6, P (e0) = 0.01.
Being credulous is permanent, such that B→ describes all
random variables Xt

i depending on Xt−1
i with conditional

probability P (xti|x
t−1
i ) = 1.

An employee might influence another employee in his writ-
ings or, rather, in his information state. A credulous employee

might therefore (undeliberately) influence his colleague such
that the colleague also believes in false information, i.e., be-
comes credulous, too. Say, Claire influences Don, and if Claire
is credulous, there is a probability of Don becoming credulous
too. Further, if Don influences Earl, there is a probability that
Claire influences Earl indirectly through Don. We can model
this correctly as a dependency as Ct → Dt → Et in B→.
We assume an individual probability of 0.8 for an employee
becoming credulous when being influenced by a credulous
person and a noisy-or combination for every state.

However, we want to model that all employees can influence
each other, and, to assure an acyclicity constraint, we must
bend the influencing dependency to a consecutive timestep in
B→ (as in Fig. 1). This is unavoidable, but is inaccurate from
a world representation point of view, as indirect influences are
now anticipated spuriously. Earl is now influenced by Claire
through Don from a Claire of the penultimate time. This
means, a time slice must be infinitesimal small, e.g. secondly,
to anticipate all indirect influences, and cannot be chosen
freely to an intended use case, e.g. daily.

In our example, we now can make observations, e.g., from
unheralded compliance checkups and trace a potential diffu-
sion of false information throughout our company over time.
Still, we cannot actually model an accurate representation of
a world, because we have to use a modeled dimension (time)
for assuring syntactic constraints of (in)dependencies.

Ct−1

Dt−1

Et−1

Ct

Dt

Et

Figure 1: A “diagonal” DBN fragment B→ for Ex. 2.1. Et is
only influenced indirectly by a past Ct−2 through Dt−1.

Classically a conditional independency in a Bayesian net-
work is represented by the lack of an arc between two nodes.
Another kind of independencies in Bayesian networks, called
context-specific independencies (CSIs), has been studied by
[Boutilier et al., 1996] & [Ngo and Haddawy, 1997] and has
mainly been used for more efficient inference in such net-
works. CSIs represent dependencies in a BN that are only
present in specific contexts. We extend this idea by defining
special activator random variables.

Definition 2 (Activator Random Variable). We defineAXY
to be an activator random variable which activates a depen-
dency of random variable Y on X in a given context. Let
dom(AXY ) = {true, false} (extensions to non-boolean do-
mains are straightforward). We define the deactivation crite-
rion from a functional perspective towards the CPT as

∀x, x′ ∈ dom(X),∀y ∈ dom(Y ),∀~z ∈ dom(~Z) : (1)

P (y|x,¬aXY , ~z) = P (y|x′,¬aXY , ~z) = P (y|∗,¬aXY , ~z) ,

where ∗ represents a wildcard and ~z further dependencies.
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The activation criterion describes a situation where Y be-
comes dependent onX , i.e., the CPT entry for y is not uniquely
identified by just aXY and ~z, hence

∃x, x∗ ∈ dom(X),∃y ∈ dom(Y ),∃~z ∈ dom(~Z) :

P (y|x, aXY , ~z) 6= P (y|x∗, aXY , ~z) . N (2)

Example 2.2 (Activator). Claire does not constantly influ-
ence Don, but only if Claire sends a letter to Don. We can
observe possible exchanges from used envelopes (possibly
found in the trash bin). On such envelopes, we find multiple
transfers from a coarse time interval in an imprecise or inac-
curate order. For example, a transfer from Don to Earl and
one from Claire to Don might include a transitive influence of
Claire on Earl at the same time. A document transfer at time t,
denoted M t

CD, is then an activator for an influence of Claire
Ct on Don Dt. Likewise, if we can neglect this document
transfer, i.e. observe ¬mt

CD, Don becomes independent of
Claire at time t.

The example shows that sometimes dependencies are mod-
eled in B→ that are not always needed.

3 Activator Dynamic Bayesian Networks
We extend Bayesian networks such that, besides state variables,
we have activators purely acting as necessary conditions for
context-specific (in)dependencies.

Notation 3.1 (Activator Matrices). Let As t describe the
matrix of all activator random variables between time-slice
s and t, s.t.,

As t =

A
s t
11 · · · As t1n
...

. . .
...

Atn1 · · · As tnn

 .

Let ~As ti denote the ith column of As t and let ~As t denote the
corresponding column vector of all entries of As t, s.t.

~As t =
(
As t11, . . . , A

s t
1n, . . . , A

s t
n1, . . . , A

s t
nn

)ᵀ
.

Definition 3 (Activator Dynamic Bayesian Network
(ADBN)). An ADBN fragment template B′→ consists of de-
pendencies between statesXs

i andXt
j , t−1 ≤ s ≤ t (Markov-

1) and matrices As t of activators. Let As tij be the activator
random variable influencing Xt

j regarding a dependency on
Xs
i , such that Xt

j’s local CPT follows Eq. 2 and Eq. 1. Every
activator is assigned a prior probability. An ADBN is then
syntactically defined by (B0, B

′
→) defining its semantic as a

joint probability P ( ~X0:tᵀ , ~A01:ttᵀ). N

Still, t − 1 ≤ s < t is necessary to absolutely assure an
acyclicity constraint when modeling ADBNs. Under the con-
dition t− 1 ≤ s ≤ t, possibly directed cycles are created. For
our work we only consider the problematic t−1 ≤ s ≤ t case,
only containing in-time-slice dependencies (as in Fig. 2). For
brevity, we write At for Att excluding Attkk, and, correspond-
ingly, At and Atij .

The constraint t− 1 ≤ s < t for assuring acyclicity even in
complete digraphs limits a causal reasoning process to direct
dependencies between states.

Proposition 1 (Diagonal (A)DBN Restrictions). A classic,
“diagonal” (as in Fig. 2) (A)DBN of type t − 1 ≤ s < t is
restricted in its usage to special observation sets. Indirect influ-
ences are spread over multiple timesteps and possible indirect
influences inside one timestep cannot be considered. This
enforces a) an infinitesimal resolution of observations, where
indirect effects do not need to be anticipated or b) restricts
a DBN to observations where indirect influences strictly do
not occur. This implies, not a single two activators At∗i and
Ati∗ are allowed to be probably active, i.e. the set of probably
active activators must form a bipartite digraph with uniformly
directed edges. Further, only up to n2/4 activators are allowed
to be probably active per timestep, and all other activators
must be (i) observed to be (ii) deactive. If, in a diagonal
DBN, observations can neither hold a) or b), observation- and
query-(de)serializations would be needed, and n− 2 spurious
“time”-slices would need to be inserted between t− 1 and t.
In our opinion, this degrades a BN to a reasoning tool. N

We show, by using a modified acyclicity constraint, that in
ADBNs (Fig. 2) we can correctly anticipate indirect influences
by modeling dependencies causally correctly.
Example 3.1 (Example continued). By extending our
credulousness representing DBN with document transfer
activators we obtain an ADBN with activators ~At =
(M t

CD,M
t
DC ,M

t
DE ,M

t
ED,M

t
CE ,M

t
EC) and states ~Xt =

(Ct, Dt, Et). For every t we assume a prior probability for
any transfer of P (mt

ij) = 0.5. Still, we have to assume that
every employee can influence every other, i.e., send him a
document. To cover chain reactions of multiple transfers, we
would then need syntactically forbidden cyclic dependencies.

The following Thm. 1 states that by using an ADBN it is
indeed possible to move an acyclicity constraint from a design
phase to an operations phase while maintaining a solid mathe-
matical basis in accordance with Bayesian network semantics.
This means, if the only possible mails are from Claire to Don
to Earl, we could have modeled all influences correctly in one
timestep during design of the DBN. Unfortunately, we do not
know possible observations during design and such acyclic
mail exchanges may differ in every time step.

C0

D0

E0

C1

D1

E1

C2

D2

E2

M1
DC M1

EC

M1
CD

M1
ED

M1
CE M1

DE

M2
DC M2

EC

M2
CD

M2
ED

M2
CE M2

DE

Figure 2: A causally correctly represented world using an
ADBN for Ex. 3.1. Syntactic DAG constraints of (D)BNs pre-
vented desired cyclic dependencies in this design and “diago-
nal” state dependencies were enforced (hinted in light grey). In
the diagonal case, M t

XY represents M t−1 t
XY , i.e. M t

XY affects
the dependency of state Y t on Xt−1.
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Notation 3.2 (Vector Operands). Let fΓ( ~X, Y ) be the prod-
uct of applied operands f to every row {1 ≤ i ≤ rank( ~X)}\Γ,
i.e., we iterate over every row of ~X without rows in the set Γ
and apply f to this row’s elements. Scalars Y are used in
every row, i.e.,

fΓ( ~X, Y ) =
∏
i\Γ

f(Xi, Y )

Notation 3.3 (Lexicographic Order). Let ≺ be a lexico-
graphic term order, such that Xt−1

∗ ≺ Xt
∗, X

t
i ≺ Xt

i+1, and
At−1
∗∗ ≺ At∗∗, Ati∗ ≺ At(i+1)∗, A

t
ij ≺ Ati(j+1), and At∗∗ ≺ Xt

∗,
Xt−1
∗ ≺ At∗∗.

Theorem 1 (Bayesian Network Soundness). For every set
of combinations of ~A1:t an ADBN (as in Fig. 2) corresponds to
a Bayesian network, if, for all t, ~At satisfies the new acyclicity
constraint:

∀x, y, z ∈ ~Xt : A (x, z)t,A (z, y)t → A (x, y)t

¬∃q : A (q, q)t ,
(3)

with a function A (i, j)t that is defined as

A (i, j)t =

{
false if Atij = ¬atij
true if else

.

Following the lexicographic order, the joint probability (JP)
P ( ~X0:tᵀ , ~A1:tᵀ) of an ADBN is specified by,

P (X0
1 ) · . . . · P (X0

n)

·
t∏
i=1

P (Xi
1|Xi

2, . . . , X
i
n, A

i
21, . . . , A

i
n1, X

i−1
1 ) · . . .

· P (Xi
n|Xi

1, . . . , X
i
n−1, A

i
1n, . . . , A

i
(n−1)n, X

i−1
n )

· P (Ai12) · . . . · P (Ain(n−1)) ,

written for brevity using Not. 3.2 as

P( ~X0) ·
t∏
i=1

P( ~Xi| ~Xiᵀ\ ~Xi, Aᵀi, ~Xi−1) · P( ~Ai) .

As expected, the JP can be defined recursively:

P ( ~X0:tᵀ , ~A1:tᵀ) = P ( ~X0:t−1ᵀ

, ~A1:t−1ᵀ

)

·P( ~Xt| ~Xtᵀ\ ~Xt, Aᵀt, ~Xt−1) ·P( ~At) . N (4)

Informally, Eq. 3 states that a deactive activator must break
open dependency cycles, i.e., the set of possibly active activa-
tors forms a directed acyclic graph (DAG).

Proof of Theorem 1. We show that for every set of combina-
tions of ~A1:t the joint probability stated in Thm. 1 is unique
and well-defined, iff for all t the set of ~At obeys Eq. 3. We
show this by reversing conditional independency assumptions
in the semantic JP and find the unique topological order of our
syntactical graph structure.

We begin with B0, which can be written as

P ( ~X0:tᵀ , ~A1:tᵀ) = P (X0
1 ) · . . . · P (X0

n) · γ (5)

= P (X0
1 , . . . , X

0
n) · γ = P ( ~X0ᵀ

) · γ ,

with

γ =
t∏
i=1

P( ~Xi| ~Xiᵀ\ ~Xi, Aᵀi, ~Xi−1) ·P( ~Ai) .

Consecutively, we roll up the joint distribution according
to Bayes’ chain rule. Considering an extreme case of a set
of activators corresponding to Eq. 3, it is straightforward that
under Eq. 3 there must always ∃X1

E1 : ∀iA1
i(E1) = ¬a1

i(E1),
such that due to Eq. 1, the set of activators and previous states
uniquely identify the CPT entry and X1

E1 becomes indepen-
dent of all other ~X1, such that the JP can be written as

P ( ~X0ᵀ

) · P (X1
E1|∗, ~A1ᵀ

E1, X
0
E1)

·P{E1}( ~X
1| ~X1ᵀ

\ ~X1, Aᵀ1, ~X0) ·P( ~A1)

·
t∏
i=2

P( ~Xi| ~Xiᵀ\ ~Xi, Ai
ᵀ

, ~Xi−1) ·P( ~Ai) . (6)

By reversing X1
E1’s conditional independency we can write

P ( ~X0ᵀ

) · P (X1
E1|∗, ~A1ᵀ

, ~X0ᵀ

) ·P( ~A1)

·P{E1}( ~X
1| ~X1ᵀ

\ ~X1, Aᵀ1, ~X0)

·
t∏
i=2

P( ~Xi| ~Xiᵀ\ ~Xi, Aᵀi, ~Xi−1) ·P( ~Ai) .

Hence, with

P( ~At) = P (At12) ·...· P (At1n) ·...· P (Atn1) ·...· P (Atn(n−1))

= P (At12, . . . , A
t
1n, . . . , A

t
n1, . . . , A

t
n(n−1))

= P ( ~At
ᵀ

) ,

we can combine P ( ~X0ᵀ
) with P ( ~A1ᵀ

) to P ( ~A1ᵀ
, ~X0ᵀ

), s.t.
the first eliminated state variable X1

E1 can be combined to

P (X1
E1, ~A1ᵀ

, ~X0ᵀ

)

·P{E1}( ~X
1| ~X1ᵀ

\ ~X1, Aᵀ1, ~X0)

·
t∏
i=2

P( ~Xi| ~Xiᵀ\ ~Xi, Aᵀi, ~Xi−1) ·P( ~Ai) .

Consecutively, there ∃X1
E2 : ∀ {i\E1}A1

i(E2) = ¬a1
i(E2),

s.t.,

P (X1
E1, ~A1ᵀ

, ~X0ᵀ

) · P (X1
E2|∗, X1

E1, ∗, ~A1ᵀ

E2, X
0
E2)

·P{E1,E2}( ~X
1| ~X1ᵀ

\ ~X1, Aᵀ1, ~X0)

·
t∏
i=2

P( ~Xi| ~Xiᵀ\ ~Xi, Aᵀi, ~Xi−1) ·P( ~Ai) ,

for which we can reverse the conditional independency again
and obtain

P (X1
E1, ~A1ᵀ

, ~X0ᵀ

) · P (X1
E2|∗, X1

E1, ∗, ~A1ᵀ

, ~X0ᵀ

)

·P{E1,E2}( ~X
1| ~X1ᵀ

\ ~X1, Aᵀ1, ~X0)

·
t∏
i=2

P( ~Xi| ~Xiᵀ\ ~Xi, Aᵀi, ~Xi−1) ·P( ~Ai) ,
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which, according to Bayes’ chain rule, can be written as

P (X1
E2, X

1
E1, ~A1ᵀ

, ~X0ᵀ

)

·P{E1,E2}( ~X
1| ~X1ᵀ

\ ~X1, Aᵀ1, ~X0)

·
t∏
i=2

P( ~Xi| ~Xiᵀ\ ~Xi, Aᵀi, ~Xi−1) ·P( ~Ai) .

Consecutively repeating this process for every further XEi,
where the ith elimination variable is maximally dependent on
the previous (i − 1) elimination variables, we, henceforth,
approach the elimination of X1

En, which is dependent on up
to every other ~X1, which are in fact all eliminated variables
up to now, s.t.
P (X1

E(n−1), . . . , X
1
E1,

~A1ᵀ

, ~X0ᵀ

)

· P (X1
En|X1

E(n−1), . . . , X
1
E1, ~A

1ᵀ

En, X
0
En)

·
t∏
i=2

P( ~Xi| ~Xiᵀ\ ~Xi, Aᵀi, ~Xi−1) ·P( ~Ai) ,

for which we can reverse the conditional independency again
and combine the JP finally to
P (X1

En, X
1
E(n−1), . . . , X

1
E1, ~A1ᵀ

, ~X0ᵀ

)

·
t∏
i=2

P( ~Xi| ~Xiᵀ\ ~Xi, Aᵀi, ~Xi−1) ·P( ~Ai) .

Indeed, we already obtained a partial topological order > of
X1
En > X1

E(n−1) > . . . > X1
E1 >

~A1ᵀ
> ~X0ᵀ

. Following
this procedure for the remaining t, we finally obtain

P (Xt
E(n−1), ..., X

t
E1,

~At
ᵀ

, ..., X1
En, ..., X

1
E1,

~A1ᵀ

, ~X0ᵀ

)

· P (Xt
En|Xt

E(n−1), . . . , X
1
E1, A

1ᵀ

En, X
t−1
En ) .

With a final reverse conditional independency assumption,

P (Xt
E(n−1), ..., X

t
E1, ~At

ᵀ

, ..., X1
En, ..., X

1
E1, ~A1ᵀ , ~X0ᵀ)

·P (Xt
En|Xt

E(n−1), ..., X
t
E1, ~At

ᵀ

, ..., X1
En, ..., X

1
E1, ~A1ᵀ , ~X0ᵀ) ,

we obtain a complete topological order and a unique JP of

P (Xt
En, X

t
E(n−1), ..., X

t
E1, ~At

ᵀ

, ..., X1
En, ..., X

1
E1, ~A1ᵀ , ~X0ᵀ) .

(7)
We have shown that the claimed JP of Th. 1 in fact is a unique
and well-defined JP defining a topological order of a corre-
sponding Bayesian network.

Informally speaking, this proof shows that in an ADBN an
acyclicity constraint can be postponed to an operation phase
while assuring soundness with BNs. This means, a BN can
actually be a cyclic graph, if it is used correctly.
Proposition 2 (Completeness). An ADBN can model any JP.
We have shown that in an ADBN all random variables of t can
be dependent on each other, as long as during operations only
certain combinations of activators are used. This means, that
any form of in-time-slice structure can be modeled through
adequate specifications of ~At. Straightforwardly, this can,
if causally needed, be extended to further “diagonal” depen-
dencies between states of consecutive time slices, including

activator random variables for those dependencies. Obviously,
this does not create cyclic dependencies and thus satisfies
Eq. 3, i.e., is an ADBN. Such an ADBN would contain all
possible dependencies between states and leave the option
to (de)activate them, meaning, represents the most general
form of an Markov-1 ADBN template including all possi-
ble Markov-1 DBN structures. Noteworthy, we can directly
embed [Pearl, 2009]’s do-calculus here using activators. N

4 Operations
Based on Thm. 1 marginalization is well-defined and filter-
ing, smoothing and prediction (according to the meaning of
[Murphy, 2002]) can be derived from the joint distribution.
We derive those operations while carefully handling novel
in-time-slice dependencies and activator random variables.

Notation 4.1 (Notation for Observations). Let ~Zt ⊆ ~Xt

be a set of observed and ~ζt = ~Xt\~Zt be the corresponding
set of not-observed state variables. Let Bt ⊆ At be a set
of observed activators and ~Bt ⊆ ~At be the corresponding
column vector representation. Likewise, let ~βt = ~At\ ~Bt be
the column vector of all not-observed activators. We write ~z t

for ~Zt = ~z and~bt for ~Bt = ~b.
Every query contradicting with observations, i.e., ~xt con-

tradicts ~z t, is defined to be of probability 0. Further, every
observation in ~z t uniquely defines its corresponding random
variable in ~Xt.

4.1 Filtering
We calculate the complete conditional joint probability
P ( ~X0:tᵀ , ~A1:tᵀ |~z 0:tᵀ ,~b1:tᵀ) at every timestep, from which
every desired filtering operation can be marginalized out.
With a normalization factor α, filtering is generally defined
from the JP as

P ( ~Xtᵀ , ~At
ᵀ

|~z 0:tᵀ ,~b1:t
ᵀ

) = α
∑

~ζ0:t−1ᵀ

∑
~β1:t−1ᵀ

P ( ~X0:tᵀ , ~A1:tᵀ) ,

where all values of variables ~Xt, ~At are defined by the
query and variables ~X0:t−1, ~A1:t−1 are defined by either
observations in the sets ~z 0:t−1,~b1:t−1 or through summation
over unobserved variables in ~ζ 0:t−1, ~β1:t−1.
Definition 4 (Filtering). Using the recursive definition of the
joint probability in Eq. 4, filtering is efficiently defined as

P ( ~Xtᵀ , ~At
ᵀ

|~z 0:tᵀ ,~b1:tᵀ) =

α ·
∑
~ζt−1ᵀ

∑
~βt−1ᵀ

P ( ~Xt−1ᵀ

, ~At−1ᵀ

|~z 0:t−1ᵀ

,~b1:t−1ᵀ

)

·P( ~Xt| ~Xtᵀ\ ~Xt, Aᵀt, ~Xt−1) ·P( ~At) . N (8)

ADBN filtering from t − 1 to t has time and space
complexity O(1). Every incremental ADBN filtering is
n-times faster than performing it in a serialized fashion having
further O(t) space complexity for storing all orders. Further
effort would be needed for generating such a serialized order.
Example 4.1 (Filtering). With Thm. 1 we can actually model
cyclic dependencies as desired in Ex. 3.1 and build an ADBN
for our example as shown in Fig. 2.
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Say, Don and Earl did pass an initial checkup, but Claire
did not. At t = 1, we observe a document transfer from Claire
to Don, we are unsure about one from Don to Earl, but can ne-
glect all other transfers. As Claire is credulous, we expect her
to influence Earl slightly through Don, expressible in the filter-
ing operation P (E1|~z 0:1ᵀ

,~b1ᵀ
), with ~z 0:1 = (c0,¬d0,¬e0)ᵀ,

and~b1 = (m1
CD,¬m1

DC ,¬m1
ED,¬m1

CE ,¬m1
EC)ᵀ.

A diagonal DBN cannot anticipate the indirect influence,
because t1-Earl is influenced by a t0-Don that has not re-
ceived a document from Claire. This means our belief in
Earl remains at 0 due to our initial observation of ¬e0, i.e.
P ′(E1|~z 0:1ᵀ

,~b1ᵀ
) = 〈0, 1〉. As ~b1 fulfills Eq. 3 we correctly

obtain P (E1|~z 0:1ᵀ
,~b1ᵀ

) = 〈0.32, 0.68〉 using an ADBN, i.e.
we anticipate that Earl is influenced by Claire through Don.

To achieve the same result in a diagonal DBN, we need
observations at a finer time scale, where all indirect influ-
ences are serialized, e.g., we must first observe m1

CD, an-
ticipated in the filtering operation P ′(E1|~z 0:1ᵀ

,~b1ᵀ
) and

then insert a “correcting” “time”-slice t = 1.1, where we
anticipate the possibilities of M1

DE in another operation
P ′(E1.1|~z 0:1.1ᵀ

,~b1:1.1ᵀ
). To achieve the result of one ADBN

operation, we need n− 1 “diagonal”-operations.

Prediction is a filtering operation with an empty observation
set. However, as a minimal set of observations is needed to
remove cycles, plain prediction is not possible in our syntax.
However, by splitting a prediction-observation-set into two
subsets, e.g. first the lower triangle and second the upper
triangle ofAt+1 is observed to be deactive, prediction becomes
possible. While this does not cover all possible chain reactions,
it then covers significantly more than a classic DBN could
cover (none), as previously discussed in Sec. 3 and Prop. 1.

4.2 Smoothing
Similar to the filtering operation, the general smoothing opera-
tion P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ), k < t can be derived from the
joint probability as

P ( ~Xkᵀ , ~Ak
ᵀ

|~z 0:tᵀ ,~b1:tᵀ) =

α ·
∑

~ζ0:k−1ᵀ

∑
~β1:k−1ᵀ

∑
~ζk+1:tᵀ

∑
~βk+1:tᵀ

P ( ~X0:tᵀ , ~A1:tᵀ) =

P ( ~Xkᵀ , ~Ak
ᵀ

|~z 0:kᵀ ,~b1:k
ᵀ

) · P (~z k+1:tᵀ ,~bk+1:tᵀ | ~Xkᵀ , ~Ak
ᵀ

) ,

in which we find a previous (stored) filtering operation, known
as a forward message, and a new latter term commonly known
in smoothing operations. Using an adequate recursive defi-
nition for the latter term, we obtain an efficient calculation
method using a “backward message.” The commonly known
“sensor model” is, due to in-time-slice dependencies, included
in the forward, as well as backward message.
Definition 5 (Smoothing). Smoothing at timestep k consid-
ering all evidences up to t is defined as

P ( ~Xkᵀ , ~Ak
ᵀ

|~z 0:tᵀ ,~b1:tᵀ) = α ·P ( ~Xkᵀ , ~Ak
ᵀ

|~z 0:kᵀ ,~b1:kᵀ)

·
∑
~ζk+1ᵀ

∑
~βk+1ᵀ

P( ~Xk+1| ~Xk+1ᵀ

\ ~Xk, Aᵀk+1, ~Xk) ·P( ~Ak+1)

· P (~z k+2:tᵀ ,~bk+2:tᵀ | ~Xk+1ᵀ

, ~Ak+1ᵀ

) . (9)

The last term corresponds to the backward message and was
calculated in the previous (i.e., previously calculated, but tem-
porally consecutive) smoothing operation. N

Performing smoothing over all k < t has O(t2) time and
constant space complexity or, by storing filtering operations,
O(t) time and space complexity. Compared to a serialized
version, without actually serializing, n2-times faster or n-
times faster and smaller.

Example 4.2 (Explaining away). Continuing Ex. 4.1 this ex-
ample demonstrates that smoothing handles explaining away
over multiple timesteps and respects indirect causes. Say, only
Don underwent a successful compliance check at time t = 0,
i.e., ~z 0 = (¬d0). For t = 1 we found the same document
transfer as previously, and for t = 2, a Sunday, we can neglect
all, i.e., ~b2 = ∅. On that Sunday also irregularities in Earl’s
documents were found, i.e., ~z 2 = (e2).

If we perform the smoothing operation for Claire’s initial
belief state without considering evidence from t = 2, we end
up with our prior belief of P (C0|~z 0:1ᵀ

,~b1ᵀ
) = 〈0.5, 0.5〉,

as we have gained no new information. However, with ob-
servations from t = 2, we need to consider an indirect in-
fluence by Claire onto Earl and our belief in her rises to
P (C0|~z 0:2ᵀ

,~b1:2ᵀ
) ≈ 〈0.532, 0.468〉.

The slow increase is due to our high prior belief in Earl
manipulating documents of P (e0) = 0.7 and it is more likely
that Earl has been manipulating documents ever since. If,
say, Earl can be relieved from initial incriminations, i.e.,
¬e0, the only explanation for this situation is an indirect
cause of Claire being credulous, which is correctly handled as
P (c1,m1

DE |~z 0:2ᵀ
,~b1:2ᵀ

) = 1. We can update our initial prior
beliefs using smoothing and find that P (d0) = P (e0) = 0 but
P (c0) = 1. We can now say for sure, Claire is corrupt.

In a classic diagonal (A)DBN the last example would have
been unexplainable, as indirect influences of t1 (causally)
would first be anticipated a step later at t2 (for n=3). The
detailed explanation is confusing, because it is not causal: at
t2, the time of incriminating evidence for Earl, we know that
Earl is only influenced by himself, i.e. only t1-Earl can be
the source of his credulousness. At t1, Earl only receives a
document from integrous t0-Don (observation). This is where
the problem lies, t0-Claire should have influenced t0-Don
by now, but t0-Claire influences t1-Don with her message
m1
CD. I.e. Earl cannot become credulous and the observa-

tion e2 remains unexplainable. Mathematically we obtain
P (e0|~z 0:2ᵀ

,~b1:2ᵀ
) = 0 because all terms in this calculation

involve either the CPT entry P (e2|¬m2
∗E , C

1, D1,¬e1) = 0

or P (e1|M1
DE ,¬m1

CE , C
0,¬d0,¬e0) = 0 (Underlined CPT

attributes uniquely identify these entries to be 0). By defini-
tion, we obtain P (¬e2| . . . , e2, . . .) = 0, and, thus, we stand
in conflict with the probability axioms of Kolmogorov.

5 Discussion
Using an ADBN has the benefit of anticipating indirect causes
in-time in an over-the-time evolving process. Still, it comes
with a cost of introduced activators, which need to be defined
and enforce minimal observation sets of activators (Eq. 3: any
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acyclic constellation of probably active activators is allowed).
However, we came from a point of view where activators ex-
isted and Prop. 1 shows that classic DBNs are significantly
more restricted (the number of uniformly directed bipartite
graphs with n vertices is far smaller than the number of pos-
sible DAGs). The need to anticipate indirect influences orig-
inated from coarse observation timesteps, where indirect in-
fluences must be anticipated to explain made observations.
Where we motivated coarse timesteps from an unavailability
of finer observations, the choice of coarser timesteps is also
motivated by computational feasibility. Not being bound to
the finest available observation granularity relaxes the rate of
needed time-updates and is also discussed by [Pfeffer and Tai,
2005] in the form of Asynchronous DBNs using [Nodelman et
al., 2002]’s CTBNs. Still, Asynchronous DBNs and CTBNs
run into the same problem given in Prop. 1 of anticipating
indirect influences during one timestep.

We have discussed the complexity of operations over time
and have shown that in an ADBN we obtain the same, and
even simpler, complexities as in classic DBNs. However,
like in any other DBN, the dimension complexity in terms
of nodes of one operation remains computationally intractable
and demands approximate inference techniques, which can
greatly benefit from context specific independencies, as shown
by [Boutilier et al., 1996].

Notwithstanding, it is possible that Eq. 3 does not hold in a
particular situation. Still, we now have a direct indicator for
potentially spurious results. In this particular situation a miti-
gation is needed, but is beyond the scope of this paper. Such
a mitigation would be, for example, to move small subsets of
activators to a neighboring timestep or enforcing observations
of more deactive activators.

6 Conclusion
We have shown that indirect causes in dynamic Bayesian net-
works cause conflicts in representing causality. These con-
flicts arose from using a modeled dimension for assuring
syntactic requirements. By extending dynamic Bayesian net-
works with activator variables to ADBNs, we are able to move
acyclicity constraints from a design phase to a later operation
phase. Without the need of algorithm frameworks, degrading
a Bayesian network to a reasoning process, we obtained a
solid mathematical basis sound to Bayesian networks with
a causally correct anticipation of indirect causes in dynamic
Bayesian networks under much softer restrictions.

Future work is dedicated to further acyclicity constraints
when considering properties of local CPDs, which even al-
low operations with cyclic activator sets and extensions to
relational Bayesian networks [Jaeger, 1997].
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